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Abstract

This paper discusses two pairs of quadratic optimization problem (primal) and
its dual. In particular, we deal with the pair of problems which are called discount
model and control model. For each model, duality is shown through the gap function.
The method is based upon a complementary identity. Moreover, complete solutions
are given through characteristic equations.

1 Introduction

Recently, in [6-14], S.Iwamoto, Y.Kimura, T.Fujita and A.Kira show that a duality for
paired optimization problems through several methods. In particular, in [13], we have a
method through gap function to show a duality between a primal problem and its dual.
As a historical background, see Bellman and others [1-5], [15] for dynamic optimization.

In this paper, we discuss a method through gap function to show a duality for pairs
of quadratic optimization problems, which are called discount model and control model.
Section 2 considers a pair of n-variable minimization (primal) problem and maximization
(dual) problem, which is called discount model. Then we define a gap function and
discuss duality and optimal solution (point and value). In section 3, we consider a pair
of quadratic optimization problems, which is called control model. As in section 2, we
discuss a duality through a gap function and optimal solution for the pair.

Throughout the paper let n be a natural number and ¢ ( € R!') be a constant. ¢ denotes
an initial state at time 0 of a dynamic system.

2 Discount model

In this section let p be a positive constant. We consider a pair of n-variable optimization
problems :

n

minimize Zpk_l [(xk_l — )+ xi]
k=1

P,
subject to (i) z € R", (ii) zp=c



n—1

Maximize 2xgpu, — Z Pt [,ui + (o — p/1,k+1)2] —2p" 2

D k=1
" subject to (i) pe R", (ii) xo=rc

Let f, g : R* — R! be the respective objective functions of P,,, D,,:

fla) =0 [(wer — a)” + 23]

k=1
n—1
g(m) = 2cp1 = > [k + (ke — ppsr)”] = 20" 4l
k=1

Note that f(x) is convex and g(u) is concave. Then it hods that
f@) = g(p)  (z,p) € R"XR".
The sign of equality holds iff a lincar system of 2n-equation on 2n-variable
C—T1 = W T1 = M1 — P2
EC(p) ap1— o = e Tk = p — pr1 2<k<n—1

Tp—1 — Tn = Hn Tn = Hn

holds. EC(p) is called an equality condition between P, and D,,. Thus both problems are

called dual of each other.

The equality condition EC(p) yields a pair of linear systems of n-equation on n-

variable:
YT — pry = C
(EQ,) —xp—1+72p —prrsy1 = 0 2<k<n-—1
—Tp_1 + 2z, = 0,

20 —pp2 = c
(EQ,)  —mh-1+vm—ppers =0  2<k<n-1
—pn-1+ Y =0

where v = 2 + p.

2.1 Gap function for discount model

First we present an identity, which takes a fundamental role in analyzing respective pairs
of primal and dual. Let x = {4}, p = {p}7 be any two sequences of real number with

xo = c¢. Then an identity

-1

3

(C2) Do (wher — w)me + wr(in — ppnsr) | + 0" [ (@0t = T + Topin ] = o

k=1



holds true. This identity is called complementary.
Now we derive both P,, and D,, through gap function. Let us define a gap function
h = h(x,p) between x € R™ and p € R™ by

n—1

h(z, p) = Zpk_l [ (-1 — o — pe)* + {on — (e — puk+1)}2]

+ pn_l [ (xn—l — Ty — Nn)Q + (xn - Nn)2 } (2>

Thus h(x, 1) denotes a total difference between x and p. It turns out that the quadratic
function h = h(x, p) is convex in (x, y1).

Lemma 1

(i) flx) —g(w) = Mz, p) > 0 V(z,p) € R"xR"
(ii))  h(x,pu) =0 = (x,p) satisfies EC(p).

Theorem 1 (i) [t holds that

(ii) It holds that

f@) = g(p) <= (x,p) satisfies EC(p).

Then P, attains a minimum f(z), while D,, attains a mazimum g(u).

Hence a solution (z, ) to EC(p) yields a minimum point = for P, and a maximum
point p for D,,.

Theorem 2 Let (x, ) satisfy EC(p). Then both sides become a common value with five
ETPTESSIONS:

(5Vy) -
= g(u) = > P [k + (ke — prasr)?] + 20" 2 = .
k=1
The primal P, has a minimum value
m = f(z) = clc— 1)
at x, while the dual D,, has a mazimum value
n—1
M = g(u) =P [k + (e — pr)?] + 20"t = e

k=1

at p.



2.2 Characteristic equation for discount model

Now let us solve the pair of linear systems (EQ,) and (EQ,). We introduce a second-order
linear difference equation

PLpta — VIpy1 + 2, = 0, =1, 29 =0. (3)

Lemma 2 FEq (3) has a unique solution
Bn —a"
0 —«

Ty —

where o (<) 5 are two positive solutions

v —+vD vy+vVD

o= B = 2 ;D =p*+4(>4) (5)
to the associated characteristic equation
(CE) pt* —~4t+1 = 0. (6)
Definition 1 Let us define the sequence {K,} by
K, = %. (7)

We call {K,,} a Kibonacci sequence![13]. Thus {K,,} satisfies a second-order linear dif-
ference equation

pKn+1 = ’)/Kn — Kn—lu K1 = 1, KO =0. (8)
This has a unique solution (7).

