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Abstract

In this paper, we give a purely combinatorial/group-theoretic construc-
tion of the conjugacy class of subgroups of the Grothendieck-Teichmüller

group GT determined by the absolute Galois group GQ
def
= Gal(Q/Q)

[where Q denotes the field of algebraic numbers] of the field of rational
numbers Q. In fact, this construction also yields, as a by-product, a purely
combinatorial/group-theoretic characterization of the GT-conjugates of
closed subgroups of GQ that are “sufficiently large” in a certain sense.
We then introduce the notions of TKND-fields [i.e., “torally Kummer-
nondegenerate fields”] and AVKF-fields [i.e., “abelian variety Kummer-
faithful fields”], which generalize, respectively, the notions of “torally
Kummer-faithful fields” and “Kummer-faithful fields” [notions that ap-
pear in previous work of Mochizuki]. For instance, if we write Qab ⊆ Q
for the maximal abelian extension field of Q, then every finite extension
of Qab is a TKND-AVKF-field [i.e., both TKND and AVKF]. We then
apply the purely combinatorial/group-theoretic characterization referred
to above to prove that, if a subfield K ⊆ Q is TKND-AVKF, then the
commensurator in GT of the subgroup GK ⊆ GQ determined by K is
contained in GQ. Finally, we combine this computation of the commensu-
rator with a result of Hoshi-Minamide-Mochizuki concerning GT to prove
a semi-absolute version of the Grothendieck Conjecture for higher dimen-
sional [i.e., of dimension ≥ 2] configuration spaces associated to hyperbolic
curves of genus zero over TKND-AVKF-fields.
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Introduction

The present paper builds on the theory of combinatorial Belyi cuspidaliza-
tion developed in [Tsjm], §1. The theory of combinatorial Belyi cuspidalization
may be understood as a certain combinatorial version of the theory of Belyi
cuspidalization developed in [AbsTopII], §3.

In the present paper, we apply the theory of combinatorial Belyi cuspi-
dalization to give a purely combinatorial/group-theoretic definition of a certain
class of closed subgroups “BGT” [cf. Definition 3.3, (v)] of the Grothendieck-
Teichmüller group

GT (⊆ Out(Πtpd
n )),

where, for n ≥ 1, Πtpd
n denotes the étale fundamental group of the n-th con-

figuration space associated to the projective line, minus the three points “0”,
“1”, “∞”, over the field of algebraic numbers Q [cf. [CmbCsp], Definition 1.11,
(i); [CmbCsp], Remark 1.11.1; the first display of [CbGT], Corollary C]. In the

following, we shall also write Πtpd def
= Πtpd

1 . This class of closed subgroups
“BGT” is defined to be the class of closed subgroups of GT that satisfy certain
properties, which may be summarized roughly as follows:

• the COF-property, i.e., “cofiltered property” [cf. Definition 3.3, (ii)]:
for any pair of arithmetic Belyi diagrams [cf. [Tsjm], Definition 1.4], there
exists an arithmetic Belyi diagram that dominates [cf. Definition 3.3, (i)]
both of the given arithmetic Belyi diagrams;

• the RGC-property, i.e.,“Relative Grothendieck Conjecture property”
[cf. Definition 3.3, (iii)]: if there exists a geometric domination between
two arithmetic Belyi diagrams, then it is the unique geometric domination
between the two arithmetic Belyi diagrams.
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At a more conceptual level, these conditions may be understood as a single
condition of compatibility with Zariski localization on the projective line
minus three points.

Our first main result is the following [cf. Theorem 4.4]:

Theorem A (Combinatorial construction of an algebraic closure of the
field of rational numbers). Let BGT ⊆ GT be a closed subgroup that satisfies
the COF- and RGC-properties [cf. Definition 3.3, (ii), (iii), (v)]. Then one
may construct from BGT a set

QBGT

equipped with a natural action by the commensurator CGT(BGT) of BGT in GT
that satisfies the following properties:

(i) The set QBGT is equipped with natural operations

�BGT : QBGT ×QBGT → QBGT,

�BGT : QBGT ×QBGT → QBGT,

as well as natural involutions [i.e., self-bijections which are their own in-
verses]

�−1
BGT : QBGT ∪ {∞} → QBGT ∪ {∞},

(1−�)BGT : QBGT ∪ {∞} → QBGT ∪ {∞},
all of which are equivariant with respect to the natural action of CGT(BGT)
on QBGT ∪ {∞}. These operations and involutions satisfy the following
properties:

�BGT(0, y)
def
= y, �BGT(0, y)

def
= 0, �BGT(1, y)

def
= y,

�−1
BGT(0)

def
= ∞, �−1

BGT(1)
def
= 1, �−1

BGT(∞)
def
= 0,

(1−�)BGT(0)
def
= 1, (1−�)BGT(1)

def
= 0, (1−�)BGT(∞)

def
= ∞.

(ii) If the operations �BGT and �BGT determine, on QBGT, the addition and
multiplication operations of a structure, on QBGT, of field isomorphic to
Q, then we shall say that BGT satisfies the ArBC-property [i.e., “arith-
metic Belyi compatibility property”]. If BGT satisfies the ArBC-property,
then there exists a field isomorphism Q

∼→ QBGT, as well as a natural
homomorphism

CGT(BGT) → GQBGT

def
= Aut(QBGT)

to the group of automorphisms of the field QBGT. [We refer to Theorem
F below for a special case, which is of central interest in the present paper,
of this sort of situation.] In particular, one may construct a natural outer
homomorphism

CGT(BGT) → GQ
def
= Gal(Q/Q)

to the absolute Galois group GQ of Q.
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(iii) Suppose that BGT admits a conducting field K that satisfies the ZISC-
property [cf. Definition 3.3, (vi)]. Then BGT satisfies the ArBC-
property.

At the time of writing, the authors do not know whether or not the outer
homomorphism CGT(BGT) → GQ of Theorem A, (ii), is injective in general.
On the other hand, by imposing further purely combinatorial/group-theoretic
conditions — i.e., the QAA- and AA-properties [cf. Definition 5.12; the brief
description following Theorem C below] — on BGT, one may conclude that the
following hold [cf. Theorems 5.15, (iii); 5.17, (i), (ii)]:

Theorem B (Injectivity of the natural outer homomorphism CGT(BGT)
→ GQ). Let BGT ⊆ GT be a closed subgroup that satisfies the COF- and
RGC-properties [cf. Definition 3.3, (ii), (iii), (v)]. Suppose further that BGT
satisfies the QAA-property [cf. Definition 5.12]. Then the natural outer
homomorphism

CGT(BGT) → GQ

of Theorem A, (ii), is injective.

Theorem C (Combinatorial construction of GQ).

(i) Write Out|C|(Πtpd) ⊆ Out(Πtpd) for the closed subgroup of outer auto-
morphisms that induce the identity automorphism on the set of conjugacy
classes of cuspidal inertia subgroups of Πtpd. Then the conjugacy class
of subgroups of Out|C|(Πtpd) determined by the absolute Galois group

of Q may be constructed from the abstract topological group Πtpd
2 [cf.

Corollary 4.5, Remark 4.5.1], in a purely combinatorial/group-theoretic
way, as the set of maximal elements [relative to the relation of inclusion]

in the set of closed subgroups of Out|C|(Πtpd) that arise as Out|C|(Πtpd)-
conjugates of closed subgroups of GT that satisfy the QAA-property [cf.
Definition 3.3, (v); Theorem 4.4, (ii); Definition 5.12].

(ii) The conjugacy class of subgroups of GT determined by the absolute
Galois group of Q may be constructed from the abstract topological group
Πtpd

2 [cf. Corollary 4.5, Remark 4.5.1], in a purely combinatorial/group-
theoretic way, as the set of maximal elements [relative to the relation
of inclusion] in the set of closed subgroups of GT that arise as closed
subgroups of GT that satisfy the AA-property [cf. Definition 3.3, (v);
Theorem 4.4, (ii); Definition 5.12].

The class of closed subgroups “BGT” satisfying the QAA-property [i.e.,
“quasi-algebraically ample property”] (respectively, theAA-property [i.e., “al-
gebraically ample property”]) is defined to be the class of closed subgroups of GT
that satisfy the COF- and RGC-properties, together with the ArBC-property [cf.
Theorem A, (ii)], as well as certain further properties (i), (ii), (iii) (respectively,
(i), (ii), (iii), (iv)), which may be summarized roughly as follows:

(i) The Kummer theory associated to BGT is sufficiently nondegenerate.
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(ii) The Kummer theory associated to the various arithmetic Belyi diagrams
arising from BGT is sufficiently nondegenerate.

(iii) There exists a family of QBGT-valued set-theoretic functions on a certain
set of cuspidal inertia subgroups associated to the various arithmetic Be-
lyi diagrams arising from BGT that satisfies properties satisfied by the
function fields arising from these arithmetic Belyi diagrams.

(iv) The family of set-theoretic functions in (iii) determines a Galois group

that satisfies a certain compatibility property involving Πtpd
2 .

Of course, it is by no means the case that the approach of Theorem C to
constructing the conjugacy class of subgroups of GT determined by GQ is, in any
sense, unique. On the other hand, the approach of Theorem C is an attractive
application of the technique of combinatorial Belyi cuspidalization developed in
[Tsjm], §1. Moreover, the approach of Theorem C has interesting applications,
i.e., Theorems F and G, given below.

The approach of Theorem C to constructing the conjugacy class of subgroups
of GT determined by GQ may be thought of as a sort of

conditional [cf. the condition of maximality within a certain collec-
tion of closed subgroups] surjectivity counterpart of the well-known
injectivity result of Belyi, i.e., to the effect that the natural outer
homomorphism GQ → GT is injective, or, alternatively, as one [of
many possible] natural answer(s) to the problem posed by Belyi
in the discussion following the Corollary to [Belyi], Theorem 4, of
giving a group-theoretic description of the image of this outer injec-
tion GQ ↪→ GT.

The idea that there should exist such a [conditional] surjectivity counterpart of
Belyi injectivity that could be proven by applying Belyi maps in some suitable
fashion [i.e., just as in the case of Belyi injectivity!] was motivated in part by
the proofs given in [CmbCsp], §2, §3, of the injectivity/bijectivity of the natural
homomorphism

OutFC(Πn) → OutFC(Πn−1)

of [CmbCsp], Theorem A, (i). That is to say, these proofs given in [CmbCsp],
§2, §3, are remarkable in the sense that

the conditional surjectivity proven in [CmbCsp], §3, is proven by
applying an argument that is entirely similar to the argument ap-
plied in the proof of the corresponding injectivity result in [CmbCsp],
§2.

In this context, it is of interest to note that this fascinating general phenomenon
— i.e., of obtaining [conditional] surjectivity results by means of essentially sim-
ilar arguments to the arguments used to verify corresponding injectivity results
— may also be observed in numerous well-known aspects of algebraic topol-
ogy, such as the theory of long exact sequences of (co)homology groups and the
homotopy theory of CW-complexes.
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The proofs of Theorems B and C depend on the following elementary field-
theoretic results proven in §1 [cf. Theorem 1.2, Corollary 1.3]:

Theorem D (Non-algebricity of field automorphisms of algebraically
closed fields). Let K be an algebraically closed field. Write Aut(K) for the
group of field automorphisms of K. Let α ∈ Aut(K). Write

αΓ : K ↪→ K ×K = A2(K)

for the graph of α, i.e., the map K � x 	→ (x, xα) ∈ K × K. If K is of
characteristic 0 (respectively, p > 0), then we shall write Fr ∈ Aut(K) for the
identity automorphism (respectively, the Frobenius automorphism [i.e., given by
raising to the p-th power]) of K; FrZ ⊆ Aut(K) for the subgroup generated by
Fr. Then the image Im(αΓ) ⊆ A2(K) of αΓ is Zariski-dense if and only if
α /∈ FrZ.

