A convergence theorem by the proximal method with
a general perturbation on geodesic spaces with

curvature bounded above
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Abstract

In this paper, we show some important properties of a resolvent with a
general perturbation for convex functions on an admissible complete CAT(1)
space. We further investigate an approximation theorem to a minimizer of a
convex function by using the proximal point algorithm with a general pertur-
bation in an admissible complete CAT(1) space.

1 Introduction

The proximal point algorithm was started to study by Martinet, Rockafellar, and
Brézis&Lions [3, 11, 13]. In 1976, Rockafellar [13] proposed this method in a Hilbert
space. The sequence {z,,} of a Hilbert space H which is generated by

: 1 2
Tpy1 = argmin {f(y) + oy [y = 2al }
yeH n

is weakly convergent to a minimizer of a proper lower semicontinuous convex function.
In a complete CAT(0) space X, Bac¢dk [1] showed that the sequence defined by

. 1
Tpa1 = argmin {f(y) + Kd(y, xn)Q}
yeX n
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satisfies the following properties:

e There exists a positive real number K such that

K .
ZZ:1 A’

e {x,} is A-convergent to an element of argmin y f;

f(@ng1) —inf f(X) =

for more details, see also [12].

In 2017, Kimura and Kohsaka investigated the proximal point algorithm on an
admissible complete CAT(1) space. Let X be an admissible complete CAT(1) space.
They showed that the proximal mapping

1

Qx = argmin} f(y) + — tand(y, z) sind(y, x)
yeX A

of a proper lower semicontinuous convex function f is well defined as a single-valued

mapping, see [8]. They also showed that the sequence generated by x,+1 = Qx,Zn

satisfies o

f(xpy1) —inf f(X) £ =7——(1 — cosd(x1,p))
Zk:l Ak
for all p € X, where C' is a positive real number. Moreover, {x,} is A-convergent to
an element of argminy f, see also [9].

In this paper, we show some important properties of a resolvent for a convex func-
tion with a general perturbation on an admissible complete CAT(1) space. We further
investigate the convergence theorem to a minimizer of a convex function by using a
proximal point algorithm with a general perturbation.

2 Preliminaries

A mapping T on a metric space X is said to be quasi-nonexpansive if d(Tx,u) <
d(z,u) for all z € X and u € F(T'), where F(T) is the set of all fixed points of T'. For
z,y € X, a mapping 7., from [0, ] into a metric space X is called a geodesic joining
x and y if the following conditions hold:

® Vuy(0) = z;
* Yay(l) = y;
o d(Vay(s),Yay(t)) = |s —t| for all s,t € [0,£].

Let D € ]0,00]. A metric space X is called a D-geodesic space if there exists a
geodesic 7, for each z,y € X with d(z,y) < D. In this paper, we always assume the
uniqueness of v;,. In this case, we can define a convex combination between z and y
by tx & (1 — t)y = Yoy ((1 — t)d(z,y)) for each z,y € X and t € [0, 1].

A m-geodesic space X is called a CAT(1) space if the inequality

cosd(tr © (1 —t)y, z)sind(z,y)
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= cosd(x, z) sin(td(z,y)) + cosd(y, z) sin((1 — t)d(x, y))

holds for all z,y, z € X with d(z,y) +d(y, z) + d(z,z) < 2m and ¢ € [0,1]. A CAT(1)
space X is said to be admissible if d(z,y) < w/2 for all z,y € X; for more details, see
2, 4, 14].

Let X be an admissible complete CAT(1) space. An asymptotic center A({x,}) of
a sequence {z,} of X is defined by the set

A({zn)) = {u e X

lim sup d(u, x,,) = inf lim sup d(y,xn)} :

n—o00 y€X nooo

A sequence {z,} is A-convergent to an element z in X if A({z,,}) = {«} for all
subsequences {z,,} of {x,}. In this case, we call z a A-limit of {z,,}. The set of all
A-limits of A-convergent subsequences of {z,} is denoted by wa ({z,}). A sequence
{z,} of X is said to be spherically bounded if

inf limsupd(y, x,) < 7/2.
y€X nooo

The following crucial properties are well known.

