ERRATUM TO "GENERAL ELEPHANTS OF THREE-FOLD DIVISORIAL CONTRACTIONS"

MASAYUKI KAWAKITA

The classification of 3-fold divisorial contractions in [1] is incomplete in the cases (i) and (ii) below. The case (i) was pointed out by Yuki Yamamoto, and the case (ii) has been added in [2, Appendix]. Following [1], let $f: (Y \supset E) \rightarrow (X \ni P)$ be a 3-fold divisorial contraction whose exceptional divisor E contracts to a Gorenstein point P, and set $K_Y = f^*K_X + aE$ and $J = \{(r_O, v_O)\}_{O \in I}$.

- Addendum. (i) Suppose that f is of type IIa in [1] (= type e1 in [2]) with a = 4. Then, besides the one described in [1, Theorem 1.11(ii)], f can be a contraction to a cA_2 or cD point with $r \equiv \pm 3$ modulo 8 for $J = \{(r, 2)\}$.
 - (ii) Suppose that f is of type IIb^{∨∨} in [1] (= type o3 in [2]). Then, besides those described in [1, Theorems 1.9, 1.11(i), 1.13(i)], f can be a contraction to a cD point described in [2, Theorem 1.2(ii)].

Remark. The case (i) must be added to [1, Theorem 1.13] and [2, Theorem 1.3], and the case (ii) to [1, Theorem 1.8, Corollary 1.15].

The general elephant theorem [1, Theorem 1.7] remains true. Indeed, we shall prove [1, Theorem 4.4] in the case (i), and have proved [2, Theorem 4.3(ii)] in the case (ii).

The omission of the case (i) stems from an error in the proof of [1, Theorem 3.5(iii)]. The data $r \equiv \pm 3$ (8) and $(a_1, a_2, a_3) = ((r+1)/2, (r-1)/2, 4)$ are true. However, $x_2^2 x_3^{(r+1)/4}$ for $r \equiv 3$ (8) and $x_1^2 x_3^{(r-1)/4}$ for $r \equiv 5$ (8) are missing in counting monomials $x_1^{s_1} x_2^{s_2} x_3^{s_3}$ with $(a_1 s_1 + a_2 s_2 + a_3 s_3)/r = 2$. Thus we can not conclude r = 5.

Let *f* be a contraction with $J = \{(r,2)\}$ and a = 4. $E^3 = 1/r$, and *Y* has the unique non-Gorenstein point *Q*, which is a quotient singularity of type $\frac{1}{r}(1,-1,8)$. We have $f^*H_X = H + E$ for a general hyperplane section H_X on *X*, $Q \in C := H \cap E \simeq \mathbb{P}^1$, $r \equiv \pm 3$ (8), and $(a_1, a_2, a_3) = ((r+1)/2, (r-1)/2, 4)$.

Let *S* be a general elephant of *Y*. One has $s_C(-4) = 0$ by the map $\mathcal{O}_Y(-4E)^{\otimes r} \otimes \mathcal{O}_Y(4rE) \to \mathcal{O}_C$ with $w_Q^C(8) = 4$. As in the proof of [1, Theorem 4.2(i)], one can show that $H \cap E \cap S$ is set-theoretically equal to *Q*. In particular, $S \sim 4H$ is smooth outside *Q*. By $(H \cdot E \cdot S)_Q = 4/r$, the preimages $H^{\#}$, $E^{\#}$, $S^{\#}$ of *H*, *E*, *S* on the indexone cover $Q^{\#} \in Y^{\#}$ of $Q \in Y$ have multiplicities 2, 2, 1 at $Q^{\#}$. Hence *S* has a Du Val singularity of type A_{r-1} at *Q*, that is [1, Theorem 4.4]. By the table in [1, p.357], $S_X = f(S)$ has a Du Val singularity of type *D*. Such a divisor S_X on $P \in X$ exists only if *P* is a cA_1 , cA_2 or cD point.

REFERENCES

- M. Kawakita, General elephants of three-fold divisorial contractions, J. Am. Math. Soc. 16, No. 2, 331-362 (2003)
- M. Kawakita, Three-fold divisorial contractions to singularities of higher indices, Duke Math. J. 130, No. 1, 57-126 (2005)

MASAYUKI KAWAKITA

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY, KYOTO 606-8502, JAPAN

E-mail address: masayuki@kurims.kyoto-u.ac.jp

2