Corollary E (A criterion for the algebricity of certain set-theoretic

automorphisms). In the notation of Theorem D, write X
def
= P1

K [i.e., the
projective line over K]. Let Y → X be a finite [possibly] ramified Galois cov-
ering of smooth, proper, connected curves over K. Write X(K) (respectively,
Y (K)) for the set of K-valued points of X (respectively, Y ); AutX(K)(Y (K))

for the group of bijections Y (K)
∼→ Y (K) which preserve the fibers of the

natural map Y (K) → X(K); K(Y ) for the rational function field of Y . For
τ ∈ AutX(K)(Y (K)), f ∈ Fn(Y (K),K ∪ {∞}) [where “Fn(−,−)” denotes the
set of maps from the first argument to the second argument], write

fτ def
= f ◦ τ ∈ Fn(Y (K),K ∪ {∞}).

We shall regard K(Y ) as a subset of Fn(Y (K),K ∪{∞}) by evaluating rational
functions at closed points of Y and Gal(Y/X) as a subgroup of AutX(K)(Y (K))
by means of the natural action of Gal(Y/X) on Y (K). Let k ⊆ K be a subfield
such that the covering Y → X descends to a Galois covering Yk → Xk defined
over k, and

(Aut(K) ⊇) Aut(K/k) �⊆ FrZ (⊆ Aut(K)),

where we write Aut(K/k) ⊆ Aut(K) for the subgroup of automorphisms that
restrict to the identity automorphism of k. Let σ ∈ AutX(K)(Y (K)) that satisfies
the following property: for each f ∈ K(Y )×, there exist

φf ∈ Fn(Y (K), k×) (⊆ Fn(Y (K),K ∪ {∞})), gf ∈ K(Y )×

such that fσ = φf · gf . Then σ ∈ Gal(Y/X).

Next, let K ⊆ Q be a subfield. Write GK
def
= Gal(Q/K). If K is stably ×μ-

indivisible [cf. [Tsjm], Definition 3.3, (v)], then we recall from [Tsjm], Corollary
E, that one may construct a natural homomorphism

CGT(GK) → GQ
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whose restriction to CGQ
(GK) ⊆ CGT(GK) is the natural inclusion.

In the present paper, we shall say that the subfield K ⊆ Q is an AVKF-field
[i.e., “abelian variety Kummer-faithful field”] if the following property holds [cf.
Definition 6.1, (iii)]:

Let A be an abelian variety over a finite extension L of K. Write
A(L)∞ for the group of divisible elements ∈ A(L). Then A(L)∞ =
{1}.

Here, we recall in passing that any finite extension of the maximal abelian ex-
tension field Qab ⊆ Q of Q is a stably ×μ-indivisible AVKF-field [cf. Proposition
6.3, (i)]. On the other hand, it is not clear to the authors at the time of writing

• whether or not there exist AVKF-fields that are not stably ×μ-indivisible;

• whether or not there exist stably ×μ-indivisible fields that are not AVKF.

If K is an AVKF-field, then GK satisfies the COF-, RGC-, and ArBC-
properties [cf. Corollary 6.5], hence may be taken to be the subgroup “BGT” of
Theorem A. In particular, by applying Theorem A, (ii), (iii) [cf. also Proposition
6.4], one may also construct a natural homomorphism

CGT(GK) → GQ

whose restriction to CGQ
(GK) ⊆ CGT(GK) is the natural inclusion [cf. Corollary

6.5, (iii)].
At the time of writing, the authors do not know whether or not these natural

homomorphisms [i.e., of Corollary 6.5, (iii), and [Tsjm], Corollary E] are injec-
tive in general. On the other hand, by imposing a further condition on K, one
may conclude that the natural homomorphism CGT(GK) → GQ arising from
Corollary 6.5, (iii), is injective [cf. Theorem F below]. We shall say that the
subfield K ⊆ Q is a TKND-field [i.e., “torally Kummer-nondegenerate field”] if
the following property holds [cf. Definition 6.6, (ii)]:

Write
Kdiv

def
=

⋃
L/K

L×∞ ⊆ Q,

where L ⊆ Q ranges over the finite extensions of K, and we write

L× def
= L \ {0}, L×∞ def

=
⋂
m≥1

(L×)m, L×∞
def
= Q(L×∞) ⊆ L.

Then Q is an infinite field extension of Kdiv.

We shall say that the subfieldK ⊆ Q is a TKND-AVKF-field ifK is both TKND
and AVKF. Our main result concerning TKND-AVKF-fields is the following [cf.
Theorem 6.8]:
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Theorem F (Injectivity of the natural homomorphism CGT(GK) → GQ).
Suppose that K ⊆ Q is a TKND-AVKF-field. Then its absolute Galois group
GK satisfies the AA-, hence also the COF-, RGC-, ArBC-, and QAA-properties.
In particular, [cf. Theorem B] the natural homomorphism CGT(GK) → GQ of
Theorem A, (ii), is injective and restricts to the natural inclusion CGQ

(GK) ↪→
GQ on CGQ

(GK) ⊆ CGT(GK).

Theorem F is proved by applying the theory developed in §3, §4, §5 of the
present paper, i.e., the theory that underlies the proof of Theorem C [cf. the
discussion surrounding Theorem C].

Finally, by combining Theorem F with certain combinatorial anabelian re-
sults proven in §2 of the present paper and applying the theory of [CbGT] [cf.
[CbGT], Theorem A; [CbGT], Corollary B; the first display of [CbGT], Corol-
lary C], we obtain a semi-absolute version of the Grothendieck Conjecture for
higher dimensional [i.e., of dimension ≥ 2] configuration spaces [cf. [MT], Defi-
nition 2.1, (i)] associated to hyperbolic curves of genus 0 over K [cf. Theorem
6.10]:

Theorem G (Semi-absolute Grothendieck Conjecture-type result over
TKND-AVKF-fields). Let (m,n) be a pair of positive integers; K,L ⊆ Q
TKND-AVKF-fields; XK (respectively, YL) a hyperbolic curve over K (respec-
tively, L). Write (gX , rX) (respectively, (gY , rY )) for the type [i.e., genus and
degree of the divisor of marked points] of XK (respectively, YL); (XK)m (respec-
tively, (YL)n) for the m-th (respectively, n-th) configuration space associated to

XK (respectively, YL); GK
def
= Gal(Q/K) (respectively, GL

def
= Gal(Q/L));

Out(Π(XK)m/GK ,Π(YL)n/GL)

for the set of outer isomorphisms Π(XK)m
∼→ Π(YL)n that induce outer isomor-

phisms between GK and GL. Then the following hold:

(i) Suppose that

• m ≥ 4 or n ≥ 4 if rX = 0 or rY = 0;

• m ≥ 3 or n ≥ 3 if rX �= 0 or rY �= 0.

Then the outer isomorphism

GK
∼→ GL

induced by any outer isomorphism ∈ Out(Π(XK)m/GK ,Π(YL)n/GL) arises

from a field isomorphism K
∼→ L.

(ii) Suppose that

• m ≥ 2 or n ≥ 2;

• gX = 0 or gY = 0.
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Then the natural map

Isom((XK)m, (YL)n) −→ Out(Π(XK)m/GK ,Π(YL)n/GL)

is bijective.

In this context, we observe that any finite extension K of Qab is a TKND-
AVKF-field [cf. Proposition 6.3, (i); Remark 6.6.3]. Other interesting examples
of TKND-AVKF-fields are given in Proposition 6.3, (ii) [cf. also Remarks 6.3.3,
6.3.4, 6.3.5, 6.6.3, 6.6.4]. In particular, we observe [cf. Remark 6.3.5] that

Theorem G constitutes an interesting example of [semi-absolute]
anabelian geometry over fields that cannot be treated by means of
well-known techniques of anabelian geometry that require the use of
p-adic Hodge theory or Frobenius elements of absolute Galois
groups of finite fields [cf. [Tama], Theorem 0.4; [LocAn], Theorem
A; [AnabTop], Theorem 4.12].

Next, suppose that K is a sub-p-adic subfield [cf. [LocAn], Definition 15.4,
(i)] of Q, i.e., [as is easily verified] a subfield of Q that is isomorphic to a subfield
of a finite extension of the field of p-adic numbers Qp, for some prime number p.
Then K is a Kummer-faithful field [cf. [AbsTopIII], Definition 1.5; [AbsTopIII],
Remark 1.5.4, (i)], hence, in particular, a TKND-AVKF-field. Thus, Theorem
G may be regarded as a sort of partial generalization of [AbsTopIII], Theorem
1.9. On the other hand, let us recall that the proof of [AbsTopIII], Theorem
1.9, depends, in an essential way, on [LocAn], Theorem A, hence, in particular,
on Faltings’ p-adic Hodge theory. By contrast, we observe [cf. Remark 3.3.2]
that

the proof of Theorem G [say, in the case where K and L are as-
sumed to be sub-p-adic subfields of Q] is based solely on results and
techniques from combinatorial anabelian geometry and hence
is, in particular, entirely independent of results concerning the
Grothendieck Conjecture for hyperbolic curves over sub-p-
adic fields [i.e., [LocAn], Theorem A; [Tama], Theorem 0.4].

Moreover, unlike, for instance, [LocAn], Theorem A; [Tama], Theorem 0.4;
[AbsCsp], Theorem 3.2,

the proof of Theorem G [say, in the case where K and L are assumed
to be sub-p-adic local subfields of Q] does not involve the use of any
arguments involving theories of “weights”, i.e., theories such as
Faltings’ p-adic Hodge theory or the Weil Conjectures.

Here, we recall that a somewhat weaker version of Theorem G in the case
where m = n = 1 and K and L are assumed to be stably p-×μ/×μ-indivisible
fields of characteristic 0 [cf. [Tsjm], Definition 3.3, (v)], i.e., but not necessarily
to be TKND-AVKF, is given in [Tsjm], Theorem F. Also, we recall that a version
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of Theorem G in the case where m = n = 1 and K and L are assumed to be
generalized sub-p-adic may be found in [Hsh2], Corollary 5.6, (ii), (iii).

This paper is organized as follows. In §1, we prove Theorem D and Corollary
E, which will be of use in §5. In §2, we give some preliminaries on combinato-
rial anabelian geometry which will be of use in later sections. In §3, we give a
purely combinatorial/group-theoretic definition of a certain class of closed sub-
groups BGT of GT [cf. the discussion preceding Theorem A] and discuss the
basic properties of this class of closed subgroups of GT. In §4, for each such
closed subgroup BGT ⊆ GT, we give a purely combinatorial/group-theoretic
construction of a set QBGT that is equipped with “field-like” operations, as well
as a natural action by CGT(BGT). In particular, when these “field-like” opera-
tions determine a structure of field isomorphic to Q, we obtain a natural outer
homomorphism CGT(BGT) → GQ [cf. Theorem A, (ii)]. In §5, by imposing
on BGT certain further combinatorial/group-theoretic conditions, we obtain a
certain class of closed subgroups BGT [cf. the discussion following Theorem
C] — whose definition is purely combinatorial/group-theoretic — for which the
natural outer homomorphism CGT(BGT) → GQ is injective [cf. Theorem B].
Moreover, we obtain Theorem C as a consequence of this injectivity. Finally, in
§6, we study various types of fields and apply the theory of §1, §2, §3, §4, §5, to
prove Theorems F and G.

Acknowledgements

The first author was supported by JSPS KAKENHI Grant Number 18K03239.
The third author was supported by JSPS KAKENHI Grant Number 18J10260.
This research was supported by the Research Institute for Mathematical Sci-
ences, an International Joint Usage/Research Center located in Kyoto Univer-
sity, as well as the Center for Research in Next Generation Geometry.

Notations and Conventions

Sets: Let A,B be sets. Then we shall write Fn(A,B) for the set of maps from
A to B. If Fn(A,B) � f : A → B is held fixed in a discussion, then we shall
write AutB(A) for the group of bijections A

∼→ A which preserve the fibers of f
over B.

