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1 Introduction
Real-valued minimax inequality was found by W. Takahashi and Ky. Fan;

Theorem 1.1. ([4]) Let X be a nonempty compact convex subset of a Hausdorff topological

vector space and f: X x X — R. If f satisfies the following conditions:

1. for each fixed y € X, f(-,y) is lower semicontinuous,
2. for each fixed z € X, f(z,-) is quasi concave,
3. f(z,x) <0 forall x € X,

then there exists Z € X such that f(Z,y) <0 for all y € X.

In a history of set-valued minimax inequalities, Georgiev and Tanaka [2] extended the min-
imax inequality to set-valued maps. Kuwano, Tanaka, and Yamada [5] constructed the result
of four types of set-valued minimax inequalities with set-relations. Our goal is to generalize
the result of four types of set-valued minimax inequalities which is not related to the specific

set-relations and scalarization functions.

2 Preliminaries

Let X be a topological space, Y a real topological vector space, and 6y be a zero vector in
Y. Define that Py(Y) is the set of all nonempty subsets of Y. The sets of neighborhoods of
z € X and y € Y is denoted by Nx(z) and Ny (y), respectively.

For A € Py(Y), the interior, the closure, the boundary, and the complement of A are denoted
by int A, cl A, bd A, and A€, respectively. For given A, B € Py(Y) and t € R, the algebraic
sum A+ B and the scalar multiplication ¢t A are denoted as follows: A+B :={a+b|a€ A,b€



B}, tA:={ta|a € A}. In particular, we denote A+ {y} by A+ y and (—1)A by —A for
AePy(Y)and y €Y. Let us recall that A is said to be C-bounded if for each neighborhood
U of 0y there exists ¢t > 0 such that A C tU + C.

We define binary relations on Py(Y") as follows:

Definition 2.1. For A, B € Py(Y), we define two binary relations on Py(Y):

A< BEL ANB4D and A<, BEL B A

Definition 2.2. For A, B € Py(Y) and a convex cone C, we define;

A B&L BcA+C and AEV BEL AcB-C

We note that recent studies contain six or eight types of binary relations with a convex cone,
that is, set-relations. In this paper, we focus on the above two types of set-relations:
For set-valued maps and scalarization functions, we define the following concepts of conti-

nuity and semicontinuity, which are works of P. Dechboon and T. Tanaka [1].

Definition 2.3. ([1]) Let F': X — Py(Y), o € X, < a binary relation on Py(Y) and C C Y

a convex cone. We say that F' is (<, C)-continuous at z if
VIV C Y, W open, W < F(z¢),3V € Nx(x9) st. W+C < F(x),VzeV.

Especially, (51, C)-continuity and (<2, C)-continuity coincide with classical “C-lower con-

tinuity” and “C-upper continuity” for set-valued maps, respectively.

Definition 2.4. ([1]) Let ¢: Po(Y) — RU{£oc}, Ag € Po(Y), < a binary relation on Py(Y),
and C a convex cone in Y with C' # Y. Then, we say that ¢ is (<, C)-lower semicontinuous
at AO if

Vr < o(Ap), AW € Py(Y), W open, st. W < Agandr > p(A),VAec UW + C,<);
where U(V,x) ={A € Py(Y) |V < A}.

Theorem 2.5. ([1]) Let F': X — Po(Y), ¢: Po(Y) — RU {£oo}, g € X, < a binary
relation on Py (Y), and C' a convex cone. If F' is (5, C')-continuous at xy and ¢ is (=, C')-lower

semicontinuous at F'(xg), then (¢ o F') is lower semicontinuous at .

We define concepts of convexity and concavity for set-valued maps. These notions are

utilized to extend minimax inequality for real-valued maps to that for set-valued maps.

Definition 2.6. ([3]) Let X be a nonempty set, Y a real topological vector space, C' a convex
cone in Y, and F: X — Py(Y) a set-valued map where j = 3U, 3L.



1. F'is called type (j) properly quasi C-concave if for each z,y € X and X € (0, 1),
F(z) <@ FQa+ (1= Ny) or F(y) <@ FOa+ (1 - M\y)

2. F is called type (j) naturally quasi C-concave if for each x,y € X and A € (0,1), there
exists p € [0, 1] such that

WF(2) + (1 - p)F(y) <8 FOa + (1 - \y).
If F is type (j) properly quasi C-concave, clearly F is type (j) naturally quasi C-concave.