Lemma 2.1 ([5, 10]). Let X be an admissible complete CAT(1) space and {z,} a
spherically bounded sequence of X. Then A({z,}) consists of one point and {x,,} has
a A-convergent subsequence.

Lemma 2.2 ([6, 7]). Let X be an admissible complete CAT(1) space and {z,} a
spherically bounded sequence of X. If {d(z,xz,)} is strongly convergent for each z €
wa({zn}), then {x,} is A-convergent to an element of X.

A function f from X into |—o0, c0] is said to be

e proper if f # oo;
e lower semicontinuous if

f(x) < liminf f(x,)

n—oo

whenever a sequence {x,} of X is strongly convergent to z;
e convex if

fllz o (1—t)y) = tf(z) +(1—)f(y)
for all z,y € X and t €]0,1[.

It is known that if f is a proper lower semicontinuous convex function, then

f(z) < liminf f(z,)

n— o0

whenever a sequence {x, } of X is A-convergent to x, see [8].



3 Properties of a resolvent of a convex function

In this section, we discuss important properties of a resolvent with a general per-
turbation of convex functions. Through this paper, we always assume that X is an
admissible complete CAT(1) space, f is a proper lower semicontinuous convex func-
tion and the resolvent

Ryx = argmin {f(y) + %w(cos d(y, w))}

yeX

of f is a single-valued mapping, where A > 0 and ¢ a function from |0, 1] into [0, 00|
satisfying the following conditions:

e ¢ is strictly decreasing;

e o(1) =0;
e ' is differentiable and ¢’ is continuous.

It is well known that F (Ry) = argminy f. For the sake of completeness, we give the
proof. Let u € argminy f and y € X. Then we have

() + spleosd(u,w) = f(u) € Fl) € Fy) + ypleosd(y,w)

and hence Ryu = w. Thus argminy f C F(Ry). Conversely, let u € F (R)), y €
X\{u} and t €]0,1[. Then we get

Af(u) = Af(u) + @(cos d(u, u))
S A (Rau) + ¢ (cosd (Ryu, u))
S Mty @ (1 —t)u) + @(cosd(ty © (1 —t)u,u)
S Af(y) + A1 = 1) f (u) + o(cos(td(y, u)))
and hence

pleos(td(y, u)))

fu) < f(y)+ v

Letting ¢t | 0 and using I'Hospital’s rule, we get f(u) < f(y) and hence u € argminy f.
Therefore we get argminy f D F (R)).

We next show important inequalities to consider convergence theorems with the
proximal point algorithm.

Theorem 3.1. Let A\ and p be positive real numbers. Put Cy , = cosd(Ryz,z) for
each z € X. Then

d(kaa y)

MF(Baz) = f()) = &'(Cra) Framp =5

(cosd(z,y) — Cx 5 cosd(Ryz,y))



for all x,y € X with Ryx # y and

(>‘99/(C/4,M)C/4,y + NSO/(CA,m)CA,m) cos D

= A/ (Cluy) cosd(Raz, y) + pp’ (O 2) cos d(, Ryy)
for all x,y € X, where D = d(Rxx, R,y).
Proof. Let z,y € X with Ryz # y and t € ]0,1], and put £ = d(R)z,y). Then, by
the convexity of f and the definition of Ry, we get

M (Bax) + ¢(Cr z)
S Mty D (1 —t)Raz) + p(es(d(ty © (1 — )Ry, x)))

<EAf(y) + (1 = OAf(Rrz) + ¢ (Cosd(w,y) sin(tlf)s);gck,x sin((1 — t)£)>

and hence

Af(Raz) — f(y) = (¢ (At)/sinl) — o(Cx2)) /t,
where A(t) = cosd(z,y) sin(tf) + Cy , sin((1 — t)¢). Then we notice that

A'(t) = Lcosd(x,y) cos(tl) — €O , cos((1 — t)L).

Taking the limit as ¢ tends to 0 and using 'Hospital’s rule, we have

MF(Raw) = 1)) £ @'(Cre) < (cosd(a, ) — Orecost).

