Set-Valued Fan-Takahashi Inequalities Via Scalarization (スカラー化関数による集合値関数のミニマックス定理の一般化とその応用)

Ryota Iwamoto^a and Tamaki Tanaka^b

^aGraduate school of Science and Technology, Niigata University, ^bFaculty of Science, Niigata University

1 Introduction

Real-valued minimax inequality was found by W. Takahashi and Ky. Fan;

Theorem 1.1. ([4]) Let X be a nonempty compact convex subset of a Hausdorff topological vector space and $f: X \times X \to \mathbb{R}$. If f satisfies the following conditions:

- 1. for each fixed $y \in X$, $f(\cdot, y)$ is lower semicontinuous,
- 2. for each fixed $x \in X$, $f(x, \cdot)$ is quasi concave,
- 3. $f(x,x) \leq 0$ for all $x \in X$,

then there exists $\bar{x} \in X$ such that $f(\bar{x}, y) \leq 0$ for all $y \in X$.

In a history of set-valued minimax inequalities, Georgiev and Tanaka [2] extended the minimax inequality to set-valued maps. Kuwano, Tanaka, and Yamada [5] constructed the result of four types of set-valued minimax inequalities with set-relations. Our goal is to generalize the result of four types of set-valued minimax inequalities which is not related to the specific set-relations and scalarization functions.

2 Preliminaries

Let X be a topological space, Y a real topological vector space, and θ_Y be a zero vector in Y. Define that $\mathcal{P}_0(Y)$ is the set of all nonempty subsets of Y. The sets of neighborhoods of $x \in X$ and $y \in Y$ is denoted by $\mathcal{N}_X(x)$ and $\mathcal{N}_Y(y)$, respectively.

For $A \in \mathcal{P}_0(Y)$, the interior, the closure, the boundary, and the complement of A are denoted by int A, cl A, bd A, and A^c , respectively. For given $A, B \in \mathcal{P}_0(Y)$ and $t \in \mathbb{R}$, the algebraic sum A+B and the scalar multiplication tA are denoted as follows: $A+B := \{a+b \mid a \in A, b \in A$

B}, $tA := \{ta \mid a \in A\}$. In particular, we denote $A + \{y\}$ by A + y and (-1)A by -A for $A \in \mathcal{P}_0(Y)$ and $y \in Y$. Let us recall that A is said to be C-bounded if for each neighborhood U of θ_Y there exists t > 0 such that $A \subset tU + C$.

We define binary relations on $\mathcal{P}_0(Y)$ as follows:

Definition 2.1. For $A, B \in \mathcal{P}_0(Y)$, we define two binary relations on $\mathcal{P}_0(Y)$:

$$A \preceq_1 B \stackrel{\text{def}}{\Longleftrightarrow} A \cap B \neq \emptyset$$
 and $A \preceq_2 B \stackrel{\text{def}}{\Longleftrightarrow} B \subset A$.

Definition 2.2. For $A, B \in \mathcal{P}_0(Y)$ and a convex cone C, we define;

$$A \preccurlyeq^{(3L)}_C B \overset{\text{def}}{\Longleftrightarrow} B \subset A + C \quad \text{and} \quad A \preccurlyeq^{(3U)}_C B \overset{\text{def}}{\Longleftrightarrow} A \subset B - C.$$

We note that recent studies contain six or eight types of binary relations with a convex cone, that is, set-relations. In this paper, we focus on the above two types of set-relations:

For set-valued maps and scalarization functions, we define the following concepts of continuity and semicontinuity, which are works of P. Dechboon and T. Tanaka [1].

Definition 2.3. ([1]) Let $F: X \to \mathcal{P}_0(Y)$, $x_0 \in X$, \leq a binary relation on $\mathcal{P}_0(Y)$ and $C \subset Y$ a convex cone. We say that F is (\leq, C) -continuous at x_0 if

$$\forall W \subset Y, W \text{ open}, W \leq F(x_0), \exists V \in \mathcal{N}_X(x_0) \quad \text{s.t.} \quad W + C \leq F(x), \forall x \in V.$$

Especially, (\leq_1, C) -continuity and (\leq_2, C) -continuity coincide with classical "C-lower continuity" and "C-upper continuity" for set-valued maps, respectively.

