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Abstract

In this paper, we consider resolvent operators of convex functions with various
perturbation functions. We prove that there are many resolvent operators which
are spherically nonspreading of sum-type in a geodesic space with curvature
bounded above by one.

1 Introduction and preliminaries

For an admissible CAT(1) space X, a mapping T from X into itself is said to be
spherically nonspreading of sum-type [3] if an inequality

2cosd(Tx, Ty) > cosd(xz, Ty) + cosd(y, Tx)
holds for any two points x and y in X. This concept is a special case of vicinal mappings
with ¢ defined by Kajimura and Kimura on an admissible CAT (k) space.

Definition 1.1 (Kajimura—Kimura [2])

Let X be an admissible CAT(1) space and 9 : [0,7/2[ — ]0, 00[ a right-continuous
function at 0. Then a mapping 7" from X into itself is said to be vicinal with v (for
k=1)if

(Y(d(x,Tx)) +(d(y. Ty))) cos d(T'x, Ty)
> (d(x, Tz)) cosd(z, Ty) + ¥ (d(y, Ty)) cosd(y, Tx)

for any x,y € X.



Note that its original definition in [2] is in an admissible CAT(k) space for every
k € R; however, this paper only considers the case where k = 1. Let 1: [0, 7/2] — R
be a constant function defined by 1(t) = 1 for any ¢ € [0,7/2[. From Definition 1.1,
we know that a mapping 7' is spherically nonspreading of sum-type if and only if it
is vicinal with the constant function 1, or equivalently, it is vicinal with any positive
constant function.

We say that a sequence {y,} on an admissible CAT(1) space X is spherically bounded
if there exists u € X such that sup,,cy d(yn, u) < 7/2. Now we introduce the following
theorem.

Theorem 1.2 (Kajimura [1, Theorem 5.15])

Let X be an admissible complete CAT(1) space and T: X — X a vicinal mapping
with . Then T has a fized point if and only if there exists x € X such that {T"x}52
is spherically bounded and sup,,cy Y(d(Tht12, Thr)) < 00.

In Theorem 1.2, the condition sup,,cy ¥(d(Th412, Thz)) < oo follows automatically
whenever 1" is vicinal with 1. Hence, the following holds:

Corollary 1.3

Let X be an admissible complete CAT(1) space. Then a spherically nonspreading
mapping T of sum-type has a fized point if and only if {T"x}°2, is spherically
bounded for some v € X.

Consequently, to check whether a spherically nonspreading mapping T' of sum-type
has a fixed point, we only need to examine the spherical boundedness of {T™xz} for
r e X.

Let X be an admissible CAT(1) space, and f a proper convex function from X into
] —00, 00]. We call a mapping .J; a resolvent operator of f if it is a signle-valued mapping
from X into itself and its fixed point set F'(J¢) coincides with the set argmin f of all
minimizers of f. From previous studies, such as [3, 5, 6, 7], we know that a set-valued
mapping Jy: X — 2% defined by the formula

Jrxz = argmin (f(y) + @(d(z,y)))

yeX

:{ZEX

inf (f(y) + (d(x.y))) = F(2) +(d(w.2)) |

yeX

for x € X becomes a resolvent operator of f on X by using a perturbation function
$: [0,7/2] — R under certain assumptions. Now we consider set-valued mappings Qr,
Ry, and Sy from X into 2% defined by

Qx = argmin (f(y) — log cos d(w,y)); Rsx = argmin (f(y) + 1 — cosd(x, y));
yeX yeX

Sz = argmin (f(y) + tand(z,y) sind(z,y))
yeX

for x € X, respectively. If X is complete and f is lower semicontinuous, then Q)
and Sy can be defined as a single-valued mapping on X; see [3, Theorem 3.2] and [5,
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Theorem 4.2|, respectively. Moreover, if X is complete, f is lower semicontinuous, and
f has at least one minimizer, then Ry becomes a single-valued mapping, see [7, Lemma
5.2.1]. Furthermore, we know that Q¢ and Ry are spherically nonspreading of sum-type;
however, we do not know whether S; is so or not.

