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Abstract

In this paper, we prove a minimiser approximation theorem with the projection
type proximal point algorithm. To generate an iterative sequence, we use a notion
of tangent spaces and their metric.

1 Introduction

In this work, we consider a minimisation problem as follows: For a given function f on
a nonempty set S, find a point x € S such that f(z) = inf,cs f(y). Particularly, we
deal with a convex function on a metric space having some convex structure.

Recently, the fixed point theory on geodesic spaces has rapidly developed. We have
many fixed point theorems for nonlinear mappings, and many fixed point approxima-
tion methods with iterations. For instance, see |5, 6, 9]. In this work, we consider a
geodesic space having nonpositive bounded curvature, which is called a CAT(0) space.
A nonempty convex subset of a Hilbert space is an example of CAT(0) spaces. In partic-
ular, a complete CAT(0) space is called a Hadamard space. This space has many useful
properties that Hilbert spaces have. On the other hand, for a given convex function on
a Hadamard space, we can define a resolvent operator, and hence we can apply fixed
point approximation techniques to find a minimiser of a given function.

In this paper, we handle the following type approximation method:

Theorem 1.1 (Solodov—Svaiter [11]). Let H be a Hilbert space and A a maximal mono-
tone operator on H which has a zero point. Let {r,} be a positive real sequence such that
infrenre > 0. Let Pk be the metric projection onto a nonempty closed convex subset
K of H. For a given point w = x1 € H, generate a sequence {x,} of H as follows:

Yn = (I +1r,A) Loy,
H,={veH|v—yn,Tn—1yn) <0}

W, ={we H | {(w—z,,u—x,) <0}

Tpn+1 = PHannU

forn € N. Then, {x,} converges strongly to the closest zero point of A to u.
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Nevertheless, in general, Hadamard spaces cannot equipped inner products. In the
Solodov—Svaiter type iteration, we require an inner product to gencrate two kinds of
closed convex subsets. To make that possible, we introduce a notion of tangent spaces
and their metic on a Hadamard space.

2 Preliminaries

Let (H,d) be a metric space. For x,y € H and | = d(x,y), we call an isometric mapping
Yey from [0,1] into H a geodesic from z to y if 7., (0) = x and v, (1) = y. Additionally,
H is said to be uniquely geodesic if for all x,y € H, there exists a unique geodesic. In
a uniquely geodesic space H, for z,y € H and t € [0, 1], we define convex combination
of x and y with a ratio t by

tr @ (1 - t)y - 'me((l - t)d(xay))'

We define a CAT(0) space. The classical definition of CAT(0) spaces uses the notion of
comparison triangles on the Euclidean space. However, we know an equivalent condition
to the definition as follows: A uniquely geodesic space H is a CAT(0) space if and only
if

dtz ® (1 —t)y, 2)? < td(z,2)* + (1 — t)d(y, 2)* — t(1 — t)d(z, y)?

for x,y,z € H and t € [0, 1]; see [1, Theorem 1.3.3]. In particular, we call H a Hadamard
space if it is a complete CAT(0) space.
Let H be a CAT(0) space. We say that a subset C' of H is convex if

trad(1—-t)yeC

for z,y € C and t € [0,1]. Let C be a nonempty closed convex subset of a Hadamard
space H. For x € H, we can find a unique point Pox € C such that

d(x, Pox) = inf d(z,y).
( y I°C ) W=te. ( 7y)
We call a mapping Pc the metric projection onto C.
Let {z,} be a bounded sequence of a metric space H. We call w € H an asymptotic
centre of {xz,} if

lim sup d(z,,w) = inf limsup d(z,,y).
n—00 yeEH poo

We say that {z,} A-converges to a A-limit x € H if z is a unique asymptotic centre
for any subsequence of {x, }. It is well known that a bounded sequence of a Hadamard
space has a unique asymptotic centre, and that such a sequence has a A-convergent
subsequence. Suppose that H is a Hadamard space. If a bounded sequence {z,} of H
A-converges to x € H, then

d(z,y) < liniinf d(zn,y)
for y € H. If a sequence {z,} of H A-converges to « € H and {d(x,,y)} converges to

d(x,y) for some y € H, then {x,,} converges to . For more details about A-convergence,
refer to [1, 4] for instance.



