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ABSTRACT. In this paper we consider a-¢ contractive mappings by assuming
asymptotically regularity in complete meanger spaces and we also consider its
generalization. We also prove fixed point theorems and common fixed point
theorem for those mappings.

1. INTRODUCTION

Probabilistic metric spaces were introduced in 1942 by Menger [14]. The notion
of distance between two points 2 and y is replaced by a distribution function F .
Sehgal, in his Ph.D. Thesis [19], extended the notion of a contraction mapping to
the setting of the Menger probabilistic metric spaces. The probabilistic version of
the classical Banach Contraction Principle was first studied in 1972 by Sehgal and
Bharucha-Reid [20]. Since then, many authors have obtained fixed point theorems
for probabilistic ¢-contractions under the assumption that ¢ is nondecreasing and
such that Y7 ¢"(t) < oo for any ¢ > 0 (see, e.g., [6] and the references in [5]).
Ciri¢ [5] consider the more weak conditions and Jachymski [13] correctly defined
the conditions and give tha following Theorem.

Theorem 1. (See Jachymski [13].) Let (X, F,A) be a complete Menger probabilis-

tic metric space with a continuous t-norm A of H-type, and let ¢ : Ry — R4 be a
function satisfying conditions:

0<p(t) <t and li_)rn w(t) =0 for all t > 0.

If T : X — X is a probabilistic p-contraction, then T has a unique fized point
z* € X, and {T"(xo)} converges to x* for each xo € X.

A mapping T': X — X is called a probabilistic ¢-contraction (or a ¢-contraction
in probabilistic metric space) if it satisfies Fry 1y (0(t)) > Fy 4 (t) for all 2,y € X
and t > 0, where ¢ : Ry — R is a gauge function satisfying certain conditions.

2. PRELIMINARIES

Let R denote the real number and Ry = {z € R |z > 0}. A mapping F : R —
R is called a distribution if it is non-decreasing left-continuous with sup,cp F'(t) =
1 and inficg F(t) = 0. The set of all distribution functions is denoted by D, and
Dy ={F|F € D,F(0) = 0}. A special element H of D is defined by

L if <0,
OES Sl,
1, if ¢t > 0.
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A mapping A : [0,1] x [0,1] — [0,1] is called a triangular norm (for short, a
t-norm) if the following conditions are satisfied:
(i) A(a,1) =a;
(i) Ala,b) = A(b,0);
(iii) @ > b, ¢ > d implies A(a,c) < A(b,d);
(iv) A(a,A(b,c)) = A(A(a,b),c).
Definition 2. (Menger [14]., Schweizer and Sklar [21]). A triplet (X, F,A) is
called a Menger probabilistic metric space (for short, a Menger space) if X is a
non-empty set, A is a t-norm and F is a mapping from X x X into D satisfying
the following conditions (for x,y € X, we denote F(x,y) by Fyy):
(1) Fyu(t) =H(t) for allt € R if and only if x = y;
(2) Fpy(t)=F,4(t) forallte R ;
(3) Foy(t+s) > A(Fy2(t), Fsy(s)) for all z,y,z € X and s,t > 0.

Schweizer et al. [17, 18] point out that if the t-norm A of a Menger PM-space

(X, F,A) satisfies the condition

sup A(¢,t) =1,

0<t<1
then (X, F,A) is a Hausdorff topological space in the (e, \)-topology 7, i.e., the
family of sets

{Uz(g, ) :e>0,X € (0,1]}(z € X)

is a basis of neighborhoods of point z for 7, where Uy(e,A\) ={y € X : F ,(¢) >
1- AL
Definition 3. Let (X, F,A) be a menger space such that supg.,q A(t,t) =1,

(1) A sequence {x,} in (X, F,A) is said to be T-convergent (simply convergent)
tox € X (we write x,, = = or liMy_y00 Fy, 2(t) =1 for any t > 0) if for
any given € > 0 and A > 0, there exists a positive integer M. x such that
Fy, p-(A) > 1 whenever n > M, ».

(2) {zn} is called a T-Cauchy (simply Cauchy) sequence in (X, F,A) if for any
given € > 0 and A € (0,1], there exists a positive integer N = N (e, \) such
that Fy, 5, () > 1— X, whenever n,m > N;

(3) (X, F,A) is said to be T-complete (simply comp), if each 7-Cauchy sequence
in X is T-convergent to some point in X. In what follows, we will always
assume that (X, F,A) is a Menger space with the (g, A)-topology

In what follows, we will always assume that (X, F,A) is a Menger space with
the (e, A)-topology
Lemma 4. (Sehgal and Bharucha-Reid [12]). Let (X, d) be a metric space. Define
a mapping F : X x X = D by
(1) F, () =H(t —d(z,y)) for any x,y € X and t > 0.
Then (X, F,min) is a Menger space. and it is called the induced Menger space by
(X, d), and it is complete if (X,d) is complete.

