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1. INTRODUCTION

In this report, we investigate how refinements of the triangle inequality,
which are known to hold in normed spaces, can be extended to the setting of
geodesic spaces, with a particular focus on complete Busemann spaces. This
study is based on original research and is intended for future submission as
an academic paper.

2. PRELIMINARIES

Let (X, d) be a metric space. A path in X is a continuous map 7 : [«, 5] C

R — X. Given a pair of points x,y € X, we say that a path v : [o, 8] = X
joins x and y if y(«) = x and y(8) = y. A geodesic path in X is an isometry
v : [, B] = X such that d(v(s),v(t)) = |s — t| for every s,t € [, 8]. A
geodesic segment ([, B]) C X from x to y is the image of a geodesic path
v : [, f] = X joining = and y. Note that a geodesic segment from x to y is
not necessarily unique in general. If no confusion arises, then [z, y] denotes
a unique geodesic segment from x to y. A uniquely geodesic space is a metric
space X if every two points in X can be joined by a unique geodesic path.
In a uniquely geodesic space (X, d), every point on a geodesic segment is
naturally parametrized by [0,1] C R. For two distinct points z,y € X, a
point z € X belongs to [z,y] if and only if there exists t € [0, 1] such that
d(z,z) = td(x,y) and d(z,y) = (1 — t)d(x,y). For such a point, we use the
notation z = (1 —t)x @ ty, and say that z is a convex combination of x and
Y.
Let (X, d) be a metric space and z,y € X two distinct points. A metric
midpoint of x and y is a point m € X if d(z,y) = 2d(z,m) = 2d(m,y).
A complete metric space X is geodesic space if and only if every pair of
points in X has a metric midpoint [1, pp. 2-3, Prop. 1.1.3]. From this, it
follows that in a complete uniquely geodesic space X, a convex combination
(1—-t)x®ty € X exists for every two distinct points z,y € X and ¢ € [0, 1].
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A Busemann space is a geodesic space (X,d) such that for every two
geodesic paths 71 : [aq,81] C R — X and 73 : [ae, B2) C R — X, the map
D’h,’yz : [al,ﬁl] X [QQ,BQ] — R defined by

Dsy, 4, (t1,t2) = d(71(t1),72(t2))

is convex [3, pp. 576-577][8, pp. 203-204]. Every Busemann space is a
uniquely geodesic space [8, p. 210, Prop. 8.1.4]. Basic examples of Busemann
spaces are the Euclidean space E™ [8, p. 211, Ex. 8.1.7], normed strictly
convex vector spaces [8, p. 210, Prop. 8.1.6], hyperbolic spaces [1, p. 10, Ex.
1.2.11], R-trees [9], and Riemannian manifolds of global nonpositive sectional
curvature [4]. A large subclass of Busemann spaces consists of non-positively
curved spaces in the sense of Alexandrov, also known as CAT(0) spaces [6].

Let (X, d) be a metric space. A geodesic line in X is a distance-preserving
map v : R — X. A local geodesic is a map v : [, ] C R — X with the prop-
erty that for every ¢ € [a, ] there exists € > 0 such that d(v(s1),7(s2)) =
|s1 — s for all s1,s0 € [a,B] with [t — s1]| + |t — s2] < e. A geodesic
space X is said to have the geodesic extension property if for every local
geodesic v : [a, ] = X with a # 3, there exist € > 0 and a local geodesic
7" [, B+¢€] = X such that 7/[jq 5/ = 7 [4, p- 208, Def. 5.7]. In a Busemann
space, every local geodesic is a geodesic path [8, p. 212, Cor. 8.2.3]. From
this, it follows that if X is a Busemann space, then X has the geodesic
extension property if and only if every non-constant geodesic path can be
extended to a geodesic line.

Given any two distinct points z and y in a Busemann space having the
geodesic extension property, there exists a unique geodesic line whose image
contains [z,y]. For r > 0, (1 + r)z O ry denotes a unique point z on this
geodesic line satisfying d(z,z) = rd(z,y) and d(z,y) = (1 + r)d(z,y).

3. A STUDY OF REFINEMENTS OF THE TRIANGLE INEQUALITY IN
GEODESIC SPACES

In this section, we consider refinements of the triangle inequality in com-
plete Busemann spaces. In normed spaces, the following strengthened tri-
angle inequality and its reverse hold.