Numbers: The notation Primes will be used to denote the set of prime num-
bers. The notation N will be used to denote the set or, by a slight abuse of
notation, additive monoid of non-negative integers.

Fields: The notation Q will be used to denote the field of rational numbers.
The notation Z will be used to denote the ring of integers of Q; by a slight abuse
of notation, the notation Z will also be used to denote the underlying additive
group of this ring. The notation C will be used to denote the field of complex
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numbers. The notation Q ⊆ C will be used to denote the set or field of algebraic
numbers ∈ C. We shall refer to a finite extension field of Q as a number field.
If q is a power of a prime number, then we shall write Fq for the finite field
consisting of q elements.

Let F be a field, p a prime number, n a positive integer. Then we shall write
Aut(F ) for the group of field automorphisms of F ;

F× def
= F \ {0}; F� def

= F \ {0, 1}; μn(F )
def
= {x ∈ F× | xn = 1};

μ(F )
def
=

⋃
m≥1

μm(F ); F×∞ def
=

⋂
m≥1

(F×)m;

μp∞(F )
def
=

⋃
m≥1

μpm(F ); F×p∞ def
=

⋂
m≥1

(F×)p
m

,

where m ranges over the positive integers. If K is an extension field of F , then
we shall write Aut(K/F ) ⊆ Aut(K) for the subgroup of automorphisms that
restrict to the identity automorphism of F .

Topological groups: Let G be a topological group and H ⊆ G a closed
subgroup of G. Then we shall denote by ZG(H) (respectively, NG(H); CG(H))
the centralizer (respectively, normalizer; commensurator) of H ⊆ G, i.e.,

ZG(H)
def
= {g ∈ G | ghg−1 = h for any h ∈ H}

(respectively, NG(H)
def
= {g ∈ G | g ·H · g−1 = H};

CG(H)
def
= {g ∈ G | H ∩ g ·H · g−1 is of finite index in H and g ·H · g−1}),

and write
Z loc(G)

def
= lim−→

U

ZG(U),

where U ranges over the open subgroups of G, for the local centralizer of G. We
shall say that the closed subgroup H is normally terminal in G if H = NG(H).
We shall say that the closed subgroup H is commensurably terminal in G if
H = CG(H). We shall say that G is slim if ZG(U) = {1} for any open subgroup
U of G.

Let G be a topological group. Then we shall write Gab for the quotient
of G by the closure of the commutator subgroup [G,G] ⊆ G; Aut(G) for the
group of [continuous] automorphisms of G; Inn(G) ⊆ Aut(G) for the group of

inner automorphisms of G; Out(G)
def
= Aut(G)/Inn(G). Now suppose that G is

center-free [i.e., ZG(G) = {1}]. Then we have an exact sequence of groups

1 −→ G (
∼→ Inn(G)) −→ Aut(G) −→ Out(G) −→ 1.

If J is a group, and ρ : J → Out(G) is a homomorphism, then we shall denote
by

G
out
� J
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the group obtained by pulling back the above exact sequence of groups via ρ.
Thus, we have a natural exact sequence of groups

1 −→ G −→ G
out
� J −→ J −→ 1

Suppose further that G is profinite and topologically finitely generated. Then
one verifies immediately that the topology of G admits a basis of characteristic
open subgroups, which thus induces a profinite topology on the groups Aut(G)
and Out(G) with respect to which the above exact sequence relating Aut(G)
and Out(G) determines an exact sequence of profinite groups. In particular, one
verifies easily that if, moreover, J is profinite, and ρ : J → Out(G) is continuous,

then the above exact sequence relating G
out
� J to G and J determines an exact

sequence of profinite groups.

Fundamental groups: For a connected Noetherian scheme S, we shall write
ΠS for the étale fundamental group of S, relative to a suitable choice of base-
point.

Schemes: For a morphism of scheme S → T , we shall write AutT (S) for the
group of automorphisms of the T -scheme S. If T = Spec Z, then we shall write
Aut(S) for AutT (S).

Log schemes: We shall, by a slight abuse of notation, regard schemes as log
schemes equipped with the trivial log structure. If Slog is a log scheme, then we
shall write S for the underlying scheme of Slog and US ⊆ S for the interior of
Slog, i.e., the largest open subscheme of S over which the log structure of Slog

is trivial.

Curves: We shall use the terms “hyperbolic curve”, “cusp”, “stable log curve”,
“smooth log curve”, and “tripod” as they are defined in [CmbGC], §0; [CmbCsp],
§0. We shall use the terms “n-th configuration space” and “n-th log configuration
space” as they are defined in [MT], Definition 2.1, (i).

1 The non-algebricity of field automorphisms

In this section, we discuss an interesting elementary property of field au-
tomorphisms of algebraically closed fields, namely, that, with the exception of
integral powers of the Frobenius automorphism, such field automorphisms can-
not be expressed algebraically [cf. Theorem 1.2]. We then apply this property to
give a criterion for the algebricity of certain set-theoretic automorphisms of sets
of rational points of curves valued in algebraically closed fields [cf. Corollary
1.3]. This criterion will play an important role in the theory to be developed in
the present paper.

12



Lemma 1.1 (The inversion map on the multiplicative group of a field).
Let k be a field. Write

σ : k× ∪ {0} ∼→ k× ∪ {0}
for the bijection such that

• σ(x) = x−1 for each x ∈ k×,

• σ(0) = 0.

Then the following hold:

(i) The bijection σ is a field automorphism if and only if k
∼→ F2, F3, or F4.

(ii) If k
∼→ F2 or F3 (respectively, k

∼→ F4), then σ is the identity (respectively,
the unique non-trivial) automorphism of k.

Proof. First, we verify assertion (i). Sufficiency is immediate. Next, to verify
necessity, we observe that if σ is a field automorphism, then, for x ∈ k \{0,−1},

1 + 1
x = σ(1) + σ(x) = σ(1 + x) = 1

1+x (⇐⇒ x2 + x+ 1 = 0).

Since the equation x2+x+1 = 0 has at most 2 solutions in k, we thus conclude
that the cardinality of k is ≤ 4. Assertion (ii) follows immediately from the
definitions. This completes the proof of Lemma 1.1.

Theorem 1.2 (Non-algebricity of field automorphisms of algebraically
closed fields). Let K be an algebraically closed field; α ∈ Aut(K). Write

αΓ : K ↪→ K ×K = A2(K)

for the graph of α, i.e., the map K � x 	→ (x, xα) ∈ K × K. If K is of
characteristic 0 (respectively, p > 0), then we shall write Fr ∈ Aut(K) for the
identity automorphism (respectively, the Frobenius automorphism [i.e., given by
raising to the p-th power]) of K; FrZ ⊆ Aut(K) for the subgroup generated by Fr.
Then the image Im(αΓ) ⊆ A2(K) of αΓ is Zariski-dense if and only if α /∈ FrZ.

Proof. Necessity is immediate. Thus, it remains to verify sufficiency. If αΓ is
not Zariski-dense, then there exists a nonzero polynomial

0 �= f = f(X,Y ) =
∑

ai,jX
iY j ∈ K[X,Y ]

such that
Im(αΓ) ⊆ V (f) ⊆ A2(K),

where V (f) denotes the zero set of f . In particular, for x ∈ K, we have∑
ai,jx

i(xj)α = 0.

13



For x ∈ K×, write ρi,j(x)
def
= xi(xj)α ∈ K×. Then ρi,j : K× → K× is a

character. Thus, it follows immediately from Artin’s well-known result on the
linear independence of characters that there exist pairs of integers (i1, j1) �=
(i2, j2) ∈ N × N such that ρi1,j1 = ρi2,j2 . In particular, there exists a pair of
integers

(i, j) ∈ Z× Z \ {(0, 0)}
such that

xi = (xj)α

for every x ∈ K×. Since K is algebraically closed, it follows that i �= 0, j �= 0.
Moreover, since K× is divisible, we may assume without loss of generality that
i and j are co-prime.

Now suppose that the characteristic of K is p > 0. Write φi : K× →
K× (respectively, φj : K× → K×) for the surjection determined by x 	→ xi

(respectively, x 	→ xj). Since xi = (xj)α for x ∈ K×, it follows that Ker(φi) =
Ker(φj). Since i and j are co-prime, we thus conclude that i, j ∈ {±pZ}.
Moreover, we may assume without loss of generality that j = 1. Thus, by
applying Lemma 1.1, (i), we conclude that α ∈ FrZ.

Next, we consider the case where the characteristic of K is 0. In this case,
we have, for example, 2i = 2j . This implies that i = j. Thus, since i and j
are co-prime, we conclude that α ∈ FrZ. This completes the proof of Theorem
1.2.

Remark 1.2.1.

(i) Theorem 1.2 was in some sensemotivated by the following complex analytic
analogue of Theorem 1.2, i.e., the non-holomorphicity of the automorphism
of C given by complex conjugation. Let n be a positive integer; U ⊆
C a nonempty relatively compact open subset; {fj(z)}1≤j≤n a family of
holomorphic functions on U . Write μ for the Lebesgue measure on C;
z ∈ C for the complex conjugate of z ∈ C. Then

∃z ∈ U such that z /∈ {fj(z)}1≤j≤n.

Indeed, suppose that z ∈ {fj(z)}1≤j≤n for every z ∈ U . By enlarging
the family of holomorphic functions {fj(z)}1≤j≤n if necessary, we may
assume without loss of generality that it is stabilized by multiplication by
−1. Write

gj(z)
def
= fj(z) + z, Ej

def
= {z ∈ U | ± z = fj(z)}.

Then it follows immediately from the definitions that Ej ⊆ U is a closed
[hence, in particular, Lebesgue measurable] subset, and U =

⋃
1≤j≤n Ej .

Thus, we conclude that

0 < μ(U) ≤
∑

1≤j≤n

μ(Ej) < ∞.

14



In particular, there exists an element j ∈ {1, . . . , n} such that μ(Ej) >
0. Fix such an element j. Since the family of holomorphic functions
{fj(z)}1≤j≤n is stabilized by multiplication by −1, by possibly replacing
j by j′ ∈ {1, . . . , n} such that fj(z) = −fj′(z) for z ∈ U [which implies
that Ej = Ej′ ], we may assume without loss of generality that gj(z) is
a non-constant holomorphic function. But then gj(Ej) ⊆ R ∪ √−1 · R,
which implies that

0 < μ(gj(Ej)) ≤ μ(R ∪√−1 · R) = 0

— a contradiction!

(ii) Finally, we observe that Theorem 1.2 in the case where K = C, and α is
the automorphism given by complex conjugation follows immediately from
the fact verified in Remark 1.2.1, (i). Indeed, if αΓ is not Zariski-dense,
then there exists a nonzero polynomial

0 �= f = f(X,Y ) =
∑

ai,jX
iY j ∈ C[X,Y ]

such that
Im(αΓ) ⊆ V (f) ⊆ A2(C),

where V (f) denotes the zero set of f . Since the map V (f) → C induced
by the first projection C × C → C is a nonconstant algebraic map [i.e.,
corresponds to a dominant morphism between one-dimensional schemes
of finite type over C], there exists a nonempty relatively compact open
subset U ⊆ C such that the induced map

V (f)|U def
= V (f) ∩ (U × C) → U

determines a split finite étale morphism of complex analytic spaces. The
finite collection of sections of this induced map thus determines a family
of holomorphic functions as in Remark 1.2.1, (i). This yields the desired
contradiction.