Definition 5. (Hadzic [9], HadzZic and Pap [12]). A t-norm A is said to be of
H-type (Hadzic type) if the family of functions {A™(t)}2°_, is equicontinuous at
t =1, where A(t) = A(t,1),
A™(t) = At, A" HE)),m = 1,2,...,t € [0,1].
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for each A € (0,1] there exists 6 € (0,A] such that A™(1 —6) > 1 — X for all
neZzZr.

The t-norm Ap = min is a trivial example of t-norm of H-type, but there are
t-norms A of H-type with A # Ay (see, e.g., [11]).

Definition 6. Let (X, F,A) be a menger metric space. A mappingT : X — X is
called asymptotic reqular if for every € > 0 and every A > 0, there exists an integer
M, » such that

FT’VL:L-7T’VL+1I(E) > 1-— )\
whenever n > M x. In this case we write lim, oo Fy .., (€) = 1.
Next we define the ¢-K contractions and ¢,,-K contractions in Menger sapces.

Definition 7. Let (X, F,A) be a complete Menger space with continuous t-norm
A and non-decreasing mapping ¢ : R+ — Ry satisfying for any t > 0 there exists
ti,ta > 0, 0 < K < 0o and r > t such that 0 < @(r) + K(t1 + t2) < t. Then
T:X — X is a probabilistic o-K contraction if T satisfy the following inequality:
If K > 0, then

(2)  Proay(e(r) + Kty +t2)) = A (Fay(t), Fora(Kt1), Fyry(Kt2)).
if K =0, then
3) Frary(@(r)) 2 Foy(t).

Definition 8. Let (X, F,A) be a complete Menger space with continuous t-norm
A and sequence of non-decreasing mapping {on} with ¢, : Ry — Ry satisfying
for any t > 0 there ewists t1,15 > 0, 0 < K < oo and r > t such that 0 <
S on(r)+ K(t1+t2) <t. ThenT : X — X is a probabilistic ,-K contraction
if T' satisfy the following inequality:
If K > 0, then
(4)
FT"J?7T"y(§Dn(T) + I((tl + tg)) 2 A (Fx)y(t) FT”_l:L',T"x(Ktl)a FTn—ly’Tny(_A’tQ)) y
if K =0, then
(5) Erpng mny(pn(r)) = Foy(t).

Next we also define the orbit set with respect to the mapping 7': X — X at «
with

Oz, T)={T"z € X,n=0,1,...}.

Definition 9. [4] Let (X,d) be a metric space and let T be mapping from X into
itself. Then T is called orbitally continuous if for any x € X and for any sequence

{xn} in O(x,T), for any t > 0 lim,_,o0 By, »(t) = 1 implies limy, oo Ery, 7p(t) =
1.

Definition 10. [4] Let (X,d) be a metric space and let T be mapping from
X into itself. Then T is called k-continuous, k = 1,2,3,..., if for any t >
0 limy o0 Eqry, 17p(t) = 1 whenever {x,} is a sequence in (X,d) such that
lim, oo ETk—lxn,p(t) =1.

Definition 11. [2, 3, 22] Let x € X. A sequence {z,} of points in X is called an
iterative sequence of T at x if Tx, = T"z, n =1,2,.... Note that define sequence
{xn} by Tpy1 = T™x, it is naturally iterative.
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3. MAIN RESULT
We give the following Theorem.

Theorem 12. Let (X, F,A) be a complete probabilistic Menger space such that A
is a continuous triangular norm of HadZzi¢ type. Let ¢ : Ry — R. be a mapping
such that for any t > 0, there exist 0 < K < o0, t1(t), t2(t) > 0 and r > t such
that 0 < o(r) + Kt1 + Kto <t and a mapping T : X — X be asymptotic regular,
and Kt1(t), Kta(t) — o0 ast — co. We assume that T is a probabilistic p-K
contraction. Then T is orbitally continuous if and only if T has a unique fixed
point x*. For this fized point x*, for any xg € X limy,_ oo T"xo = z*.