In what follows, we define tangent spaces on a Hadamard space. Let H be a Hadamard
space. For p,z,y € H, we define the Alexandrov angle A, at p as follows:

am%pw)qw]

Ap(z,y) = tl_i>%l+ arccos (1 -

if p# x and p # y; Ap(z,p) = Ap(p,z) = 7/2 if p # x; A,(p,p) = 0. For more details,
refer to [2, Proposition 1.14 in Chapter 1.1 and Proposition 3.1 in Chapter I1.3] for
instance. We define an equivalence relation ~, on H by x ~, y if

Ap(z,y) = 0.
For the simplicity, we denote an equivalence class [z]~, of x € H by [z],. Let
D,H = H/~p, ={[z], |z € H}.
Then, (D,H, A,) is a metric space, where the distance A, is defined by

Ap([z]p, [ylp) = Ap(z,y)
for [z]p, [y], € DpH. We next define a function ¢ on D,H by

- 0 ([x]p:[p]p);
“W“L<m%m>

for [z], € D,H. We define an equivalence relation ~, on a Cartesian product
0,00 x D,H
by (71, [z]p) 22 (72, [y]p) if one of the following conditions is satisfied:

e 71¢([z]p) = r2C([ylp) = 0;
o r1¢([z]p) = r2(([y]p) > 0 and [z], = [y],.

Let
T,H = ([0,00[ x DyH) />,

For the simplicity, we denote an element [(r, [x],)]~, of T,H by r[z],. In particular, we
denote 0[p], by 0,. We define a distance function d, on T,H by

dy(rlaly sluly) = \/r2C([aly) + 52C([ulp) — 2rsC([2])C([uly) cos Ap(a, )

for r(z],, s[ylp, € Tp,H. We call this metric space (T),H,d,) the tangent space of H at p.
Let H be a Hadamard space and p € H. We define a logarithmic mapping log,, from

H to T,H by
log, x = d(p,x)[z], € T,H

for x € H. We notice that log, p = 0,. We define a function g, by
dp (tp, 0p)? + dp(Up, 0p)* — dp(up, vp)?
2

for u,,v, € T,H. We have known the following propositions:

Ip(tup, vp) =



Theorem 2.1 (Chaipunya—Kohsaka—Kumam [3|, Kimura—Sudo [7]). For a Hadamard
space H and for p,x,y € H,

2g,(log, =,log, y) > d(p,)* + d(p,y)* — d(z,y).

Theorem 2.2 (Kimura—Sudo [7]). For a Hadamard space H and for p,x,y € H,

2 _ 2
lim d(p,y)* —d(tr® (1 —1)p,y)
t—0+ t

Theorem 2.3 (Sasaki—Sudo [10]). For a Hadamard space H and x,y € H, a subset

= 2g,(log, z,log, y).

1s closed.

The identity of the second theorem is called the first variation formula. For more
details about tangent spaces on a geodesic space, refer to [2, 3, 7.

3 Solodov—Svaiter type proximal point algorithm

In this section, we show a minimiser approximation theorem with the Solodov—Svaiter
type proximal point algorithm.

For a function f from a Hadamard space H to |—oo, 0], we suppose the following
conditions in this paper: We say that f is lower semicontinuous if

f(x) < lim 1Ilff(l‘n)

n—oo

for a sequence {x,,} of H converging to x € H. We say that f is proper if there exists
x € H such that f(z) € R. We further say that f is convex if

fltz (1 —t)y) <tf(zx)+(1—1t)f(y)

for z,y € H and t € ]0,1[. We call z € H a minimiser of f if

x) = inf .