Theorem 3.1. [7, p. 257, Thm. 1] For nonzero vectors x and y in a normed
space (E,||||) it is true that

)mm I, ll)

Bz +yll < ]+ lyl - <2 - ‘ Tl H

and

(3:2) ||:c+y||z||:c||+||y||—(2— —H+mH)max<||w|| Iyll).
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Hereafter, we may assume without loss of generality that ||z|| < |ly].
(3.1) and (3.2) can be rewritten in the following form.

T Yy
(3.3) e + gl < llyll = llzl] + Hnwn (— T —)\ ,

BT

T Yy
(3.4) e+ yll > llzll - 1yl + Hnyn (— + —) H

BT

We consider how these inequalities are represented in complete Busemann
spaces. Let (X,d) be a complete Busemann space and z,y,z € X three
distinct points with d(z,z) < d(z,y). Put r := d(z,x)/d(z,y). By the
triangle inequality, we have

(3.5) d(z,y) <d(z,ry® (1 —r)z) +dry® (1 —r)z,y)
=d(z,ry® (1 —r)z)+ (1 —r)d(z,y)
=d(z,y) —d(z,x) + d(z,ry ® (1 — r)z).

This holds whether the three points z, y, z form a triangle or lie on the same
geodesic segment. Moreover, if X is a normed space and we associate z
with the initial point of & and the terminal point of y, as well as x with the
terminal point of & and y with the initial point of y, then (3.5) corresponds
to (3.3). In fact, d(z,ry & (1 — r)z) represents the length of the vector
from the terminal point of (1 — ||z||/|ly||)y to the terminal point of  in the
normed space (see Figure 1, with z, :=ry ® (1 — r)z).
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FIGURE 1. A comparison of (3.3) and (3.5)
Returning to the complete Busemann space X, let s := d(z,z), §' :=

d(z,y), and v : [0,s] — X be a geodesic path joining z and z. If X has
the geodesic extension property, there exists a geodesic path 7" : [0, s'] = X
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such that /|5 = 7. This gives a point w € X satisfying +/(s') = w and
d(z,w) = d(z,y). Moreover, we can write

s —s s'—s 1 1
w= |1+ o z=—-2x6(—-—1]=z.
s s r r

By the triangle inequality, we have

(3.6) d(z,y) > d(y, w) + d(w, x)
= d(y, w) — {d(z,w) — d(z,2)}
=d(z,x) — d(z,y) + d(y, w).

This holds whether the three points x, ¥y, z form a triangle or lie on the same
geodesic segment. Moreover, if X is a normed space and we associate z
with the initial point of & and the terminal point of y, as well as x with the
terminal point of  and y with the initial point of y, then (3.6) corresponds
to (3.4). In fact, d(y, w) represents the length of the vector from the initial
point of y to the terminal point of (1/r)x in the normed space (see Figure
2).

)
FIGURE 2. A comparison of (3.4) and (3.6)

4. IN PURSUIT OF INEQUALITIES FOR LENGTHS OF GEODESIC SEGMENTS

The above results suggest the existence of further inequalities for lengths
of geodesic segments in complete Busemann spaces. To explore this direction
further, we review some known inequalities in normed spaces. The following
result is a combined inequality of (3.1) and (3.2).

Proposition 4.1. [7, p. 257, Remark 2] For nonzero vectors & and y in a

normed space (E, ||-||), let a(x,y) be the angular distance between x and y,
defined by

[l Nyl

T Yy
oz, y) = \ H
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(see [5, p. 403]). Then

(2 — a(z, Fy)) min((lzf], [y) <[z + lyl - [z + yl
< (2 - a(z, Fy)) max(|lz|, [ly]]).

Moreover, the following inequalities hold in normed spaces.

Theorem 4.2. [7, p. 258, Thm. 2] For p € [0.00) and nonzero vectors x
and y in a normed space (E, |-]]), let

apl@,y) = |l e~y y|.
(i) If 0 < p < 1, then

|z -yl
max (||, [[y])' 7

ap(x,y) < (2—p)
(ii) If p > 1, then

ap(@,y) < pmax(|z|, [ly|)"~ |z — yl|.

Whether the above inequalities can be generalized to a complete Buse-
mann space and what forms such generalized inequalities would take remain
subjects for future research.
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