Proof. Let z¢p € X and x,, := Tx,_; for any n € N. Since T is asymptotic regular,
we have

(6) lim Fy pg.(t) =1

n—oo

for any ¢ > 0. If K = 0, then the proof is similar to that of [7, Lemma 3.2.]. Now
let n € N and t > 0, then there exist 0 < K < oo, t1, to2 > 0 and r > t such that
o(r) + Kt1 + Kto < t. Put 9(t) = ¢(t) + Kt; + Kto. We show by induction that,
for any k € N,

(7) nlggo Foppwn i (t) 2 AF (nh—>Holo Frp i (t—=10(2)).
Since the mapping 7" is asymptotic regular, we have

lim Fy o (Kt) =1, lim Fy Kty) =1.

n+k,$n+k+1(
We note that
FTI,Ty (d)(f)) > A(sz(t), FLTI (Ktl)v Fy7Ty(Kt2))>

then we have

Fop i ()

= Fop iz (E—0(t) +9(1))

= A(Fy 2 (E = 9(), Fopy i (9(1)))

> A (Fxn7mn+1 (t—4(r),A (an7mn+k (t), Fi s (Kt1), Fop irtonini (KfZ))) .

Since A is continuous, we have

A ( lim Fxnvmn+k (t)7 nhargo Fﬂﬂn,ﬁﬂn-u (Ktl)a

n—oo

=A (nll_{rgo Fxn,xwk (), 1, 1)

> AF ( lim F,, .., (t— w(t))) .

n—oo

Fx7t+k7' Tt k+1 (KtQ))

lim
n—oo

Then we have

nh—>Hc}o F$7L7In+k+1 (t)

> A (1 Fry e (6= 0(0), 8% (lin Foy s, (6= 6(0))) )

> A (i Py, (- 0(0)).
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We show that sequence {x,,} is Cauchy, that is,
lim F,, ,, (t)=1for any t > 0.

m,n—00

Let t > 0 and ¢ > 0. By hypothesis, {A"(t) | n € N} is equicontinuous at 1 and
A™(1) =1, so there is § > 0 such that

(8) if se (1—9,1], then A"(s) >1—¢c foralln € N.
Since T is asymtotic regular, we have
nh—>Hclo FIn{In-H (t - 11)(7')) =L
Then there exists ng € N such that, for any n > ny,
FOCmIn+1 (t - w(r)) € (1 - 67 1]'
Hence, by (7) and (8), we get Fy, .., (t) > 1 —¢ for any k € N. This proves the
Cauchy condition for {x,}. By completeness, {x,} converges to some p € X, that
is,
lim F,, ,(t) =1

for any ¢ > 0. We show that p is a fixed point of T. By asymptotic continuity and
order continuity of T', we get

Forp(t) > A(Fpa, (t/3), Fuwnir (6/3), Fra, mp(t/3))) = A(1.1.1) =1

This yields Fp rp(t) = 1 for any ¢t > 0, and hence p = T'p.

Finally, we show the uniqueness of a fixed point. Let p and ¢ be fixed point of
mapping T with p # ¢. Then F, , < 1. Since T is asymptotic regular, sequence
{zn} in X satisifies lim,, oo Frz, 7s,,, = 1. In this case it can be prove that {T'z,, }
is Cauchy and converges in X. Then for the p,q, any ¢t > 0 lim, oo Frs, »(t) =1
and limy, o0 Frre, . ,q(t) = 1. Then

1> Fp,q(t) > A(FILTGUn (t/3), FTmexn+1 (t/3), FTI7L+17q(t/3)> — A(L 1, 1) =1

This is contaradiction. Therefore p = q. (|

Theorem 13. Let (X, F,A) be a complete probabilistic Menger space such that A
is a continuous triangular norm of HadZi¢ type. Let ¢; : Ry — R4 (7 =1,2,...) be
mappings such that for anyt >0, n € N, there existr >t, 0 < K < 00, t1, 13 >0
such that 0 < Z;i1 w;(r)+ Kt 4+ Kty <t and a mapping T be asymptotic reqular,
and Kti(t), Kto(t) — 00 ast — oo. We assume that T is a probabilistic ¢,-K
contraction. Then T is orbitally continuous if and only if T has a unique fived point
x*. For this fized point x*, for any xo € X lim,_ oo T"xg = x*.

Proof. Let zg € X and z,,41 := Tz, for any n € N. Since T is asymptotic regular
we have

lim Fy, 1, (Kt1) = §m Egug, posi g, (Kty) = 1,
n—o0 n—oo

nh~>nolo Fmexn (th) = nlgrolo ET7LxO7T7L+1 zo (th) = 1.