(z) = inf f(y)
We denote the set of all minimisers of f by Min f. If f is lower semicontinuous, proper
and convex, then Min f is closed and convex even if it is empty, and then

f(x) < liminf f(z,)

for a bounded sequence {z,} of H A-converging to x € H. For more details, see [1].

In general, we do not know if a lower semicontinuous proper convex function f has a
minimiser, and then if it is unique. Nevertheless, for fixed x € H and r > 0, a function
friz on H defined by

fr;w(y) = f(y) + %d(xay)Q

for y € H definitely has a unique minimiser. We denote such a point by R,yx, and we
call a mapping R, on H the resolvent operator of f with . For more details, see |1, §].
To prove the desired convergence theorem, we first show the following proposition:



Theorem 3.1. Let f be a lower semicontinuous proper convex function from a Hadam-
ard space H to |—oo,00]. Then, for x € H and r > 0,

rf(Rypx) < 13161% (rf(w) — 9R,;2(l0gR, o w,logp . x))

Proof. Fix w,x € H and ¢ € |0, 1[. Note that f(R,sx) € R. Then,
1 1
f(R,px) + gd(x, Repz)? < f(tw® (1 —t)Rypx) + gd(x,tw © (1 —t)R,sz)?
1
<tf(w)+ (1 —t)f(Rrpx) + Q—Td(ac,tw ® (1 —t)R,yx)?,

and hence

d(x, Ry px)? — d(z,tw @ (1 — t) R, fx)*
5 :
Dividing both sides by ¢, and letting t — 0+, from the first variation formula, we have

rtf(Repa) < vt f(w) —

Tf(Rfo) < ’l"f('lU) - gRTfm(logerm w, IOgerm ZE’)
Since w € H is arbitrary, we obtain the desired result. U
We finally prove the following approximation theorem:

Theorem 3.2. Let f be a lower semicontinuous proper convex function from a Hadam-
ard space H to |—o0, 00| which has a minimiser. Suppose that for z,y € H, a subset

{z € H | g»(log, z,10g, y) < 0}

is convex. Let {r,} be a positive real sequence such that infpenrr > 0. Let Pk be the
metric projection onto a nonempty closed convexr subset K of H. For a given anchor
point u = x1 € H, generate a sequence {x,,} of H as follows:

Yn = anfxn;
H, ={ve€H]|gy,(log, vlog, x,) <0}
Wn ={w € H | g, (log,, w,log, u) <0}
Tnt1 = PH,nw,u
for n € N. Then, the generated sequence {x,} converges to Pyin fu.

Proof. To show that {x,} is well defined, we confirm H, N W, is closed and convex,
and
Min f C H, "W,

for n € N. Henceforth, for the simplicity, let F,, = H, N W,, for n € N. If z,, is defined,
then from Theorem 3.1, for p € Min f, we have

o f(Yn) < 132% (rnf(w) — gy, (log, w,log, x,)) <rnf(p)— gy, (og, plog, ).

It implies that
9y, (log,, p,log, xn) <rn(f(p) — f(yn)) <0,



and hence p € H,,. Thus, Min f C H, if z,, is defined. Now, we prove that
Min f C E,
and F, is closed and convex for n € N by induction. Since u = z1, we have
Wy = {w € H | g, (log,, w,0,,) < 0} = H,

and thus Min f C E; = H;. Further, from the assumption, H; is closed and convex,
and therefore so is ;. For fixed k € N, we assume that Min f C E% and that E} is a
closed convex set. Recall that x;1 is defined in this case, and therefore Min f C Hy1.
Let ¢ € Min f and ¢ € ]0,1[. Then, ¢ € E}), since Min f C Fj. From the convexity of
E), we have

d(u, 1) = d(u, Pg,u) < d(u,tq & (1 —t)Pg,u) = d(u,tq & (1 — t)zp41),
and hence

d(u, x311)* — d(u, tq © (1 = i)’
2t

<0.

Letting t — 0+, from the first variation formula, we get

0> lim d(u, x"?+1)2 —d(u,tq® (1 - t)xk+1)2

t—0+ 2t = Jarn (1Og$k+1 4, 10g$k+1 u).