Definition 2.7. ([2]) Let A C Py(Y). A is said to be convex if for each 41, A3 € A and

A€ (0,1),
M1+ (1=)N)Ay € A

Definition 2.8. ([2]) Let ¢: Po(Y) - RU {+o0}. Then,

1. ¢ is quasi convex if for any a € R, lev (¢, <,a) :={A € Py(Y) | ¢(A) < a} is convex.
2. p is quasi concave if for any a € R, lev (¢, >, ) = {A € Po(Y) | p(4) > a} is convex.

Definition 2.9. ([2]) Let C be a convex cone in Y and j = 3U, 3L.. For a given binary relation
<, a scalarization function ¢ is (ﬁg))—monotone if for any A, B € Py(Y) with A 423') B,
p(A) < ¢(B).

Proposition 2.10. ([2]) Let ¢ be (4g))—monotone and quasi convex where j = 3U,3L. If F

is type (j) naturally quasi C-convex, then (¢ o F') is quasi convex.

Proposition 2.11. ([2]) Let ¢ be (ﬁg))-monotone and quasi concave where j = 3U,3L. If F

is type (j) naturally quasi C-concave, then (p o F') is quasi concave.

3 Main Results

Let ¢ : Po(Y) — RU {£o0}, < a binary relation on Py(Y), and C’ C Y a convex cone.
To generalize four types of set-valued minimax inequalities [3], we provide a new class of

scalarization functions that satisfy;

1. pis (%, C")-lower semicontinuous,
2.  is quasi concave,
3. o({0y}) =0.

In addition, we give necessary conditions between inequalities and set-relations as follows;

(B1) ¢ is (4%),5 C)—monotone,



(B2) p(A) > 0= {0y} <9

oA forany Ae Po(Y),

where j = 3U,3L. If ¢ satisfies conditions (i)—(iii), (B1), and (B2), we write the notation as

p e B 5,07,

Theorem 3.1. Let X be a nonempty compact convex subset of a Hausdorff topological vector
space, Y a real topological vector space, < a binary relation on Py(Y'), C' a convex cone in Y,
C’ aconvex conein Y, p: Py(Y) - RU{xoo}, and F': X x X — Py(Y). For the scaralization
<D< o ) satisfying Assumption (A2) where j = 3U, 3L, if F satisfies the

Sint ¢
following conditions:

function ¢ € ®(x

1. (po F)(z,y) €R for all z,y € X,
2. for each fixed y € X, F(-,y) is (%, C’)-continuous,
3. for each fixed z € X, F(z,-) is type (j) naturally quasi C-concave,

4. for all z € X, {91/}7“\4%)450 (z,),

then there exists z € X such that {9y}7ﬂégl)t C F(z,y) for all y € X.

In the first part of this section, we provide conditions under which semicontinuity and
convexity can be preserved when considering composite functions of a set-valued map and a
scalarization function.

Let Y be a real normed vector space equipped with ly|| the norm of y € Y and 0y the zero
vector of Y. As a scalarization function, we introduce the Hiriart-Urruty oriented distance

function.

Definition 3.2. ([5]) For the set A € Y, let generalized oriented distance functions
DS): Po(Y) = RU {£o0} and fo): Po(Y) = R U {£o0} be defined as

DS)(B) = sup{A(b) | b € B}, for all B € Py(Y),
DP(B) == inf{~A4(b) | be B} = —DV)(B), for all B € Py(Y).

As Df)(B) satisfies the conditions conditions (i)—(iii), (B1), and (B2), the following result
is obtained by Theorem 3.1.

Proposition 3.3. Let X be a nonempty compact convex subset of a topological vector space,
Y a real normed vector space, C a closed convex cone in Y with int C #0,and, F: X x X —

Po(Y). If F satisfies the following conditions:

1. Fis C-bounded on X x X,

2. for each fixed y € X, F(-,y) is (X2, C)-continuous (that is, C-upper continuous),
3. for cach fixed z € X, F(z,-) is type (j) naturally quasi C-concave,

4. forall x € X, F(z,z) < (SL) {05},



then there exists Z € X such that {Gy}%i(fl?CF(:i, y) for all y € X.

We remark that the above concequence was found by using another scalarization function.
However, Our main result avoids to depend on the specific scalarization function. If we find a
scalarization function that satisfies the conditions (i)—(iii), (B1), and (B2), Theorem 3.1 can

be applied to obtain minimax inequalities for set-valued maps.
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