Now let n € N, t >0 and K > 0. We show that for any k£ with k£ > 4

k-3
(9) ngnoo Fxn,$n+k (t) > 'rr}gnoo Fxn1zn+1 t— Kty — Kty — Z Pj (t)
j=1
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Since the mapping 7" is asymptotic regular, so we have

(Kts) = 1.

nh_{I;o Fxn7$n+1 ([(tl) =1, nh—>Hclo F1n+k,mn+k+1

In this case we have

Fyp a5t — Kt — Ktz — pr-3(t))

>A (F1n7$n+k74 (t — Kit; — Kty — ka—3(t) - ka—4(t)) ) Fxn+k—47zn+k—3(¢k_4(t)))
> A (Frupwp iy o (= Kti = Kto — @r3(t) — @r—a(t)) , Fap oy (1)
> ...
We continue this, the right side become
k-3
AlA--- Fxn7$n+1 t_Ktl _KtQ _Z(pj(t) ?Frn7$n+1(t) aan,$n+1(t)
j=1

Siince 7' is asymptotic regular, we have
nh—>ngo Fxn1zn+l (t) =1

Since A is continous and A(a,1) = a, for any k € N with & > 4, we have

k—3
A lim Fop,y, |t Kt — Kty — Zl(pj(t) , lim Fo, 0, (1)
=
k—3
= A dim Fyg,,, | Kt Kty > eit) ] 1
j=1
k-3
= lm Fy g, (0= Kt~ Kby - > s(t)
j=1
Note that

Fxmﬁﬂnﬂc (t)
= Fupan (t= Kty — Kty — @1 3(t) + (Kt1 + Kta + 0r3(t)))
> A (Fay g (t = Kty = Kty — @p_5(t)),
Forirogmnsn (pr—s(t) + Kt + th))
> A(Fyywnin s (t— Kty — Kty — @ _5(t)),
AlFrnyicainess (K1), Forisiann (K82), Froairnsia®-3(1))
)
(

> A(Fxnﬂ:n#»ka(t — Kt; — Kty — Spk—S(t)
A(Fxn+k—27ajn+k—l (Ktl)» F,

Tn+k—1,Tn+k

Kt?)» Fx7L7I7L+1 (f)))a

we have
k—3
nh—>ngo Fxn1zn+k (t) > nh—>ngo Fxn1zn+1 t— Ktl - KtQ - Z ()O](t)
j=1
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For k =1, we have

(10) lim Fy, o, (8) = 1,

n—oo

and for k = 2, since

Fz’rt)w7t+2 (t)
> A(an,wn+1 (t — ¥ (t))7 an+1 J T2 (991(t)))
> A(Fxn,wwrl (t — ¥ (t))7 an+1 yTn+2 (991(t)))

we have

(11) lim Fxn1zn+2 (t) > nlggo Fxn@n-ﬂ (t —¥1 (t)),

n—oo

and for k = 3, since

FZTL)'TTL+3 (t)
2 A(Fp 200 (0= 01(8) = 02(8)s Fopir,znsa (01(8) + 92(1)))
> A(an,wn+1 (t —¥1 (t) — ¥2 (t))v Fxn+17in+2 (901(75))7 Fﬂvn+2,$n+3 (902 (t))))

we have

(12) lim Fxn,$n+3 (t) > nlggo Fxn7$n+1 (t —¥1 (t) — P2 (t))

n—oo

Put (/)j.._g(f) = ¥;j (t) and (]51(t) = Kt, (]52(1‘,) = Kts, then Ktl—I—KtQ—I—Z?;f apj(t) =
Y1(t) + 1(t) + -+ + Yp—1(¢) and we have

n—oo n—oo

k—1
lim Fy, o, (8) > lim By o [ 6= 65(t)
j=1

We show that sequence {z,,} is Cauchy, that is,

lim F,, . (t)=1for any £ > 0.

m,n—o0

By assumption ¢ — Zf;ll $;(t) > 0 and T is asymtotic regular, we have

k—1
(13) m Fp oo, [E= 65 | =1
j=1

n—oo

If K =0, repeating the same arugument we have (13) as ¢; = ¢; (j =1,2,...,k—
1). In this case for any k& > 1 and £ > 0 there exists ng € N such that, for any
n > ng and k € N, we have

F,

Tn Ttk

t)>1—e.

This proves that Cauchy condition for {z,}. By completeness, {x,} converges to
some p € X, that is,

lim Fy, ,(t) =1, for any ¢ > 0.
n—oo

The proofs of p is a fixed point of T and the uniqueness of a fixed point are same
as that of Theorem 12. O
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