In this paper, we show that there exist resolvent operators other than @y and Ry
that satisfy the spherical nonspreadingness of sum-type. Specifically, we prove that the

following resolvents T’ Jf‘ "™ and Uy are spherically nonspreading of sum-type:

N 1—cos d(z,y) o
T; "'y = argmin (f(y) + f (1 + A\ )ds);
yeX 0 1—s

Upx = argmin (j(y) + /(1 — cosd(z,y))(— logcos d(x, y)))
yeX
forx € X, A €[0,1], and n € [1, 00][.
The following is a crucial notion that describes a behavior of resolvent operators:

Definition 1.4 (Kajimura—Kimura [2])

Let X be an admissible CAT(1) space and T' a mapping from X into itself. Let
¢ [0,7/2[ — |0, 00] be a function which is right-continuous at 0. Then, 7" is said to
be firmly vicinal with ¢ (for k = 1) if

(¥(d(z,Tx)) cosd(z, Tx) + ¢(d(y, T'y)) cosd(y, T'y)) cos d(Tz, Ty)
> (d(x, Tz)) cosd(z, T'y) + ¥ (d(y, Ty)) cosd(y, Tx)

for any x,y € X.

In Definition 1.4, since X is admissible, we know that every firmly vicinal mapping
with ¢ is vicinal with the same ).

Lemma 1.5 (Kajimura—Kimura [2, Theorem 4.1])

Let X be an admissible CAT(1) space and [ a proper convex function from X into
|—00,00]. Let $:]0,1] — [0,00] be a nonincreasing and differentiable function such
that @' is continuous on 10,1]. Suppose thal a set-valued mapping Jr: X — 2X
defined by

Jpw = arginin (f(y) + B(cos(d(x,y))))

for x € X is well-defined as a single-valued mapping on X. Then, Jy is firmly vicinal

with —¢' o cos.

Lemma 1.6 ([6, Theorem 6.5])
The mapping J; defined in Lemma 1.5 satisfies F'(J;) = argmin f.

Lemma 1.7 ([6, Theorem 6.8, Theorem 5.30])
Let X be an admissible complete CAT(1) space and f: X — |—o0,00] a proper lower




semicontinuous convez function. Let ©:]0,1] — [0, 00[ be a strictly decreasing and
differentiable function such that @' is nondecreasing and continuous on ]0,1]. Suppose
that im0 @(t) = 0o. Define a set-valued mapping Jp: X — 2% by

Jyz = argmin(f(y) + Bleos d(z, y))
yeX
orz € X. en the following hold:
f X. Then the foll hold
(i) Jy is well-defined as a single-valued mapping on X ;

(ii) Jy is firmly vicinal with —@' o cos: [0,m/2[ — |0, 00[ (by Lemma 1.5);
(ili) F(Jf) = argmin f (by Lemma 1.6).

2 Main results

In this section, we investigate the nature of several resolvents. Let X be an admissible
CAT(1) space, f: X — |—o00,00] a proper convex function, A € [0, 1], and n € [1, o0].
Let us consider mappings Qy, Iy, Sy, TJZ\ ™, and Uy defined in Section 1. Define functions

7", Py 10,1] — [0, 00] by

1—t n
9_0?7"(1?) = j; (1 +A- 1'?’_ . )ds and  By(t) = /(1 —t)(—logt)
for t €]0, 1], respectively. Then, TJZ\ "2 and Uz are figured by

argmin (f(y) + 2, (cosd(x,y))) and  argmin (f(y) + Po(cosd(z,y)))
yeX yeX

for x € X, respectively. Consider the case where X is complete, f is lower semicontinu-
ous, and A % 0. Then Lemma 1.7 ensures that each mapping Qy, Sy, Tf)"", Up: X — 2%
becomes a single-valued mapping on X. In contrast, Lemma 1.7 does not guarantee
the well-definedness of Ry as a single-valued mapping. However, as mentioned before,
Sudo [7, Lemma 5.2.1] showed that Ry is well-defined if argmin f % &.