Corollary 1.3 (A criterion for the algebricity of certain set-theoretic

automorphisms). In the notation of Theorem 1.2, write X
def
= P1

K [i.e., the
projective line over K]. Let Y → X be a finite [possibly] ramified Galois cov-
ering of smooth, proper, connected curves over K. Write X(K) (respectively,
Y (K)) for the set of K-valued points of X (respectively, Y ); AutX(K)(Y (K))

for the group of bijections Y (K)
∼→ Y (K) which preserve the fibers of the

natural map Y (K) → X(K); K(Y ) for the rational function field of Y . For
τ ∈ AutX(K)(Y (K)), f ∈ Fn(Y (K),K ∪ {∞}), write

fτ def
= f ◦ τ ∈ Fn(Y (K),K ∪ {∞}).
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We shall regard K(Y ) as a subset of Fn(Y (K),K ∪{∞}) by evaluating rational
functions at closed points of Y and Gal(Y/X) as a subgroup of AutX(K)(Y (K))
by means of the natural action of Gal(Y/X) on Y (K). Let k ⊆ K be a subfield
such that the covering Y → X descends to a Galois covering Yk → Xk defined
over k, and

(Aut(K) ⊇) Aut(K/k) �⊆ FrZ (⊆ Aut(K)).

Let σ ∈ AutX(K)(Y (K)) that satisfies the following property: for each f ∈
K(Y )×, there exist

φf ∈ Fn(Y (K), k×) (⊆ Fn(Y (K),K ∪ {∞})), gf ∈ K(Y )×

such that fσ = φf · gf . Then σ ∈ Gal(Y/X).

Proof. Write n for the degree of the covering Y → X; σ1, . . . , σn for the n
distinct elements of Gal(Y/X). Let α ∈ Aut(K/k) \ FrZ. Write

αΓ,X : X(K) → X(K)×X(K),

αΓ,Y : Y (K) → Y (K)× Y (K)

for the respective graphs of α, i.e., the maps X(K) � x 	→ (x, xα) ∈ X(K) ×
X(K) and Y (K) � y 	→ (y, yα) ∈ Y (K) × Y (K). Then it follows immediately
from Theorem 1.2 that the subset Im(αΓ,X) ⊆ X(K) ×X(K) is Zariski-dense
in X(K)×X(K). Next, we observe that

• the covering Y → X, hence also the morphism Y × Y → X ×X [i.e., the
product over K of two copies of the covering Y → X] is finite;

• the map Im(αΓ,Y ) → Im(αΓ,X) induced by the finite morphism Y × Y →
X ×X is surjective.

Thus, since the Zariski closure of Im(αΓ,Y ) is an algebraic set in Y (K)×Y (K), it
follows immediately from the above observations that Im(αΓ,Y ) is Zariski-dense
in Y (K)× Y (K).

Next, we observe that the existence of the Galois covering Yk → Xk [i.e.,
whose base-change over k to K is the covering Y → X] implies that the natural
action of Aut(K/k) on K induces a natural action of Aut(K/k) on Y (K) that
commutes with the natural action of Gal(Y/X) on Y (K). If, moreover, β ∈
Aut(K/k), h ∈ Fn(Y (K),K ∪ {∞}), then we shall write

hβ def
= β−1 ◦ h ◦ β ∈ Fn(Y (K),K ∪ {∞}).

For each pair of integers (i, j) such that 1 ≤ i, j ≤ n, write

Yi,j
def
= {(y1, y2) ∈ Y (K)× Y (K) | yσσi

1 = y1, yσα
−1σi

2 = y
α−1σj

2 }.
Since σ ∈ AutX(K)(Y (K)), it follows immediately that

Y (K)× Y (K) =
⋃

1≤i,j≤n

Yi,j .
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Write
Zi,j

for the Zariski closure of Im(αΓ,Y ) ∩ Yi,j in Y (K) × Y (K). Since the subset
Im(αΓ,Y ) ⊆ Y (K)× Y (K) is Zariski-dense, there exists a pair of integers (i, j)
such that

Y (K)× Y (K) = Zi,j .

Fix such a pair of integers (i, j).
Next, we observe that, for each f ∈ K(Y )×, we have equalities

(φσi

f , (φα−1

f )σi) = (fσσi · (g−1
f )σi , {(fσ)α

−1}σi · {(g−1
f )α

−1}σi)

= (f · (g−1
f )σi , (fα−1

)σj · {(g−1
f )α

−1}σi)

[of ordered pairs of elements of Fn(Y (K),K ∪ {∞})] on some subset Y ∗
i,j ⊆ Yi,j

[i.e., so that all of the values of functions that appear are finite] such that
Yi,j \ Y ∗

i,j is contained in an algebraic set ⊆ Y (K) × Y (K) of dimension 1
— which implies that the Zariski closure Z∗

i,j of Im(αΓ,Y ) ∩ Y ∗
i,j is equal to

Y (K)× Y (K). Now consider the morphism

ψ
def
= (h†

f , h
‡
f ) : Y ×K Y → P1

K ×K P1
K .

determined by the rational functions h†
f

def
= f · (g−1

f )σi and h‡
f

def
= (fα−1

)σj ·
{(g−1

f )α
−1}σi . Write Δ for the diagonal divisor of P1

K ×K P1
K . Then it follows

immediately from the above observation [i.e., the observation discussed at the
beginning of the present paragraph], together with the fact that the natural
actions of α and σi on Y (K) commute, that

ψ(Im(αΓ,Y ) ∩ Y ∗
i,j) ⊆ Δ(k) ⊆ Δ(K) (⊆ P1

K(K)× P1
K(K)).

Since Y (K)× Y (K) = Z∗
i,j , we conclude that Im(ψ) ⊆ Δ(K), hence, in partic-

ular, that the morphism ψ is not dominant. On the other hand, if both h†
f and

h‡
f are nonconstant rational functions, then the morphism ψ is easily verified to

be dominant. Thus, we conclude that either h†
f or h‡

f is constant, and hence,

since Im(ψ) ⊆ Δ(K), that both h†
f and h‡

f are constant. Write cf ∈ K for the

unique constant value of h†
f . Thus,

fσ = φf · gf = c−1
f · φf · fσ−1

i ,

for every f ∈ K(Y )×. In particular, if we write τ
def
= σσi, φ

†
f

def
= φσi

f , then

fτ = c−1
f · φ†

f · f,

for every f ∈ K(Y )×. For each y ∈ Y (K), let fy ∈ K(Y )× be a rational function
on Y such that fy has a pole at y and no pole on Y (K) \ {y}. [The existence of
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such rational functions follows immediately from the Riemann-Roch theorem.]

Thus, since fτ
y = c−1

fy
· φ†

fy
· fy, we conclude that yτ = y for each y ∈ Y (K),

hence that τ is the identity automorphism, i.e., σ = σ−1
i ∈ Gal(Y/X). This

completes the proof of Corollary 1.3.

Remark 1.3.1.

(i) Corollary 1.3 was in some sense motivated by the following complex ana-

lytic analogue of Corollary 1.3. Write S1
def
= {z ∈ C | |z| = 1} ⊆ C×. In the

notation of Corollary 1.3 in the case whereK ⊆ C, let ζ ∈ AutX(K)(Y (K))
that satisfies the following property: for each f ∈ K(Y )×, there exist

ωf ∈ Fn(Y (K), S1), qf ∈ K(Y )×

such that fζ = ωf · qf . Then
ζ ∈ Gal(Y/X).

Indeed, write μ for the Lebesgue measure on C; μY for the measure on
Y (C) induced by a [nowhere-vanishing] volume form on the Riemann sur-
face associated to Y ×K C; n for the degree of the covering Y → X;
ζ1, . . . , ζn for the n distinct elements of Gal(Y/X). For each j = 1, . . . , n,
write

Ej
def
= {y ∈ Y (K) | yζζj = y} ⊆ Y (C);

Fj ⊆ Y (C)

for the closure of Ej ⊆ Y (C) in the complex topology [i.e., the topology
induced by the topology of the topological field C]. Thus, Fj ⊆ Y (C)
is measurable [i.e., with respect to the measure μY ]. Note that, since
ζ ∈ AutX(K)(Y (K)), ⋃

1≤j≤n

Ej = Y (K).

Since the subset Y (K) ⊆ Y (C) is easily verified to be dense in the complex
topology, it follows immediately that⋃

1≤j≤n

Fj = Y (C).

Thus, we conclude that

0 < μY (Y (C)) ≤
∑

1≤j≤n

μY (Fj) < ∞.

In particular, there exists an element j ∈ {1, . . . , n} such that μY (Fj) > 0.
Fix such an element j. Next, for each f ∈ K(Y )×, it follows immediately
that

ω
ζj
f = fζζj · (qζjf )−1 = f · (qζjf )−1
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on some subset E∗
j ⊆ Ej [i.e., so that all of the values of functions that

appear are finite] such that Ej \ E∗
j is a finite set — which implies that

μY (F
∗
j ) > 0, where F ∗

j denotes the closure of E∗
j ⊆ Y (C) in the complex

topology. Thus, we conclude that, for y ∈ F ∗
j (⊆ Y (C)),

|(f · (qζjf )−1)(y)| = 1 (⇐⇒ (f · (qζjf )−1)(y) ∈ S1).

In particular, since μ(S1) = 0 and μY (F
∗
j ) > 0, the meromorphicity of

[the function Y (C) → C ∪ {∞} determined by] f · (qζjf )−1 implies that

f · (qζjf )−1 is in fact a constant function. Thus, we conclude as in the final
portion of the proof of Corollary 1.3 that ζ ∈ Gal(Y/X).

(ii) Finally, we observe that Corollary 1.3 in the case where

• K = Q, k = Qab def
= Q(μ(Q)) (⊆ Q ⊆ C);

• for each f ∈ K(Y )×,

φf ∈ Fn(Y (Q), μ(Qab)) (⊆ Fn(Y (Q), (Qab)×)),

follows immediately [since μ(Qab) ⊆ S1] from the fact verified in Remark
1.3.1, (i).

2 Preliminaries on combinatorial anabelian ge-
ometry

In this section, we give some preliminaries on combinatorial anabelian ge-
ometry which will be of use in the theory developed in the present paper.

Theorem 2.1 (Outer automorphisms of configuration space groups
induced by open immersions). Let n be an integer such that n ≥ 2; k an
algebraically closed field of characteristic 0; X a hyperbolic curve over k of type
(g, rX); U an open subscheme of X which is a hyperbolic curve over k of type
(g, rU ), where rU > rX [which implies that (g, rU ) /∈ {(0, 3), (1, 1)}; rU > 0].
Write Sn for the symmetric group on n letters; Xn (respectively, Un) for the
n-th configuration space associated to X (respectively, U). Let

α ∈ Out(ΠUn
).

Recall that there exists a unique permutation σ ∈ Sn ⊆ Out(ΠUn
) of the factors

of Un [cf. [CbTpII], Theorem B] such that

• α ◦ σ ∈ OutF(ΠUn
) [cf. [CbTpII], Theorem B, (i)];
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• the outer automorphism α1 ∈ Out(ΠU ) induced by α◦σ [which does not de-
pend on the choice of projection morphisms of co-length 1 — cf. [CbTpI],
Theorem A, (i)] preserves the set of cuspidal inertia subgroups of ΠU [cf.
[CbTpI], Theorem A, (ii)].

Suppose that

(a) if n = 2, then either rX > 0 or α ◦ σ ∈ OutFC(ΠUn
) [cf. [CmbCsp],

Definition 1.1, (ii)];

(b) α1 stabilizes the set of conjugacy classes of cuspidal inertia subgroups of
ΠU associated to the cusps of U that arise from the cusps of X;

Then α determines an outer automorphism of ΠXn via the natural outer sur-
jection ΠUn � ΠXn induced by the natural open immersion Un ↪→ Xn.

Proof. First, since Sn acts compatibly on Un and Xn, by replacing α ◦ σ by α,
we may assume without loss of generality that

α ∈ OutF(ΠUn
).