Definition 2.4. ([1]) Let $\varphi \colon \mathcal{P}_0(Y) \to \mathbb{R} \cup \{\pm \infty\}$, $A_0 \in \mathcal{P}_0(Y)$, \leq a binary relation on $\mathcal{P}_0(Y)$, and C a convex cone in Y with $C \neq Y$. Then, we say that φ is (\leq, C) -lower semicontinuous at A_0 if

$$\forall r < \varphi(A_0), \exists W \in \mathcal{P}_0(Y), W \text{ open,} \quad \text{s.t.} \quad W \preceq A_0 \text{ and } r > \varphi(A), \forall A \in U(W+C, \preceq);$$

where $U(V, \preceq) \coloneqq \{A \in \mathcal{P}_0(Y) \mid V \preceq A\}.$

Theorem 2.5. ([1]) Let $F: X \to \mathcal{P}_0(Y)$, $\varphi: \mathcal{P}_0(Y) \to \mathbb{R} \cup \{\pm \infty\}$, $x_0 \in X$, \preccurlyeq a binary relation on $\mathcal{P}_0(Y)$, and C a convex cone. If F is (\preccurlyeq, C) -continuous at x_0 and φ is (\preccurlyeq, C) -lower semicontinuous at $F(x_0)$, then $(\varphi \circ F)$ is lower semicontinuous at x_0 .

We define concepts of convexity and concavity for set-valued maps. These notions are utilized to extend minimax inequality for real-valued maps to that for set-valued maps.

Definition 2.6. ([3]) Let X be a nonempty set, Y a real topological vector space, C a convex cone in Y, and $F: X \to \mathcal{P}_0(Y)$ a set-valued map where j = 3U, 3L.

1. F is called type (j) properly quasi C-concave if for each $x, y \in X$ and $\lambda \in (0, 1)$,

$$F(x) \preceq_C^{(j)} F(\lambda x + (1 - \lambda)y)$$
 or $F(y) \preceq_C^{(j)} F(\lambda x + (1 - \lambda)y)$

2. F is called type (j) naturally quasi C-concave if for each $x, y \in X$ and $\lambda \in (0, 1)$, there exists $\mu \in [0, 1]$ such that

$$\mu F(x) + (1 - \mu)F(y) \preccurlyeq_C^{(j)} F(\lambda x + (1 - \lambda)y).$$

If F is type (j) properly quasi C-concave, clearly F is type (j) naturally quasi C-concave.

Definition 2.7. ([2]) Let $A \subset \mathcal{P}_0(Y)$. A is said to be convex if for each $A_1, A_2 \in A$ and $\lambda \in (0,1)$,

$$\lambda A_1 + (1 - \lambda) A_2 \in \mathcal{A}.$$

Definition 2.8. ([2]) Let $\varphi \colon \mathcal{P}_0(Y) \to \mathbb{R} \cup \{\pm \infty\}$. Then,

- 1. φ is quasi convex if for any $\alpha \in \mathbb{R}$, lev $(\varphi, \leq, \alpha) := \{A \in \mathcal{P}_0(Y) \mid \varphi(A) \leq \alpha\}$ is convex.
- 2. φ is quasi concave if for any $\alpha \in \mathbb{R}$, lev $(\varphi, \geq, \alpha) := \{A \in \mathcal{P}_0(Y) \mid \varphi(A) \geq \alpha\}$ is convex.

Definition 2.9. ([2]) Let C be a convex cone in Y and j = 3U, 3L. For a given binary relation \preccurlyeq , a scalarization function φ is $(\preccurlyeq_C^{(j)})$ -monotone if for any $A, B \in \mathcal{P}_0(Y)$ with $A \preccurlyeq_C^{(j)} B$, $\varphi(A) \leq \varphi(B)$.

Proposition 2.10. ([2]) Let φ be $(\preccurlyeq_C^{(j)})$ -monotone and quasi convex where j = 3U, 3L. If F is type (j) naturally quasi C-convex, then $(\varphi \circ F)$ is quasi convex.

Proposition 2.11. ([2]) Let φ be $(\preccurlyeq_C^{(j)})$ -monotone and quasi concave where j=3U,3L. If F is type (j) naturally quasi C-concave, then $(\varphi \circ F)$ is quasi concave.

3 Main Results

Let $\varphi : \mathcal{P}_0(Y) \to \mathbb{R} \cup \{\pm \infty\}$, \leq a binary relation on $\mathcal{P}_0(Y)$, and $C' \subset Y$ a convex cone. To generalize four types of set-valued minimax inequalities [3], we provide a new class of scalarization functions that satisfy;

- 1. φ is (\preccurlyeq, C') -lower semicontinuous,
- 2. φ is quasi concave,
- 3. $\varphi(\{\theta_Y\}) = 0$.

In addition, we give necessary conditions between inequalities and set-relations as follows;

(B1)
$$\varphi$$
 is $(\preccurlyeq_{\text{int }C}^{(j)})$ -monotone,

(B2)
$$\varphi(A) > 0 \Rightarrow \{\theta_Y\} \preccurlyeq_{\text{int } C}^{(j)} A \text{ for any } A \in \mathcal{P}_0(Y),$$

where j = 3U, 3L. If φ satisfies conditions (i)–(iii), (B1), and (B2), we write the notation as $\varphi \in \Phi(\preceq_{\text{int }C}^{(j)}, \preceq, C')$.