Now we prove the following result, which provides a sufficient condition for a firmly
vicinal mapping T" with v to be spherically nonspreading of sum-type.

Theorem 2.1

Let x:]0,1] — ]0,00] be a left-continuous function at 1. Let X be an admissible
CAT(1) space and T: X — X a firmly vicinal mapping with ¢ = x o cos. Suppose
that there exists k > 0 such that

1<) <+ (2.1)

for any t €10,1[. Then, T is spherically nonspreading of sum-type.

Proof. Suppose that T': X — X is firmly vicinal with ¢) = x o cos and that (2.1) holds
for any t € ]0,1]. Then we have ¢(d)cosd < k < 1(d) for any d € [0,7/2[. Hence,
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putting K, = d(z,Tz) and K, = d(y,Ty), we get

2k cosd(Tx, Ty) > (Y(K,)cosd(x, Tx) + (Ky) cosd(y, Ty)) cosd(Tx, Ty)
> h(Ky) cosd(x, Ty) + ¢ (Ky) cos d(y, T'x)
>k

cosd(z, Ty) + kcosd(y, Tx)

for any x,y € X, which is the desired result. Il

From the following result, we can construct many functions » which make a resolvent
defined by the perturbation @ o cos spherically nonspreading of sum-type.

Theorem 2.2

Let X be an admissible CAT(1) space and f a proper convex function from X into
|—00,00]. Let x1:]0,1] = R be a continuous function such that

1§X1(t)§%

for any t €10,1]. For arbitrarily fived k > 0, define @: ]0,1] — [0, c0[ by

1
B(1) = f ki (5) ds (2.2)
t
for t €10,1], and Jp: X — 2% by

Jrx = al;gen)lcin (f(y) + P(cosd(z,y))) (2.3)

for x € X. Suppose that J; is well-defined as a single-valued mapping on X. Then
the following hold:

(i) Jy is firmly vicinal with x1 o cos: [0, /2] — ]0, co;
(i) F(Jy) = argmin f;
(ili) Jy is spherically nonspreading of sum-type.

Theorem 2.3

Let X, f, x1, k, and @ be the same as in Theorem 2.2. We additionally suppose that
the following conditions hold:

o X is complete;
o fis lower semicontinuous;
e X1 1S nondecreasing;

. J;lxl(s)ds = 00.

Then, Jy: X — 2% defined by (2.3) becomes a single-valued mapping on X .

Proof of Theorem 2.2. Let x := —% = kxi. Then Theorem 1.5 implies that J; is
firmly vicinal with x o cos, and hence (i) holds. Moreover, (ii) is proved by Lemma 1.6.

ot



We also deduce that 1 < (1/k)x(t) < 1/t for any t € ]0, 1], and therefore Theorem 2.1
implies (iii). O
Proof of Theorem 2.3. We can see that $ is strictly increasing, @ is nondecreasing,
and limp0 @(t) = co. Therefore, from Lemma 1.7, we obtain the conclusion. O

We also obtain the following:
Corollary 2.4

Let X and f be the same as in Theorem 2.2. Let M:0,1] — [0,1] be a continuous
function, and define x1:]0,1] — R by

xilt) =1+ L)
for t €]0,1]. For arbitrarily fived k > 0, define @ and J¢ by formulas (2.2) and
(2.3). Then the following hold:

(I) If Jy is well-defined as a single-valued mapping on X, then the same statements
(i)—(iii) as in Theorem 2.2 hold;

(IT) of the same four conditions as in Theorem 2.3 hold, then J¢ becomes a single-
valued mapping on X.

Proof. Since 1 < x1(t) < 1/t for any t € ]0, 1[, we obtain the conclusion. O

In what follows, we always assume that X is an admissible CAT(1) space and
f: X — ]—o0,00] is a proper convex function. Consider the resolvents T JZ\ " Qr,
and Ry defined in Section 1, and we assume that these are single-valued mappings on
X. Using Corollary 2.4, we can show that these resolvents are spherically nonspreading
of sum-type.