Next, observe that it follows immediately from condition (b) that, by replacing
α by the composite of α with a suitable element ∈ OutFC(ΠUn

) that

• arises, via various specialization and generization isomorphisms, from [log]
scheme theory, and, moreover,

• determines an outer automorphism of ΠXn
via the natural outer surjection

ΠUn � ΠXn

[cf. the proof of [CmbCsp], Lemma 2.4], we may also assume without loss of
generality that

(c) α1 induces the identity automorphism on the set of conjugacy classes of
cuspidal inertia subgroups of ΠU .

Let V � U be an open subscheme which is a hyperbolic curve over k of type
(g, rU + 1); α̃ ∈ AutF(ΠUn) a lifting of α ∈ OutF(ΠUn). Write

{x} def
= U \ V, Xx

def
= X \ {x} ⊆ X.

Then, for suitable choices of basepoints, we obtain a commutative diagram of
homomorphisms of profinite groups

1 −−−−→ ΠVn−1
−−−−→ ΠUn

−−−−→ ΠU −−−−→ 1⏐⏐� φn

⏐⏐� ⏐⏐�
1 −−−−→ Π(Xx)n−1

−−−−→ ΠXn −−−−→ ΠX −−−−→ 1,

where Vn−1 (respectively, (Xx)n−1) denotes the (n − 1)-th configuration space
of V (respectively, Xx); the horizontal sequences denote the homotopy exact

20



sequences induced by the first projections Un → U and Xn → X; the vertical
arrows denote the homomorphisms induced by the natural open immersions
Vn−1 ↪→ (Xx)n−1, Un ↪→ Xn, and U ↪→ X [cf. [MT], Proposition 2.4, (i)].

Next, we verify the following assertion:

Claim 2.1.A: Suppose that n = 2. Then the automorphism α̃|ΠV
∈

Aut(ΠV ) [induced by α̃ ∈ AutF(ΠUn) via the injection ΠV ↪→ ΠU2 in
the above commutative diagram] preserves and fixes the conjugacy
classes of cuspidal inertia subgroups of ΠV that are not associated
to x.

In the case where α ∈ OutFC(ΠUn
), it follows immediately from condition (c)

that α̃|ΠV
preserves and fixes the conjugacy classes of cuspidal inertia subgroups

of ΠV [cf. [CmbCsp], Proposition 1.2, (iii); [CbTpII], Lemma 3.2, (iv)]. Thus,
by condition (a), we may assume without loss of generality that rX > 0. Then
it follows from our assumption that rU > rX that rU ≥ 2. Write

• Cusp(U) for the set of cusps of U ;

• ρU : ΠU → Out(ΠV ) for the outer representation determined by the exact
sequence in the above commutative diagram

1 −→ ΠV −→ ΠU2 −→ ΠU −→ 1;

• Y log for the [uniquely determined, up to unique isomorphism] smooth log
curve over Spec k such that UY = U ;

• Y log
2 for the second log configuration space associated to Y log;

• for each y ∈ Cusp(U), ylog
def
= y ×Y Y log [where the fiber product is

determined by the natural morphism Y log → Y obtained by forgetting
the log structure];

• Y log
y

def
= Y log

2 ×Y log ylog [where the fiber product is determined by the first

projection Y log
2 → Y log and the natural projection ylog → Y log];

• Gy for the semi-graph of anabelioids of pro-Primes PSC-type determined
by the stable log curve Y log

y over ylog [cf. [CmbGC], Definition 1.1, (i)];

• vnewy (respectively, vy) for the vertex of Gy associated to the irreducible
component that contains (respectively, does not contain) the cusp that

arises from the diagonal divisor of Y log
2 ;

• ΠGy
for the PSC-fundamental group of Gy [cf. [CmbGC], Definition 1.1,

(ii)].

Thus, for each y ∈ Cusp(U), we have a natural Im(ρU ) (⊆ Out(ΠV ))-torsor
of outer isomorphisms

ΠV
∼→ ΠGy
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that induces a bijection between the respective sets of cuspidal inertia subgroups.
For each y ∈ Cusp(U), let us fix an outer isomorphism

ΠV
∼→ ΠGy

that belongs to this collection. Then, by conjugating by this fixed outer iso-
morphism, we conclude that α̃|ΠV

determines an outer automorphism αy ∈
Out(ΠGy ) for each y ∈ Cusp(U).

Let y, z ∈ Cusp(U) such that y �= z. [Recall that rU ≥ 2.] Then observe [by
varying y, z ∈ Cusp(U)] that it suffices to prove that αy preserves and fixes the
conjugacy class of cuspidal inertia subgroups of ΠGy associated to z [where we
identify naturally the set of cusps of V with the set of cusps of Gy].

Next, we recall that α1 ∈ Out(ΠU ) preserves and fixes the conjugacy class
of cuspidal inertia subgroups of ΠU associated to y [cf. condition (c)]. Thus,
it follows from [CbTpII], Theorem 1.9, (ii), that, by replacing α̃ by the com-
posite of α̃ with an inner automorphism of ΠU2

, we may assume without loss
of generality that αy preserves the set of verticial subgroups of ΠGy

. Since
(g, rU ) /∈ {(0, 3), (1, 1)}, it follows [cf. [MT], Remark 1.2.2] that αy preserves
and fixes the conjugacy classes of verticial subgroups of ΠGy . Let Πvy ⊆ ΠGy be
a verticial subgroup associated to vy; α̃y ∈ Aut(ΠGy ) a lifting of αy such that
α̃y(Πvy ) = Πvy . On the other hand, observe that the composite

Πvy ⊆ ΠGy

∼← ΠV ↪→ ΠU2
� ΠU

— where the final arrow denotes the natural outer surjection induced by the
second projection U2 → U — determines an outer isomorphism Πvy

∼→ ΠU that
induces a bijection between the respective sets of cuspidal inertia subgroups
and is compatible with the respective outer automorphisms αy and α1. Here,
we recall that the cusp z abuts to the vertex vy. Thus, by condition (c), we
conclude that αy preserves and fixes the conjugacy class of cuspidal inertia
subgroups of ΠGy

associated to z. This completes the proof of Claim 2.1.A.
In the remainder of the proof of Theorem 2.1, we proceed by induction on

n ≥ 2. Next, we verify the following assertion:

Claim 2.1.B: Suppose that n = 2. Then Theorem 2.1 holds.

Indeed, let us note that, by condition (c), α1 preserves the kernel of the natural
surjection ΠU � ΠX . On the other hand, it follows immediately from Claim
2.1.A that α̃|ΠV

∈ Aut(ΠV ) preserves the kernel of the surjection ΠV � ΠXx .
Thus, since ΠXx

is center-free, we conclude that α̃ induces an automorphism of

ΠX2
= ΠXx

out
� ΠX . This completes the proof of Claim 2.1.B.

Next, we verify the following assertion [by a similar argument to the argu-
ment used to prove Claim 2.1.B]:

Claim 2.1.C: Let m be an integer such that m ≥ 2. Suppose that
Theorem 2.1 holds in the case where n = m. Then Theorem 2.1
holds in the case where n = m+ 1.

22



Indeed, let us note that, by condition (c), α1 preserves the kernel of the natural
surjection ΠU � ΠX . Moreover, since m ≥ 2, it follows from [CbTpI], Theorem
A, (ii) [cf. also condition (c); [CbTpI], Theorem A, (i); [CbTpII], Lemma 3.2,
(iv)], that the automorphism α̃|ΠVm

∈ Aut(ΠVm
) [induced by α̃ ∈ AutF(ΠUm+1

)
via the injection ΠVm

↪→ ΠUm+1
in the above commutative diagram] induces

an automorphism of ΠV that induces the identity automorphism on the set of
conjugacy classes of cuspidal inertia subgroups of ΠV . On the other hand, since
Xx is an affine hyperbolic curve, it follows from the induction hypothesis that
the automorphism α̃|ΠVm

∈ Aut(ΠVm
) preserves the kernel of the surjection

ΠVm
→ Π(Xx)m . Thus, since Π(Xx)m is center-free [cf. [MT], Proposition 2.2,

(ii)], we conclude that α̃ induces an automorphism of ΠXm+1 = Π(Xx)m

out
� ΠX .

This completes the proof of Claim 2.1.C, hence of Theorem 2.1.

Corollary 2.2 (Group-theoreticity of cuspidal inertia subgroups in
configuration space groups of genus 0). In the notation of Theorem 2.1,
suppose that g = 0 [so rU ≥ 4]. Then

OutFC(ΠUn
) = OutF(ΠUn

)

[cf. [CmbCsp], Definition 1.1, (ii); [CbTpII], Theorem A, (ii), in the case where
n ≥ 3]. In particular,

Out(ΠUn
) = OutgF(ΠUn

)×Sn

= OutF(ΠUn)×Sn

= OutFC(ΠUn)×Sn

[cf. [CbGT], Corollary B].

Proof. Write
p1,...,n−1 : ΠUn � ΠUn−1

for the surjection induced by the projection Un → Un−1 obtained by forgetting
the n-th factor. Let Z be a hyperbolic curve over k of genus 0 that arises as a
fiber of the projection Un−1 → Un−2 obtained by forgetting the (n−1)-th factor.
Write Z2 for the second configuration space associated to Z; pZ : ΠZ2

� ΠZ

for the surjection induced by the first projection Z2 → Z. Then, for suitable
choices of basepoints, we obtain a commutative diagram of homomorphisms of
profinite groups

1 −−−−→ Ker(pZ) −−−−→ ΠZ2

pZ−−−−→ ΠZ −−−−→ 1

�
⏐⏐� ⏐⏐� ⏐⏐�

1 −−−−→ Ker(p1,...,n−1) −−−−→ ΠUn

p1,...,n−1−−−−−−→ ΠUn−1
−−−−→ 1.

Thus, by replacing U by Z and applying [CbTpI], Theorem A, (ii), we may
assume without loss of generality that n = 2.
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Let β ∈ OutF(ΠU2). Write β1 ∈ Out(ΠU ) for the outer automorphism
induced by β [cf. [CbTpI], Theorem A, (i)]. Observe that, by replacing β
by the composite of β with a suitable element ∈ OutFC(ΠU2) [cf. [CmbCsp],
Lemma 2.4], we may also assume without loss of generality that β1 induces
the identity automorphism on the set of conjugacy classes of cuspidal inertia
subgroups of ΠU .

In the remainder of the proof, we use the notation in the proof of Claim

2.1.A in the proof of Theorem 2.1 in the case where (g, rX) = (0, 3) and α
def
= β.

Observe that it follows from Claim 2.1.A that α ∈ OutFwC(ΠU2
) [cf. [CbTpII],

Definition 2.1, (ii)].
Suppose that y, z ∈ Cusp(U), where y �= z, arise from cusps of X. Then it

suffices to prove that the outer automorphism αy ∈ Out(ΠGy ) [which preserves
and fixes the conjugacy classes of verticial subgroups of ΠGy ] preserves and fixes
the conjugacy class of cuspidal inertia subgroups of ΠGy associated to x, i.e.,

the cusp associated to the diagonal divisor of Y log
2 . Let Πvnew

y
⊆ ΠGy be a

verticial subgroup associated to vnewy ; α̃new
y ∈ Aut(ΠGy

) a lifting of αy such that
α̃new
y (Πvnew

y
) = Πvnew

y
. Write

α̃X ∈ AutFwC(ΠX2
)

for the automorphism induced by α̃ ∈ AutFwC(ΠU2) and the natural surjection
φ2 : ΠU2

� ΠX2
[cf. Theorem 2.1]. Write T ⊇ Xx for the tripod over k obtained

by eliminating the cusp z of Xx. Then it follows immediately from the various
definitions involved that the composite

Πvnew
y

⊆ ΠGy

∼← ΠV � ΠXx
� ΠT

— where ΠV � ΠXx
(respectively, ΠXx

� ΠT ) denotes the natural outer
surjection induced by the natural open immersion V ↪→ Xx (respectively, Xx ↪→
T ) — determines an outer isomorphism Πvnew

y

∼→ ΠT that induces a bijection
between the respective sets of cuspidal inertia subgroups and is compatible
with the outer automorphisms [of Πvnew

y
, ΠT , respectively] induced by α̃new

y

and the restriction α̃X |ΠXx
of α̃X to ΠXx

[cf. Claim 2.1.A]. On the other

hand, since α̃X ∈ AutFwC(ΠX2
) = AutFC(ΠX2

) [cf. [CbTpII], Theorem A,
(ii)], it follows that α̃X preserves and fixes the conjugacy classes of the cuspidal
inertia subgroups of ΠXx

[cf. condition (c); [CmbCsp], Proposition 1.2, (iii);
[CbTpII], Lemma 3.2, (iv)], hence of ΠT . Thus, we conclude that α̃

new
y preserves

and fixes the conjugacy classes of cuspidal inertia subgroups of Πvnew
y

, hence
that αy ∈ Out(ΠGy ) preserves and fixes the conjugacy class of cuspidal inertia
subgroups of ΠGy

associated to x. This completes the proof of Corollary 2.2.