Lemma 3 The system (EQ,) has a unique solution
Kn+1—k - Kn—k

c
- . 0<k<
o pk Kn—l—l - Kn - ="
, while the system (EQ),) has a unique solution
K-
‘ Lk 1<k<n.

HE = k=1 ’ oK, — K,_,

Theorem 3 The equality condition EC(p) has a unique solution (x, u);

. — c Kn-l—l—k - Kn—k
= —
pk Kn+l - Kn

c Kok
pk_l 2Kn - Kn—l ‘

e =

Hence the gap function h attains the zero minimum at (z, p1).

1Strictly speaking, p-Kibonacci sequence.



3 Control model

In this section let b (€ R') be a constant. We consider a pair of n-variable optimization
problems :

minimize Z [(zpo1 — bag)? + 27
P k=1
subject to (i) x € R", (ii) zy=c

n—1

Maximize 2zop; — Z (13 + (bpr — pen)?] — (L + 0% s

D k=1
" subject to (i) pe R", (ii) zo=c

Let f, g: R® — R! be the respective objective functions of P, D,:

n

f@) =Y (@1 — bay)” + 7]

k=1
n—1
g(m) = 2cm — Y [pk + (b — pesr)?] — (1 + %)l
k=1
Note that f(x) is convex and g(u) is concave. Then it hods that
f(x) = g(uw)  (x,p) € R"XR". (9)

The sign of equality holds iff a linear system of 2n-equation on 2n-variable
c—bry = 1 T = buy — po
EC(b)  xp_1—bxr = Tp = by — ppp1 2<k<n-—1
Tpo1—bry, = pn Tn = by

holds. EC(b) is called an equality condition between P,, and D,,. Thus both problems are
called dual of each other.

The equality condition EC(b) yields a pair of linear systems of n-equation on n-variable:
vyr1 — bxry = be
(EQ,) —bxp_1+yxp —brgyy = 0 2<k<n-1
—bx, 1 +&x, = 0,

S — bz = ¢
(EQH) —bpk—1 + Yhr — b1 =

e}

2<k<n-1
_bﬂ'nfl—i_ﬂ/ﬂ'n =0
where v = 24+ 02, £ = 1+ b2



3.1 Gap function for control model

Let © = {xx}g, 1 = {px}} be any two sequences of real number with zo = c¢. Then a
complementary identity
n—1

(Cs) Z[(xk_1 — bxp) e + (b — prer1)] + (Tno1 — bxp) i + T bt = cpa
k=1

holds true. Let us define a gap function h = h(x, 1) by

n—1

B ) = D0 [(or — b — ) + {w — (g — )

+ [(xn_l — bxy — fi)? 4 (20 — bity)? } (10)

Thus h(z, 1) denotes a total difference. It turns out that the quadratic function h = h(x, )
is convex.

Lemma 4
(i) fle)—g(p) = hz,p) 2 0 ¥(z,u) € R"xR"
(i)  h(z,p) =0 = (x,u) satisfies EC(b).
Theorem 4 (i) It holds that
f(z) = g(p) on R'XR".
(ii) 1t holds that
f(x) = g(pn) <= (z,pn) satisfies EC(b).

Then P, attains a minimum f(x), while D,, attains a mazimum g(u).

Hence a solution (z,u) to EC(b) yields a minimum point z for P, and a maximum
point u for D,,.

Theorem 5 Let (x, p) satisfy EC(b). Then both sides become a common value with five
ETPTessions:

fz) = e(c = bay)

= g(1) = Y [+ (b — pesn)”] + (L+ 0 = e,
k=1

(5Vs)

The primal P,, has a minimum value
m = f(z) = c(c— bxy)

at x, while the dual D,, has a mazimum value
n—1
M = g(u) = [ph + (bpk — prsr)’] + A+ )l = e
k=1
at p.



3.2 Characteristic equation for control model

We introduce a second-order linear difference equation
brpio — Yrpye1 +0x, =0, x; =1, 25 =0.

Lemma 5 FEq (11) has a unique solution

ﬁn_an
b —«

Ty —

where o (<) 5 are two positive solutions

QZM7 B =

v+VD
2b ’

_ 14
5 D=0 +4(>4)

to the associated characteristic equation
(CE) bt* —~t+b = 0.

Now let us define Kibonacci sequence?[13] {K,,} by

Bn_an

b — «

Then the sequence { K} satisfies a second-order linear difference equation

K, =

bK, 1 = 7K, —bK,, 1, Ki=1, Koy=0.

Lemma 6 The system (EQ,) has a unique solution

c bKn-‘rl—k - Kn—k

= 0<k<
o bKn+l - Kn - ="
, while the system (EQ,,) has a unique solution
Kn+1—k
=c————— 1<k<n.
i ‘ SKn - bKn—l a ="

Theorem 6 The equality condition EC(b) has a unique solution (z, j1);
bKn+l—k - Kn—k

= bKn-‘,—l - Kn
— ¢ Kn+1—k
ST A

Hence the gap function h attains the zero minimum at (z, ).

2Strictly speaking, b-Kibonacci sequence.

(11)

(12)

(13)

(14)
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