Theorem 2.5

For fized real numbers A € [0,1] and n € [1,00[, the resolvent TfA’” is spherically
nonspreading of sum-type.
Proof. Put M(t) = A(1 —#)""1if n > 1, and M(t) = X if n = 1. Moreover, let
— 1-¢)"
X(t):1+¥M(t):1+A-%

for t €]0,1]. Then we can see that M(t) € [0, 1] for any ¢ € ]0, 1], and

. 1—t on 1
724 (t):j; (1—1—)\- 1_S)ds:‘ftx(s)ds

for any t € 10, 1]. Hence, Corollary 2.4 implies the desired result. Il

Theorem 2.6 (Kajimura—Kimura [3, Theorem 3.5])

The resolvent Qg is spherically nonspreading of sum-type.

Proof. Consider the case where k =1 and M (t) =1 for ¢t € ]0,1] in Corollary 2.4. O



Theorem 2.7 (Sudo [7, Remark 11, Remark 16])

‘ The resolvent Ry is spherically nonspreading of sum-type.

Proof. Consider the case where k =1 and M (t) = 0 for ¢ € |0, 1] in Corollary 2.4. O

For A € [0,1] and n € [1,00[, consider the perturbation ®*™ := %™ o cos of T]i\’",
which is represented by

2 (d) = fol_md(l a2 Yas

for each d € [0,7/2[. Then we see that ®!!(d) = —logcosd for any d € [0,7/2].
Moreover, for fixed n € [1,00[, we obtain ®%7(d) = 1 — cosd. Furthermore, for fixed
A €[0,1] and d € [0,7/2], it follows that lim,, oo ®*™(d) = 1 — cosd. These mean
that the perturbation of the resolvent T’ fA "™ connects smoothly those of @y and Ry.
Recently, Kajimura et al. [4] showed that the resolvent Vy: X — X defined by

Viz = argmin (f(y) + 1 — cosd(z,y) — logcosd(z,y))
yeX

for x € X is spherically nonspreading of sum-type. It is obtained by considering the
case where k = 2 and M(t) = 1 / 2 for t € ]0,1] in Corollary 2.4. Moreover, we also
know that V7 is ideltical to 7| 1/2,

1/ 2)f
Finally, we show the resolvent operator U; is spherically nonspreading of sum-type.

Before that, we introduce the following lemma.

Lemma 2.8

Let f,g:1]0,1] = R be differentiable functions having the following properties:

e 0< f(t) <g(t) for any t €10,1];
e f'(t) <0, ¢ (t) <0 for any t €]0,1[;
°f'()() ()'(t)>0f07“anyt€]0a1[-

Let h(t) = +/f t) forany t €10,1[. Then, ¢'(t) < h'(t) < f/(t) for any t €0, 1].
Proof. Fix t €]0,1[. Then we have 0 < f(t) < h(t) < g(t), which yields

/

2h(t)g'(t) < 2f(1)g'(t) < f'(t)g(t) + f(t)g'(t) = (f(t)g(1)) .

Similarly, it follows that

2h(t).f'(£) > 29(0) 1 (8) = ['(D)g(t) + F()g' (1) = (F(0)g(1))".

Therefore we obtain

Since




we get the conclusion. O

Assume that Uy is well-defined as a single-valued mapping on X.
Theorem 2.9

The resolvent Uy is spherically nonspreading of sum-type.

Proof. Define x: ]0,1] — [1, o[ by
_ 1—t—tlogt
2t\/(1 —t)(—logt)

for t €]0,1[, and x(1) = lim; ny x(t) = 1. Then Uy is firmly vicinal with x o cos. Let

f(t)=1—tand g(t) = —logt for t € ]0,1]. Then B(t) = /f(t)g(t) for any t € ]0,1].
Therefore, from Lemma 2.8, we conclude that ¢'(t) < @,(t) < f'(t) for any t € ]0,1],
from which it follows that

X(t) = —@5(t)

SRS

for any ¢t € ]0,1[. Consequently, Theorem 2.1 implies the desired result. O
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