This is the first inequality.
We next show the second inequality. Let x,y € X with Rz # R,y. From the first
inequality, we obtain

pPA(f(Rrx) — f(RLy)) S MSO/(C)"CE)SiniD(COS d(z,R,y) — C) 4 cos D)

and
PAF(Ryy) — F(Rx2)) € A (Coy) = (cosd( Ry, y) — Gl cos D)

sin
Adding both sides of these inequalities, we get the desired result. If Ryz = R,y it is
clearly satisfied. O

We remark that R) is quasi-nonexpansive. In fact, we have

(' (Crp) + €' (Crz)) cos d(Raz, p) = ¢'(Cp) cos d(Raz, p) + ¢’ (Cx.2) cos(d(z, p))

for all x € X and p € F(R)). Therefore, we get cos d(Ryx,p) = cosd(x,p) and thus
d(Ryz,p) < d(x,p). Consequently, Ry is quasi-nonexpansive.



4 The proximal point algorithm

In this section, we show a convergence theorem to a minimizer of a convex function
by using the proximal point algorithm.

Theorem 4.1. Let {\,} be a sequence of |0,00[ with >~ | A\, = 00, 1 € X and
Tnt1 = Ry, @, for all n € N. Suppose that ¢’ satisfies either strict increasingness
or nonincreasingness. If argminy f is nonempty, then there exists a negative real
number L such that

(i) — f(p) < %(eeedm,p) 1)

for all p € argminy f. Moreover, {x,} is A-convergent to a minimizer of f.

Proof. If ¢/ is nonincreasing, then
¢ (Cra) 2 inf ©(Ch,, 2,) = ¢'(1) € ]—00,0].
meN
Suppose that ¢’ is strictly increasing. Let p € argminy f. By Theorem 3.1, we have

0 é Am(f(xm—l-l) - f(p))

d(Tm+1,Dp
< w’(me,xm)W(C% d(Tm,p) — Cx,, 2., COSd(Tm1,D))

for all m € N. Since ¢ is strictly decreasing, we obtain
cos d(Tm,p) — cosd(Tm+1, Tm) €08 d(Tmt1,p) < 0

and hence

cos d(Tpm, p) = cosd(Tpma1, Tm) COSd(Timi1,p) S cOSA(Tmi1, Tom)-

Therefore, we get d(Tmi1,Tm) = d(xm,p) < -+ < d(z1,p) since Ry is quasi-
nonexpansive. It implies that

¢ (Con) 2 0t (Ca) = ¢ (005 (s dloninon) ) ) 2 o (cosdlan, )
m meN

Thus, there exists a negative real number L such that ¢'(Ch, z,) = L. Further, we
notice that t/sint < 7/2.
On the other hand, by the definition of z,, and R, _, we have

f(p) = f(zny1)

1
S flans1) + )\_SO(COS d(@p41,%0))
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< J(wn) + 3 0lcos d(wn,2a)) = f(za)

n

for all n € N. Moreover, by Theorem 3.1, we have

M @ir) = F(0) £ 9'(Cnn) =P cosdanp) = cosdansn,p)
wL

7(003 d(xk,p) — cosd(zk41,p)),

A

and therefore

A

L L
T 7T7(005(1(961,]9) —1).

T(COS d(xz1,p) — cosd(xpi1,p)) =

D A(f(@ra) = f(p))
k=1

Since f(p) < f(zg+1) = f(xg) for all k € {1,2,...,n}, we obtain

(Fanss) = S0 D S 55 cosdlons) = 1)

and thus we get the desired result.

We next show that {x,} is A-convergent to p € argminy f. By the inequality
above, {f(x,)} is strongly convergent to f(p) as n tends to co. Take a A-convergent
subsequence {x,,} of {z,}. Let z be the A-limit of {x,, }. Then, we know that

f(z) = liminf f(zn,) = f(p)
12— 00
and thus z € argminy f = F(R),). Since R, is quasi-nonexpansive, we have 0 <
d(p41,2) < d(xy, z). Therefore, {d(x,,2)} is strongly convergent. Consequently, by
Lemma 2.2, {x,} is A-convergent to xgp € X. From the argument above, z( is an
element of argminy f. O
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