Existence and approximation of a common fixed point

on Banach spheres
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Abstract

In this paper, we prove a common fixed point theorem and an approximation
theorem with the shrinking projection method on Banach spheres. In this work,
we became able to generate an iterative sequence even if considered mappings do
not have fixed points. Further, if they have a common fixed point, the sequence
converges to such a point.

1 Introduction

In 2008, the shrinking projection method was proposed by Takahashi, Takeuchi and
Kubota [11]. This iterative scheme has been investigated by many researchers in Hilbert,
Banach and geodesic spaces; see [2, 6, 7, 9].

Recently, Kimura showed the following theorem:

Theorem 1.1 (Kimura [4]). Let X be a Hadamard space and suppose that a subset
{z € X | d(u,2z) < d(v,2)} of X is convex for any u,v € X. Let {T; : X — X |i =
1,2,...,m} be a family of nonexpansive mappings. Generate a sequence {x,} in X with
a sequence {Cy} of subsets X by the following steps:

Step 0. z1 € X, C; =X, andn =1;
Step 1. Cry1 = {2z € X [ d(Tizn, 2) < p(xn,2)} N Cn;
Step 2. (1) if Cpq1 # 0, then let v 41 = Po, T, increment n to 1, and go to Step
1;
(2) if Crup1 =0, then C, = () and leave xy to be undefined for all k > n+1, and
terminate the generating process.

Then, the following conditions are equivalent:
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(a) M= FixT; # 0;
(b) ﬂiil Cr # 0.

Further, in this case, {x,} is well defined and A-convergent to some o € (i~ FixT;.

Usually, we need to assume the existence of common fixed points to generate ap-
proximate sequences with the shrinking projection method. In this theorem, we do not
suppose it, and in the case where C,, 1 = ), we terminate its process. Thus, we obtained
an equivalent condition for the existence of common fixed points.

On the other hand, in 2024, Kimura and Sudo [8] investigated fixed point theory on
the unit sphere of a Banach space, which is called a Banach sphere, and show a fixed
point approximation theorem for a spherically nonspreading mapping. In general, such
a sphere does not have spherical distance, however, they adapt the following bifunction
corresponding to the spherical distance on Hilbert spheres: For a point x in a Banach
space and for a bounded linear functional f such that ||z| = ||f| =1,

ple, f) = arccos(z, f).

In this paper, we show an existence and approximation of a common fixed point of a
family of spherically nonspreading mappings on a Banach sphere.

2 Preliminaries

Let X be a nonempty set, C' a nonempty subset of X and T" a mapping from X into C.
We denote the set of all fixed points of T" by Fix T, namely,

FixT={z e X |Tz =x}.

In this paper, we always consider real linear spaces. Let E be a Banach space and E*
its dual space. We denote the value of y* € E* at z € E by (x,y*). Let

SE:{x€E| H:c||:1}
be the unit sphere of E. The duality mapping J on E is defined by
Jr = {z" € B* | (z,27) = [|z|* = [|«*|?}

for each x € E. We know that Jx is a nonempty bounded closed convex subset of E*
for any x € FE. Let FE be a Banach space. FE is said to be strictly convex if z = y
whenever ||z + y|| = 2 for x,y € Sg. Further, we say that E is uniformly convex if

lim ||z, —yn|| =0
n—oo
whenever lim,,_, o ||, + yn|| = 2 for two sequences {z,} and {y,} of Sg. E is said to

be smooth if the limit

ety — |
t—0 t
exists for each z,y € Sg. A norm of FE is said to be Fréchet differentiable if the limit is
attained uniformly for y € Sg for fixed x € Sg. It is also said to be uniformly smooth
if the limit is attained uniformly for z,y € Sg.
Let E be a Banach space with its dual £* and J the duality mapping on F. Then,
we know the following properties of F on J:



If F is uniformly convex, then it is reflexive and strictly convex;

if E is uniformly smooth, then it has a Fréchet differentiable norm;
if E has a Fréchet differentiable norm, then it is smooth;

FE is smooth if and only if J is single-valued, and then

tyll —
N
t—0 t

z, Jy)

for each z,y € F,

if E is smooth, then F is strictly convex if and only if J is injective;

if F is smooth, then E is reflexive if and only if J is surjective;

if E has a Fréchet differentiable norm, then J is norm-to-norm continuous;
if F is reflexive, then E is strictly convex if and only if E* is smooth;

if F is reflexive, then E is smooth if and only if E* is strictly convex;

F is uniformly convex if and only if £* is uniformly smooth;

F is uniformly smooth if and only if E* is uniformly convex.