Remark 2.2.1. One verifies immediately that Theorem 2.1 and Corollary 2.2,
as well as their proofs, go through without change when the various “Π’s” are
replaced by their respective maximal pro-l quotients, for some prime number l.
We leave the routine details to the reader. On the other hand, in the present
paper, we shall not need these pro-l versions of Theorem 2.1 and Corollary 2.2.
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3 Various properties of closed subgroups of the
Grothendieck-Teichmüller group

In this section, we apply the technique developed in [Tsjm], §1, i.e., com-
binatorial Belyi cuspidalization, to give a purely combinatorial/group-theoretic
definition of certain classes of closed subgroups of GT [cf. Definition 3.3]. More-
over, we prove a certain relationship between two of these classes [cf. Corollary
3.7] by applying Theorem 2.1.

Write X
def
= P1

Q
\{0, 1,∞}; Xn for the n-th configuration space associated to

X, where n ≥ 2 denotes a positive integer; GT ⊆ Out(ΠX) for the Grothendieck-
Teichmüller group [cf. [CmbCsp], Definition 1.11, (i); [CmbCsp], Remark 1.11.1].
Then recall from the first display of [CbGT], Corollary C, that we have a natural
inclusion GT ↪→ Out(ΠXn). We shall write GTn ⊆ Out(ΠXn) for the image of
this inclusion.

Corollary 3.1 (Purely combinatorial/group-theoretic reconstruction
of the symmetric group). For each positive integer m, write Sm for the
symmetric group on m letters; Am (⊆ Sm) for the alternating group on m
letters. Let us regard An+3 ⊆ Sn+3 as subgroups of Out(ΠXn) via the natural
injection Sn+3 ↪→ Out(ΠXn) induced by the natural action of Sn+3 on Xn [cf.
[CbGT], Remark 2.1.1]. Let

ψn : Out(ΠXn) � Sn+3

be a representative of the outer surjection ξn induced by the natural action of
Out(ΠXn) on the set of generalized fiber subgroups of length 1 [cf. [CbGT],
Theorem A, (i), (ii)]. Then the following hold:

(i) Write
F ⊆ ΠXn

for the generalized fiber subgroup of co-length 1 associated to the subset
{5, . . . , n+ 3} ⊆ {1, . . . , n+ 3} of labels of cardinality n− 1 [cf. [CbGT],
Theorem A, (i), (ii); [CbGT], Definition 2.1, (ii)]. Let

α ∈ Out(ΠXn)

be an outer automorphism of ΠXn
such that ψn(α) = (1 2)(3 4), and

α induces the identity outer automorphism of ΠXn/F (
∼→ ΠX) via the

natural surjection ΠXn � ΠXn/F . Then

α = (1 2)(3 4) ∈ An+3 ⊆ Sn+3 ⊆ Out(ΠXn)

[cf. [CmbCsp], Corollary 4.2, (ii); the first display of [CbGT], Corollary
C; [CbGT], Definition 2.7], and the subgroup An+3 ⊆ Out(ΠXn) may be
reconstructed, in a purely combinatorial/group-theoretic way, from ΠXn

as the subgroup of Out(ΠXn
) generated by the Out(ΠXn

)-conjugacy class
of α [which depends only on the outer surjection ξn].
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(ii) Suppose that n ≥ 3. Write
F ⊆ ΠXn

for the generalized fiber subgroup of length 2 associated to the subset {1, 2} ⊆
{1, . . . , n+ 3} of labels of cardinality 2 [cf. [CbGT], Theorem A, (i), (ii);
[CbGT], Definition 2.1, (ii)]. Let

α ∈ Out(ΠXn)

be an outer automorphism of ΠXn
such that ψn(α) = (1 2), and α induces

the identity outer automorphism of ΠXn
/F (

∼→ ΠXn−2
) via the natural

surjection ΠXn
� ΠXn

/F . Then

α = (1 2) ∈ Sn+3 ⊆ Out(ΠXn
)

[cf. [CmbCsp], Corollary 4.2, (ii); the first display of [CbGT], Corollary
C; [CbGT], Definition 2.7], and the subgroup Sn+3 ⊆ Out(ΠXn

) may be
reconstructed, in a purely combinatorial/group-theoretic way, from ΠXn

as the subgroup of Out(ΠXn
) generated by the Out(ΠXn

)-conjugacy class
of α [which depends only on the outer surjection ξn].

Proof. Write A ⊆ Out(ΠXn
) (respectively, S ⊆ Out(ΠXn

)) for the subgroup
constructed by the algorithm of assertion (i) (respectively, assertion (ii)). Then
it follows immediately from the well-known structure of Sn+3 [where we recall
that n+ 3 ≥ 5] that An+3 ⊆ A (respectively, Sn+3 ⊆ S). [Here, we recall that
the kernel of the unique outer surjection S4 � S3 [through which the natural
outer action of S4 on ΠX factors] is normally generated by (1 2)(3 4).] On the
other hand, by applying the first display of [CbGT], Corollary C, we conclude
that An+3 = A (respectively, Sn+3 = S). This completes the proof of Corollary
3.1.

Remark 3.1.1. In the second display of [CbGT], Corollary C, the subgroup
Sn+3 ⊆ Out(ΠXn) is reconstructed by forming the local center Z loc(Out(ΠXn))
of Out(ΠXn

). This local center is calculated by applying the Grothendieck
Conjecture for hyperbolic curves over number fields [cf. [LocAn], Theorem A;
[Tama], Theorem 0.4]. On the other hand, if n ≥ 3, then, by applying the
algorithm given in Corollary 3.1, (ii), the subgroup Sn+3 ⊆ Out(ΠXn) may be
reconstructed, in a purely combinatorial/group-theoretic way, from ΠXn without
applying the Grothendieck Conjecture for hyperbolic curves over number fields.
In fact, moreover, by regarding ΠX2

[cf. Corollary 3.1, (ii); [CbGT], Theorem
A, (i), (ii); the first display of [CbGT], Corollary C] as an object reconstructed
from ΠX3

in a purely combinatorial/group-theoretic way, one concludes that
this assumption that n ≥ 3 is unnecessary [cf. the discussion of Remark 4.5.1,
(i), below]. Finally, we recall from the theory of [CbGT] that [unlike the second
display of [CbGT], Corollary C!] the first display of [CbGT], Corollary C, is
proved in [CbGT] without applying the Grothendieck Conjecture for hyperbolic
curves over number fields.
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Definition 3.2. Let n be an integer such that n ≥ 2; k an algebraically closed
field of characteristic 0; U a hyperbolic curve over k. Write Un for the n-th
configuration space associated to U . Recall the subgroup

OutgF(ΠUn) ⊆ Out(ΠUn)

[cf. [CbGT], Definition 2.1, (iv)]. Then we shall write

OutgF(ΠUn
)cusp ⊆ OutgF(ΠUn

)

for the subgroup of elements that induce outer automorphisms of ΠU that pre-
serve and fix the conjugacy classes of cuspidal inertia subgroups of ΠU [cf.
[CbTpI], Theorem A, (i), (ii)].

Definition 3.3. Let J ⊆ GT be a closed subgroup of GT; N (respectively, N†)
a normal open subgroup of J ;

ΠU

out
� N −−−−→ ΠX

out
� N⏐⏐�

ΠX

out
� N

(respectively,

ΠU†
out
� N† −−−−→ ΠX

out
� N†⏐⏐�

ΠX

out
� N†)

an arithmetic Belyi diagram [cf. [Tsjm], Definition 1.4, where we take “M” to be
N (respectively, N†), and we note that the “N” of loc. cit. does not necessarily
coincide with the N of the present discussion; Remark 3.3.2 below], which we de-
note by B� (respectively, †B�). Here, we recall that the notion of an arithmetic
Belyi diagram may be understood as an abstract group-theoretic/combinatorial
version of the notion of a scheme-theoretic diagram consisting of an open immer-
sion [i.e., the horizontal arrow] of a finite étale covering of X [i.e., the vertical
arrow] into X itself [where we think of the base field Q as a direct limit of finite
extensions of Q].

(i) Write U2 (respectively, U†
2 ) for the second configuration space associated

to U (respectively, U †); p : ΠU2 → ΠU (respectively, p† : ΠU†
2
→ ΠU†)

for the outer surjection induced by the first projection. Note that it fol-
lows from Remark 3.3.4 below that there exists a(n) [unique — cf. the
final portion of Remark 3.3.4] outer action N → OutgF(ΠU2

) (respec-
tively, N† → OutgF(ΠU†

2
)) which induces the given outer action of N

(respectively, N†) on ΠU (respectively, ΠU†) via the outer surjection p
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(respectively, p†). Then we shall say that †B� dominates B� if there exist
a normal open subgroup

M ⊆ N ∩N†

of J and a ΠU -outer surjection

φ : ΠU†
out
� M � ΠU

out
� M

such that the following purely combinatorial/group-theoretic [cf. Corollary
2.2; the first display of [CbGT], Corollary C] conditions (a), (b) hold:

(a) There exists a [necessarily unique — cf. Proposition 3.4 below; the
argument given in the proof of Claims 3.7.A, 3.7.B, 3.7.C in the proof
of Corollary 3.7 below; [MT], Theorem 1.5, applied to the images via
φ2 of fiber subgroups of length 1; [MT], Proposition 2.4, (v), and its
proof [applied in the case of ΠU†

2
]; [CmbCsp], Proposition 1.7, (d)

[applied in the case of ΠU2
]; [CmbCsp], Propositions 1.2, (iii), and

1.3, (v) [applied in the case of ΠU2
, ΠU†

2
]; [CmbCsp], Theorem A, (i)

[applied in the case of ΠU2 ]] ΠU2 -outer surjection

φ2 : ΠU†
2

out
� M � ΠU2

out
� M

such that

• the diagram of Π(−)-outer homomorphisms

ΠU†
2

out
� M

φ2−−−−→ ΠU2

out
� M

p†out
� idM

⏐⏐� p
out
� idM

⏐⏐�
ΠU†

out
� M

φ−−−−→ ΠU

out
� M

commutes;

• φ2 maps the fiber subgroups of ΠU†
2
to the fiber subgroups of ΠU2

;

• the kernel of φ2 is topologically generated by [certain of the]
cuspidal inertia subgroups of fiber subgroups of ΠU†

2
of length 1

[which implies, in particular, that the kernel of φ is topologically
generated by [certain of the] cuspidal inertia subgroups of ΠU† ];

• the image via φ2 of any cuspidal inertia subgroup of a fiber sub-
group of ΠU†

2
of length 1 is either trivial or a cuspidal inertia

subgroup of a fiber subgroup of ΠU2
of length 1 [which implies, in

particular, that the image via φ of any cuspidal inertia subgroup
of ΠU† is either trivial or a cuspidal inertia subgroup of ΠU ].