It means that ¢ € Wy 1, and thus Min f C Wy41. Therefore,

Min f C Hpy1 N Wip1 = Epq1.

On the other hand, from the assumption, since both of Hy,; and Wy, are closed and
convex, Fyy1 is also closed and convex. Therefore, the sequence {z,} is well defined
since F,, is nonempty, closed and convex for all n € N. We also obtain Min f C F,, for
n € N.

We next show that {x, } converges to Pyin fu. Note that Py, fu € E,, for n € N.
Since

d(u, Pg,u) < d(u, Pyin fu)

for n € N, we have

sup d(ua xn) = Sup d(U,$n+1) = sup d(ua PEnU’) < d(U, Pyiin fU) < 09,
neN neN neN

and thus {z,} is bounded. For n € N, since z,,+; € W,,, we obtain

0> 2g,, (log, Zn+1,10g, u) > d(Tn, Tpi1)® + d(zn, u)? — d(Tpy1,u)?
> d(l‘n, u)2 - d(xn—|—17u)2>

which implies that d(x,,u) < d(x,41,u), and that

d(l‘n, xn+1)2 + d(xrw U,)2 - d(l‘n+1, U)2 <0.



Therefore, {d(z,,u)} is a convergent real sequence. Since

AT, Tng1)? < d(@pg1,u)? — d(2g, u)?
for n € N, we obtain

lim d(zy,,zn41) = 0.

n—oo

Additionally, since z,4+1 € H,, for n € N, we obtain
0> 2g,, (log, Tni1,108, @n) > d(Yn, Tnr1)? + d(Yn. 20)? — d(@ns1, 20)?
> d(yn, wn)? — d(@ps1,20)?,
and thus d(yn, ) < d(z,41,2,). Consequently, we get
nh_)n(;o d(yn,zn) = 0.

Take a subsequence {z,,} of {x,} arbitrarily. Since {z,,} is bounded, we can take its
A-convergent subsequence {xnij }. Let w € H be its A-limit. For the sake of simplicity,

henceforth, let us write Tn,, a5 Tj and Yni, 3 Yj for j € N. Note that
lim d(y;,z;) = 0.
Jim_ d(y;, ;)

We notice that {y,} also A-converges to w. Now, we show that w is a minimiser of f.
Fix 5 € N arbitrarily. From Theorem 3.1,

T, J(W5) < rog f(Puin pu) — gy, (log,, Phin pu,log,, ;).

Therefore, since Py, fu is a minimiser of f, we have

inf Tk
keN

fly;) — ylgli; f (y)‘ < 7o, (f(y;) = f(Patin yu)) < —gy, (log,, Patin pu,log, ;)

d(PMinfu7xj)2 — d(yJ7 PMinfu)2 — d(yjax])Q
5 .
Since infren 7, > 0 and {d(y;,z;)} converges to 0, we have

. . _ d(Puyiin fu, 25)* — d(y;, Pain pu)? — d(y;, 25)?
1 N f <1 () R NREa)
Jim ‘f(yg) Inf, f(y)‘ < lim, RTT—

<

=0,

which means that {f(y;)} converges to infycp f(y). Hence, since {y;} A-converges to
w, we have

< liminf f(y,;) = inf
J(w) < liminf f(y;) = inf f(y),
which implies that w is a minimiser of f. Since

d(u, Pyin fu) < d(u, w) < liminf d(u, z;) < limsupd(u,x;) < d(u, Pumin fu),
j—oo j—o0

we obtain w = Pyin pu and

lim d(u,x;) = d(u, Pumin fu).

J—>OO
Since {z;} is A-convergent to Puin fu and {d(u,x;)} converges to d(u, Pyin fu), we have
{z;} converges to Pyin fu. Consequently, any subsequence of {z, } has a subsequence
converging to Pyin fu, and therefore {x, } converges to Puiin fu. O
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