Theorem 3.1. Let X be a nonempty compact convex subset of a Hausdorff topological vector space, Y a real topological vector space, X a binary relation on $\mathcal{P}_0(Y)$, X a convex cone in X, X a convex cone in X, X and X are X and X and X and X are X and X and X are X and X and X are X are X and X are X

- 1. $(\varphi \circ F)(x,y) \in \mathbb{R}$ for all $x,y \in X$,
- 2. for each fixed $y \in X$, $F(\cdot, y)$ is (\leq, C') -continuous,
- 3. for each fixed $x \in X$, $F(x, \cdot)$ is type (j) naturally quasi C-concave,
- 4. for all $x \in X$, $\{\theta_Y\} \not\preccurlyeq \inf_{i \in C} F(x, x)$,

then there exists $\bar{x} \in X$ such that $\{\theta_Y\} \not\preccurlyeq_{\text{int }C}^{(j)} F(\bar{x}, y)$ for all $y \in X$.

In the first part of this section, we provide conditions under which semicontinuity and convexity can be preserved when considering composite functions of a set-valued map and a scalarization function.

Let \hat{Y} be a real normed vector space equipped with ||y|| the norm of $y \in \hat{Y}$ and $\theta_{\hat{Y}}$ the zero vector of \hat{Y} . As a scalarization function, we introduce the Hiriart-Urruty oriented distance function.

Definition 3.2. ([5]) For the set $A \in Y$, let generalized oriented distance functions $\mathcal{D}_A^{(1)} : \mathcal{P}_0(\hat{Y}) \to \mathbb{R} \cup \{\pm \infty\}$ and $\mathcal{D}_A^{(2)} : \mathcal{P}_0(\hat{Y}) \to \mathbb{R} \cup \{\pm \infty\}$ be defined as

$$\mathcal{D}_{A}^{(1)}(B) := \sup\{\Delta_{A}(b) \mid b \in B\}, \text{ for all } B \in \mathcal{P}_{0}(\hat{Y}),$$

$$\mathcal{D}_{A}^{(2)}(B) := \inf\{-\Delta_{A}(b) \mid b \in B\} = -\mathcal{D}_{A}^{(1)}(B), \text{ for all } B \in \mathcal{P}_{0}(\hat{Y}).$$

As $\mathcal{D}_{A}^{(2)}(B)$ satisfies the conditions conditions (i)–(iii), (B1), and (B2), the following result is obtained by Theorem 3.1.

Proposition 3.3. Let X be a nonempty compact convex subset of a topological vector space, \hat{Y} a real normed vector space, C a closed convex cone in \hat{Y} with int $C \neq \emptyset$, and, $F: X \times X \to \mathcal{P}_0(\hat{Y})$. If F satisfies the following conditions:

- 1. F is C-bounded on $X \times X$.
- 2. for each fixed $y \in X$, $F(\cdot, y)$ is (\leq_2, C) -continuous (that is, C-upper continuous),
- 3. for each fixed $x \in X$, $F(x, \cdot)$ is type (j) naturally quasi C-concave,
- 4. for all $x \in X$, $F(x, x) \preccurlyeq_C^{(3L)} \{\theta_{\hat{Y}}\},$

then there exists $\bar{x} \in X$ such that $\{\theta_{\hat{Y}}\} \not\preccurlyeq \inf_{i \in C} F(\bar{x}, y)$ for all $y \in X$.

We remark that the above concequence was found by using another scalarization function. However, Our main result avoids to depend on the specific scalarization function. If we find a scalarization function that satisfies the conditions (i)–(iii), (B1), and (B2), Theorem 3.1 can be applied to obtain minimax inequalities for set-valued maps.

References

- [1] P. Dechboon and T. Tanaka, Inheritance properties on cone continuity for set-valued maps via scalarization, Minimax Theory Appl. 9 (2024), no. 2, 201–224.
- [2] S. Kobayashi, Y. Saito and T. Tanaka, Convexity for compositions of set-valued map and monotone scalarizing function, Pac. J. Optim. 12 (2016), no. 1, 43–54.
- [3] I. Kuwano, T. Tanaka and S. Yamada, Unified scalarization for sets and set-valued Ky Fan minimax inequality, J. Nonlinear Convex Anal. 11 (2010), no. 3, 513–525.
- [4] W. Takahashi, Nonlinear variational inequalities and fixed point theorems, J. Math. Soc. Japan 28 (1976), no. 1, 168–181.
- [5] Y. D. Xu and S. J. Li, A new nonlinear scalarization function and applications, Optimization **65** (2016), no. 1, 207–231.