(b) The composite of φ with the restriction to ΠU

out
� M of the ΠX -outer

surjection

ΠU

out
� N � ΠX

out
� N
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[i.e., the horizontal arrow in B�] coincides with the restriction to

ΠU†
out
� M of the ΠX -outer surjection

ΠU†
out
� N† � ΠX

out
� N†

[i.e., the horizontal arrow in †B�].

In this situation, we shall refer to φ : ΠU†
out
� M � ΠU

out
� M as an

arithmetic domination [of B� by †B�] and to the ΠU -outer surjection
φΠ : ΠU† � ΠU obtained by restricting φ to ΠU† [a restriction whose
image lies in ΠU , by either condition (a) or (b)] as a geometric domination
[of B� by †B�]. [Here, we observe in passing that it follows immediately

from the definition of “
out
� ” that [up to possibly replacing M by an open

subgroup of M that is normal in J ] φ is uniquely determined by φΠ,
†B�,

and B�.]

(ii) We shall say that the pair (B�, †B�) satisfies the COF-property [i.e., “cofil-
tered property”] if the pair (B�, †B�) satisfies the following condition:

• there exist a normal open subgroup N‡ of J and an arithmetic Belyi
diagram ‡B�

ΠU‡
out
� N‡ −−−−→ ΠX

out
� N‡⏐⏐�

ΠX

out
� N‡

such that ‡B� dominates B� and †B�.

(iii) We shall say that the pair (B�, †B�) satisfies the RGC-property [i.e.,“Relative
Grothendieck Conjecture property”] if the pair (B�, †B�) satisfies the fol-
lowing condition:

• the cardinality of the set of geometric dominations [cf. (i)] of B� by
†B� is ≤ 1.

(iv) Write Cusp(ΠU ) (respectively, Cusp(ΠX)) for the set of cusps of ΠU (re-
spectively, ΠX) [cf. [Tsjm], Theorem 1.3, (i)]. Note that the horizon-
tal arrow in B� induces a natural injection Cusp(ΠX) = {0, 1,∞} ↪→
Cusp(ΠU ); we shall regard Cusp(ΠX) as a subset of Cusp(ΠU ) via this
injection. Let T ⊆ Cusp(ΠU ) \ Cusp(ΠX). Write I(ΠU ) for the set of
cuspidal inertia subgroups of ΠU [cf. [Tsjm], Theorem 1.3, (i)]. Thus,
Cusp(ΠU ) may be identified with I(ΠU )/ΠU . Write ΠU � ΠT for the
quotient by the normal closed subgroup topologically generated by the

cuspidal inertia subgroups of ΠU associated to the cusps ∈ T ; ΠU

out
� N �

ΠT

out
� N for the natural quotient induced by the quotient ΠU � ΠT . For

Ic ∈ I(ΠU ), write Dc
def
= N

ΠU

out
� N

(Ic); DT,c for the image of Dc via the
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quotient ΠU

out
� N � ΠT

out
� N . Then we shall say that the arithmetic

Belyi diagram B� satisfies the CS-property [i.e.,“cuspidal separatedness
property”] if, for any T as above, B� satisfies the following condition:

• for Ic, Ic′ ∈ I(ΠU ), DT,c is commensurable to DT,c′ if and only if

there exists σ ∈ Ker(ΠU � ΠT ) such that (Ic)
σ def
= σIcσ

−1 = Ic′ .

One verifies immediately that this condition implies that DT,c ⊆ ΠT

out
� N

is commensurably terminal, hence normally terminal.

(v) We shall say that J satisfies the COF-property (respectively, the RGC-
property) if every pair of arithmetic Belyi diagrams satisfies the COF-
property (respectively, the RGC-property). We shall say that J satisfies
the CS-property if every arithmetic Belyi diagram satisfies the CS-property.
We shall say that J satisfies the BC-property [i.e., “Belyi compatibility
property”] if J satisfies the COF- and the RGC-properties. By a slight
abuse of notation, we shall use the notation BGT to denote a closed sub-
group of GT that satisfies the BC-property. [We refer to Remark 4.4.1
below for some concrete examples.]

(vi) We shall refer to a field K of characteristic 0 as a conducting field for J
if the image of [any representative of] the natural outer homomorphism
GK → GQ in GQ, where we think of GQ as a subgroup of GT via the
natural inclusion

GQ
def
= Gal(Q/Q) ↪→ GT ⊆ Out(ΠX)

[cf. the discussion at the beginning of [Tsjm], Introduction], is contained
in some GT-conjugate of J . We shall say that a field K of characteristic 0
satisfies the ISC-property if, for any two distinct points y1, y2 ∈ Y (L) of a
hyperbolic curve Y over a finite field extension L of K, the ΠY -conjugacy
classes of the corresponding decomposition groups Dy1

, Dy2
⊆ ΠY are

distinct. We shall say that a field K of characteristic 0 satisfies the ZISC-
property if, for any two distinct points y1, y2 ∈ Y (L) of a hyperbolic curve
Y of genus 0 over a finite field extension L of K, the ΠY -conjugacy classes
of the corresponding decomposition groups Dy1

, Dy2
⊆ ΠY are distinct.

Remark 3.3.1. Note that it follows immediately from the various definitions
involved that:

(a) each notion defined in Definition 3.3, (i), (ii), (iii) (respectively, Definition
3.3, (iv)), concerning B�, †B� (respectively, concerning B�) is equivalent
to the corresponding notion concerning the restrictions of B�, †B� (re-
spectively, the restriction of B�) to arbitrary open subgroups of N , N†

(respectively, N) that are normal in J ;
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(b) each notion defined in Definition 3.3, (v), concerning J is equivalent to
the corresponding notion concerning an arbitrary open subgroup of J .

Remark 3.3.2. Let us recall that there are precisely two situations in [Tsjm] in
which the Grothendieck Conjecture for hyperbolic curves over number fields [cf.
[LocAn], Theorem A; [Tama], Theorem 0.4] is applied, namely:

(a) Claim 1.3.A in the proof of [Tsjm], Theorem 1.3, (ii) [which is applied in
[Tsjm], Definition 1.4, to define the notion of an arithmetic Belyi diagram];

(b) the proof of [Tsjm], Theorem 1.3, (iii) [which must be applied in order
to give a purely combinatorial/group-theoretic construction of the outer
isomorphism that is used to identify the two copies of ΠX that appear in
a Belyi diagram].

On the other hand, in Remark 3.3.3 below,

we shall give a purely combinatorial/group-theoretic algorithm for
constructing, via the algorithm of Corollary 3.1, (ii), the identifying
outer isomorphism between the two copies of ΠX that appear in a
Belyi diagram.

In particular, in the context of the theory of the present paper, instead of apply-
ing [Tsjm], Theorem 1.3, (iii), one may apply the purely combinatorial/group-
theoretic algorithm of Remark 3.3.3, which does not require any use of the
Grothendieck Conjecture for hyperbolic curves over number fields [cf. Remark
3.1.1]. In addition, [Tsjm], Theorem 1.3, (ii) [i.e., the compatibility of the iden-
tifying outer isomorphism between the two copies of ΠX with the respective
outer actions on the two copies] follows immediately from the functoriality of
the purely combinatorial/group-theoretic algorithm given in Remark 3.3.3 below.
Thus, in summary, in the theory of the present paper,

one may in fact avoid any use of the Grothendieck Conjecture for hy-
perbolic curves over number fields when applying the theory/results
of [Tsjm] in the present paper.

Remark 3.3.3. In the following discussion, we use the notation that appears in
the statement and proof of [Tsjm], Theorem 1.3.

(i) In the remainder of the present Remark 3.3.3, we shall reconstruct the
identifying outer isomorphism between the copies of ΠX that appear in
a given Belyi diagram B [cf. Remark 3.3.2] — by means of a purely
combinatorial/group-theoretic algorithm — from [the underlying purely
combinatorial/group-theoretic structure of] the collection of data

(a) the profinite group ΠX3
;
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(b) the outer surjections pri,j : ΠX3 � ΠX2 , where (i, j) ∈ {(1, 2), (1, 3),
(2, 3)}, determined by the natural projection X3 � X2 to the i-
th and j-th factors, i.e., to be precise, the normal closed subgroups
Ker(pri,j) ⊆ ΠX3

, together with the composite outer isomorphisms

ΠX3
/Ker(pri,j)

∼← ΠX2

∼→ ΠX3
/Ker(pri′,j′),

where (i, j), (i′, j′) ∈ {(1, 2), (1, 3), (2, 3)};
(c) the outer surjections pi : ΠX2

� ΠX (i ∈ {1, 2}) determined by the
natural projection X2 � X to the i-th factor, i.e., to be precise, the
normal closed subgroups Ker(p1),Ker(p2) ⊆ ΠX2 , together with the
composite outer isomorphism ΠX2

/Ker(p1)
∼← ΠX

∼→ ΠX2
/Ker(p2);

(d) the profinite groups ΠX2 and ΠX , i.e., to be precise, the quotients of
ΠX3 discussed in (b) and (c);

(e) surjections

pr1 : ΠX3 � ΠX , pr2 : ΠX3 � ΠX , pr3 : ΠX3 � ΠX ,

that represent the respective outer surjections p1 ◦ pr1,3, p1 ◦ pr2,3,
p2 ◦ pr2,3.

(f) the open subgroup ΠU ⊆ ΠX ;

(g) the subset of labeled elements {0, 1,∞} ⊆ Cusp(ΠU ) [cf, [Tsjm], The-
orem 1.3, (i)];

(h) the subset of labeled elements {0, 1,∞} ⊆ Cusp(ΠX) [cf, [Tsjm], The-
orem 1.3, (i)]

— i.e., without applying the Grothendieck Conjecture for hyperbolic curves
over number fields. Here, the data (f), (g), (h) correspond to the given
Belyi diagram B [cf. the data “C(ΠX)” of [Tsjm], Theorem 1.3, (iii)].
Also, we note that any two collections of choices of surjections as in (e) are
related to one another by composition with a single inner automorphism
of ΠX3

. Moreover, by applying Corollary 3.1, (ii); [CbGT], Theorem A,
(ii), one may regard the data of (b), (c), (d), (e) as data reconstructed
[i.e., by using the action of the symmetric group S6 ⊆ Out(ΠX3)], up to
unique isomorphism, from the data of (a).

(ii) Next, observe that the identifying outer isomorphism between the copies
of ΠX in B coincides with the composite

ΠX
∼← Πctpd ∼→ Πctpd

U
∼→ Πctpd

X
∼→ ΠX ,

where the first and the final arrows denote the outer isomorphisms arising
from the [scheme-theoretic!] isomorphisms of tripods determined by the
data of (i), (e), (h) [which may be used to rigidify the correspondences
between cusps]; the second and the third arrows denote the natural isomor-
phisms induced, respectively, by the natural outer surjections ΠV3

� ΠU3
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and ΠU3 � ΠX3 . Recall that the open subgroup ΠV3 ⊆ ΠX3 is defined to
be the inverse image of the open subgroup Π×3

U ⊆ Π×3
X [determined by the

open subgroup ΠU ⊆ ΠX ] via the surjection ΠX3 � Π×3
X determined by

the surjection pri : ΠX3
� ΠX , where i = 1, 2, 3. Thus, to reconstruct the

above composite in a purely combinatorial/group-theoretic way, it suffices
to reconstruct the following data:

(a) the 3-central tripods ⊆ ΠX3
[i.e., such as Πctpd];

(b) the kernel of the natural outer surjection ΠV3 � ΠU3 [which allows us
to characterize Πctpd [cf. Claim 1.3.C in the proof of [Tsjm], Theorem

1.3, (ii)] and reconstruct Πctpd
U ];

(c) the outer isomorphism ΠX
∼← Πctpd;

(d) the kernel of the natural outer surjection ΠU3 � ΠX3 [which allows

us to reconstruct Πctpd
X ];

(e) the outer isomorphism Πctpd
X

∼→ ΠX , where we regard both “Πctpd
X ”

and “ΠX” as subquotients of

Π3
def
= ΠU3

/Ker(ΠU3
� ΠX3

) (
∼→ ΠX3

).