Let E be a Banach space with its dual E*. Let Sg and S% be their unit spheres.
Then, we know that

{2, 7)< llzlllly™]l =1

for each (z,y*) € Sg x S},. We define a function p from Sg x S}, to [0,7] by

p(x,y*) = arccos(z,y").

for each (x,y*) € Sg x Sj. In general, p is not symmetry and it does not satisfy the
triangle inequality.

We define a notion of convex combination on Banach spheres. Let E be a Banach
space. For x,y € Sp with © # —y and t € [0, 1], set

te+ (1 —1t)y
t 1—ty= Sr.
TOU =Y = T =] €O

Let E be a smooth Banach space and J the duality mapping on . Let X be a
nonempty subset of Sp. We say that X is admissible if (x,Jy) > 0 for all z,y € X.
Notice that X is admissible if and only if p(z,y) < 7/2 for all z,y € X.

We introduce the spherical projection. We first consider spherical convexity of a
subset. Let E be a Banach space and C a subset of Sg. We say that C' is spherically
convex if

trad(1—-t)yeC

for all z,y € C with z # —y and t € [0,1]. Let E be a smooth and uniformly convex
Banach space. Let C' be a nonempty, closed and spherically convex subset of Sg. Let

Dom Il = {.’E € Sg

T
inf yJxr) < —.
Inf ply, Jz) <5 }
Then, for x € Dom Il:, there is a unique point u, € C' such that

o, Jz) = inf p(y, Jz).
plua, Jr) = inf p(y, Jz)



We call such a mapping I1¢ : © — u, a spherical projection onto C'. Note that Fix I[Io =
C.

Let E be a smooth Banach space and X a nonempty admissible subset of Sg. We
call a mapping T from X into itself a spherically nonspreading mapping if

cos p(T'x, JTy) + cos p(Ty, JTx) > cos p(T'x, Jy) + cos p(Ty, Jx).

for all z,y € X, where J is the duality mapping on E. The nonspreadingness of
a mapping was first introduced by Kohsaka and Takahashi on smooth Banach spaces;
refer to [10]. After that, on geodesic spaces, the spherical nonspreadingness of a mapping
has been investigated; see [1, 3, 5].

3  Main Theorem

We show our main result, which generates an approximate sequence of a common fixed
point of a family of spherically nonspreading mappings. We also obtain an equivalent
condition for the existence of a common fixed point.

Theorem 3.1. Let E be a uniformly smooth and uniformly convex Banach space. Let
X be a nonempty, closed, and spherically convex subset of Sg. Let {T1,T5,...,T;} be
a family of spherically nonspreading mappings from X into itself. Generate a sequence
{z,} in X with a sequence {C,} of subsets of X by the following steps:
Step 0. u,z1 € X, C1 =X, andn=1;
Step L. Cn—l—l = ﬂé:l{z €X | :0(27 Jszn) < p(z, an)} N Cn;'
Step 2. (1) if Crq1 # 0, then let x4 = I, u, increment n to 1, and go to Step
1;
(2) if Cpy1 =0, then Cx = 0 and leave xy to be undefined for all k > n+1, and
terminate the generating process.

Then, the following conditions are equivalent:

(a) Ny FixT; # 0;
(b) My Cr # 0.

Further, in this case, {x,} is well defined and convergent to Hm;_l Fix T, U-

Proof. First we show that
l
({z € X | p(z, JTixn) < plz, Jz)}

=1

l
= ({z € X | cospl(z, JTywn) > cos p(z, Jay)}
=1

is closed and spherically convex. It is obviously closed. Take p,q in the set above and



t € [0,1]. Then,

t JCFZ n 1—1 7JT1 n
cosp(tp @ (1 —t)q, JTyz,) = cos p(p, JTixn) + ( ) cos p(q T,)

ltp + (1 —t)q||
o, teosp(p, Jxn) + (1 —t) cos p(g, Jas)
- ltp + (1 —t)q]|

= cos p(tp @ (1 — t)q, Jan).

This implies that ﬂézl{z € X | cosp(z, JT;xzy,) > cosp(z, Jxy,)} is spherically convex.
We suppose ﬂézl FixT; # 0 and show (-, Cr # 0. It is sufficient to show that
ﬂézl FixT; C C} for every k € N. We prove this inclusion by induction. It is obvious
for the case k = 1. Suppose ﬂizl FixT; C C} and we consider the case k + 1. Notice

that, in this case, xj is defined. Let z € ﬂizl Fix T;. Then, since each T; is spherically
nonspreading, we have

cos p(Tixk, JT;z) + cos p(T;z, JT;xr) > cos p(Tixk, Jz) + cos p(T;z, Jxy)
for each 7 =1,2,...,1. Since z € ﬂézl Fix T;, we get
cos p(Tixy, Jz) + cos p(z, JT;xy) > cos p(Tixy, Jz) + cos p(z, Jzx).
Hence,
cos p(z, JT;zy) > cos p(z, Jxy).

The definition of Cj41 and the assumption of induction imply 2z € Ci41. Consequently,
we obtain

1
Cy O [\ FixT; # 0,
i=1
and this is the desired result. Therefore, we know that C), is closed and spherically

convex, and ﬂézl FixT; C Cp41 C C, for any n € N. Hence, since I/, is well defined,
{z,} is well defined.

We next suppose that (-, Cx # 0 and prove ﬂézl FixT; # 0. Let Co = (N Ck-
Since

p(ﬂCnua JU) < P(HCnHUa JU) < p(HC’OU, JU) < g

for any n € N, there exists a limit of {p(Ilc,, Ju)}. Notice that its limit is less than
7/2. Assume that {IIc, u} is not a Cauchy sequence of E. Then, there exist € >
0,{m;},{n;} C N such that m; > n; > j and ||HijU — HanU” >eforall j €N In
this way, we can take two subsequences {Hcmj u} and {chj u} of {II¢, u}. Fix j € N.
Since g, u,1lc, ue Ch,, we have

1 1
cos p(IICpu, Ju) > COSp<— Cm,u® 51lc, u, Ju)

2 2
_cos p(ﬂcmj u, Ju) + cos p(ﬂcnj u, Ju)
e, u+ e, ull



We get

cosp(ﬂcmj u, Ju) 1o

2> |11 11, >
> |, v+ I, ull cos p(Ilc, u, Ju)

as j — oo. Since E is uniformly convex, we have ||IIc, u — e, ul| — 0 as j — oo.
J J

This is a contradiction. thus, {II¢, u} is a Cauchy sequence of E. Let xy € X be its
strong limit. Fix k¥ € N. for n € N with n > k, since C,, C C}, we have IIc, u € Cy.
Thus, since Cj, is closed, we get ¢ € Cj. It implies that zg € Cy = (-, Ck. Since

p(chu, JU’) < p(HCOU, JU’) < p(xoa JU’)

for alln € Nand {Il¢, u} converges strongly to zo, we have p(Il¢,u, Ju) = p(zo, Ju) and
hence xy = II¢,u. Moreover, since z,, = II¢, u and IIo, u — xg, we get {z,} converges
strongly to II¢c,u. Since oy u € (Np—; Ck, we obtain p(Ilcyu, JTixn,) < p(Hcyu, Jay,).
Then,

0< nh_{lgo p(Io,u, JTix,) < nh_)n(lo p(llcyu, Jxy) = p(Iloyu, JI ).
Therefore, lim,, o p({Icyu, JT;z,) = 0. Thus, we have
nli_>ngo<ﬂcou, JHc,u+ JTix,) = nan;O(HCOu, JH e u) + nlLH;O<HCOU’ JTixn)
=14 (Hoyu, JT;x,) = 2.
We obtain ||JIIc,u|| = ||JTix,| = 1 and
2= nli_>IEO<HCou7 Jleoyu+ JTxy,)
< linrr_1>i£f | Heyul||||[Hoyu, JHoyu + JT;x,||
= liﬁgi;l)f |JHcyu + JTix, ||
<limsup ||JHc,u + JT;x,||

n—oo

= limsup(||J ¢, ul| + || JTiz,|) = 2.
n—oo

From uniform smoothness of E, since E* is uniformly convex, {JT;z,} converges
strongly to JIIg,u. Since J~! is norm-to-norm continuous, {T;z,} converges strongly
to I, u. Since Tj is spherically nonspreading, for any n € N and each ¢, we get

COS p(,«Tixna J,«TiHC’ou) + COSp(TiHCou7 J,'TZ'CCH)
> cos p(Tixy, JHcyu) + cos p(Ti Il cyu, Jxp,).

Since J is norm-to-norm continuous, {Jxz,} converges strongly to JIlc,u. Therefore,
letting n — oo, we have

cos p(Hlc,u, JT; Hcyu) + cos p(Tillcyu, JHcyu) > 1+ cos p(Tillcyu, JI o)

and thus cos p(llc,u, JT;I1cyu) = 1. Therefore, I[Ic,u = T;IIc,u. It implies that
[oyu € FixT;. Thus, if (32, Cx # 0, then (_, FixT; # 0.

We finally show that {x,} converges strongly to IT AL, Fix T, Y- Since FixT; C Cy, we
obtain -



pUlcyu, Ju) = p(H_ g, u, Ju).

Therefore IIo,u = HﬂtlFixTi“' We know z,, — z¢9 = [lc,u. Consequently, {x,}
converges strongly to e pixr, U O
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