(iii) The data of (ii), (a), may be reconstructed by applying the algorithm
implicit in the proof of [CbTpII], Theorem 3.16, (v) [cf. also [CbGT],
Corollary B], where we allow the central tripod “T” of [CbTpII], Theo-
rem 3.16, (v), to vary among all 3-central tripods. [Indeed, the proof of
Claim 3.16.B in the proof of [CbTpII], Theorem 3.16, (v), consists pre-
cisely of a reconstruction algorithm for the 3-central tripods.] Once the
data of (ii), (b) (respectively, (d)), has been reconstructed, the data of
(ii), (c) (respectively, (e)), may be reconstructed by using the action of
the symmetric group S6 ⊆ Out(ΠX3) (respectively, S6 ⊆ Out(Π3)) [cf.
Corollary 3.1, (ii); the construction of the geometric outer isomorphism
“Πvnew

∼→ Πv” in the proof of [CbTpII], Lemma 3.13, (iii)]. Thus, it
suffices to reconstruct the data of (ii), (b), (d) [cf. (v), (vi), below].

(iv) Recall the set IX3 of inertia subgroups ⊆ ΠX3 of the discussion imme-
diately following Claim 1.3.B in the proof of [Tsjm], Theorem 1.3, (ii).
Write

IFX3
⊆ IX3

for the subset consisting of inertia subgroups ⊆ Ker(pri,j) for some (i, j) ∈
{(1, 2), (1, 3), (2, 3)}. Let (i, j) ∈ {(1, 2), (1, 3), (2, 3)}. Recall from [CbGT],
Theorem A, (ii); the first display of [CbGT], Corollary C, that

(a) the image GT3 ⊆ Out(ΠX3
)

of the natural inclusion GT ↪→ Out(ΠX3
) may be reconstructed from the

data of (i), (a). Next, observe that the natural outer action of GT3 =
OutgF(ΠX3) on ΠX3 stabilizes Ker(pri,j) ⊆ ΠX3 , as well as the set of
cuspidal inertia subgroups of Ker(pri,j) [cf. [CbTpII], Theorem A, (ii)],
hence determines
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(b) an outer representation ΠX3

out
�GT3 → OutC(Ker(pri,j)) [cf. [CbTpI],

Definition 6.1],

which is l-cyclotomically full [cf. [CmbGC], Definition 2.3, (ii), where we
regard Ker(pri,j) as the étale fundamental group of a geometric fiber of
pri,j , i.e., a smooth affine curve over an algebraically closed field of char-
acteristic 0, which implies formally, from the definitions of the notation
involved, that “OutC(Ker(pri,j))” in the present discussion corresponds
precisely to the notation “Aut(G)” in [CmbGC], Definition 2.3] for any
prime number l [where we apply the fact that GQ ⊆ GT]. In particular,
by applying the algorithm implicit in the proof of [CmbGC], Corollary 2.7,
(i), we conclude that the cuspidal inertia subgroups of Ker(pri,j) may be
reconstructed group-theoretically from the data of (b). Thus, by varying
(i, j) ∈ {(1, 2), (1, 3), (2, 3)}, we conclude that

(c) the inertia subgroups ∈ IFX3

may be reconstructed group-theoretically from the data of (i), (a), (b),
(c), (d).

(v) Next, we reconstruct the data of (ii), (b). Let I ∈ IFX3
be such that, for

each h = 1, 2, 3, prh(I) = {1}. Then there exists a unique pair (i, j) ∈
{(1, 2), (1, 3), (2, 3)} such that pri,j(I) �= {1}. Write

• ΠW ⊆ ΠX for the maximal normal open subgroup such that ΠW ⊆
ΠU ;

• ΠZ3

def
= ΠX3 ×(ΠX×ΠX×ΠX) (ΠW ×ΠW ×ΠW ) ⊆ ΠX3 , i.e., the inverse

image via the surjection ΠX3 � ΠX × ΠX × ΠX induced by p1, p2,
and p3 of the open subgroup ΠW × ΠW × ΠW ⊆ ΠX × ΠX × ΠX

[determined by the inclusion ΠW ⊆ ΠX ];

Note that I ⊆ ΠZ3 ⊆ ΠV3 ⊆ ΠX3 . Then it follows from a similar argument
to the argument applied in the proof of [CmbCsp], Proposition 1.2, (iii),
that pri and prj induce natural isomorphisms

gi,I : NΠZ3
(I)/I · (Ker(pri,j) ∩NΠZ3

(I)
) ∼→ ΠW ,

gj,I : NΠZ3
(I)/I · (Ker(pri,j) ∩NΠZ3

(I)
) ∼→ ΠW ,

and that the outer automorphism of ΠW determined by gj,I ◦g−1
i,I coincides

with the outer automorphism determined by a(n) [unique] element g ∈
ΠX/ΠW . [That is to say, at a more conceptual level, one may think
of the various groups that appear in the above display as decomposition
groups of various Galois [i.e., ΠX/ΠW -] conjugates of the (i, j)-diagonal of
W×W×W .] Next, for each (i, j) ∈ {(1, 2), (1, 3), (2, 3)} and g ∈ ΠX/ΠW ,
we shall write

Ii,j;g ⊆ IFX3

for the subset consisting of the elements I ∈ IFX3
such that
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• for each h = 1, 2, 3, prh(I) = {1};
• pri,j(I) �= {1};
• gj,I ◦ g−1

i,I coincides with the outer automorphism of ΠW determined
by g ∈ ΠX/ΠW .

Then we may reconstruct the kernel of the natural surjection ΠV3 � ΠU3

as the normal closed subgroup of ΠV3
topologically normally generated by

the elements of the subset ⋃
i,j; g/∈ΠU/ΠW

Ii,j;g ⊆ IFX3
.

(vi) Finally, we reconstruct the data of (ii), (d). Write

• IFV3

def
= {I ∩ ΠV3

(⊆ ΠX3
) | I ∈ IFX3

};
• IFU3

for the set of images of elements of IFV3
via the natural surjection

ΠV3
� ΠU3

[cf. (v)].

On the other hand, for each i = 1, 2, 3, pri naturally induces an outer sur-
jection qi : ΠU3 � ΠU . Thus, we may reconstruct the kernel of the natural
outer surjection ΠU3

� ΠX3
as the normal closed subgroup topologically

generated by the elements I ∈ IFU3
satisfying the following condition:

there exists i ∈ {1, 2, 3} such that qi(I) ⊆ ΠU is a cuspidal
inertia subgroup that is not associated to 0, 1, ∞ [cf. (i), (g)].

Remark 3.3.4. We maintain the notation of Remark 3.3.3. Let J ⊆ GT be a
closed subgroup; N a normal open subgroup of J ;

ΠU

out
� N −−−−→ ΠX

out
� N⏐⏐�

ΠX

out
� N

an arithmetic Belyi diagram, which we denote by B� [i.e., whose underlying
Belyi diagram is the Belyi diagram B of Remark 3.3.3, (i)]. Recall the nota-
tion U2 (respectively, X2) for the second configuration space associated to U
(respectively, X); write pU : ΠU2 → ΠU (respectively, pX : ΠX2 → ΠX) for
the outer surjection induced by the first projection. Let us recall from [Tsjm],
Lemma 1.2, (b) [cf. also [Tsjm], Theorem 1.3, (ii); [Tsjm], Definition 1.4], that
the outer action of N on ΠU extends uniquely [cf. the slimness of ΠX ] to a
ΠU -outer action on ΠX that is compatible, relative to the vertical arrow of the
Belyi diagram B, with the outer action of J (⊇ N) on ΠX . Then observe that
this ΠU -outer action of N on ΠX allows one to construct

• a natural outer action of N on ΠX3
that determines an injection N ↪→

OutFC(ΠX3
),

35



together with

• a compatible natural ΠV3 -outer action of N on ΠX3 that stabilizes ΠV3

[cf. the discussion preceding Claim 1.3.B in the proof of [Tsjm], Theorem 1.3,
(ii)]. Next, recall from Remark 3.3.3, (ii), (b), (d) [cf. also Remark 3.3.3, (v),
(vi)], that the resulting outer action of N on ΠV3

determines injections

N ↪→ OutFC(ΠU3), N ↪→ OutFC(ΠX3)

compatible with the outer surjections ΠV3 � ΠU3 � ΠX3 . The F-admissibility
of these outer actions implies that these natural outer actions of N on ΠU3 and
ΠX3

determine injections

N ↪→ OutgF(ΠU2)
cusp ⊆ OutFC(ΠU2),

N ↪→ OutgF(ΠX2
)cusp ⊆ OutFC(ΠX2

)

[cf. Corollary 2.2; Definition 3.2; [CbTpII], Theorem A, (ii)] and a commutative
diagram

ΠU2

out
� N −−−−→ ΠX2

out
� N

pU

out
� idN

⏐⏐� pX

out
� idN

⏐⏐�
ΠU

out
� N −−−−→ ΠX

out
� N,

where the lower horizontal arrow is the horizontal arrow of B�. Note that the
outer action of N on ΠU2 (respectively, ΠX2) just constructed is uniquely de-
termined by the following two conditions [cf. Corollary 2.2; [CbTpII], Theorem
A, (ii); [CmbCsp], Theorem A, (i)]:

• the outer action of N on ΠU2
(respectively, ΠX2

) determines an injection

N ↪→ OutgF(ΠU2)
cusp (respectively, N ↪→ OutgF(ΠX2)

cusp);

• the outer action of N on ΠU2
(respectively, ΠX2

) induces the given outer
action of N on ΠU (respectively, ΠX) via the outer surjection pU (respec-
tively, pX).

Proposition 3.4 (Functorial behavior of cuspidal inertia subgroups
with respect to geometric dominations). In the situation of Definition
3.3, (i), every conjugacy class of cuspidal inertia subgroups of ΠU arises as the
image via φ of a unique conjugacy class of cuspidal inertia subgroups of ΠU† .

Proof. We regard U,U † as open subschemes ofX via the respective natural open
immersions U ↪→ X, U† ↪→ X. Write Cusp(U†) for the set of cusps of U †; S ⊆
Cusp(U †) for the subset of cusps s ∈ Cusp(U †) such that some [or equivalently,
every] cuspidal inertia subgroup of ΠU† associated to s is contained in Ker(φ);
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U† ⊆ U †
S (⊆ X) for the partial compactification of U† such that U† = U†

S \ S.
Thus, the natural outer surjection ΠU† � ΠU†

S
induces a bijection between the

set of conjugacy classes of cuspidal inertia subgroups of ΠU† associated to cusps
∈ Cusp(U †) \ S and the set of conjugacy classes of cuspidal inertia subgroups
of ΠU†

S
. Next, observe that it follows immediately from Definition 3.3, (i), (a),

(b), that φ induces an outer isomorphism

φS : ΠU†
S

∼→ ΠU

such that

(i) φS maps every cuspidal inertia subgroup of ΠU†
S

to a cuspidal inertia

subgroup of ΠU ;

(ii) φS maps every cuspidal inertia subgroup of ΠU†
S
associated to 0, 1, ∞ to

a cuspidal inertia subgroup of ΠU associated to 0, 1, ∞, respectively.

Thus, to complete the proof of Proposition 3.4, it suffices to verify that φS

induces [cf. (i)] a bijection between the set of conjugacy classes of cuspidal inertia
subgroups of ΠU†

S
and the set of conjugacy classes of cuspidal inertia subgroups

of ΠU . To this end, let us first observe that injectivity follows immediately from
the fact that φS is an outer isomorphism. On the other hand, since φS is an
outer isomorphism, surjectivity follows immediately, in light of (ii), from the
fact that [since the hyperbolic curves U † and U are of genus 0] ΠU†

S
and ΠU are

topologically freely generated by their respective collections of cuspidal inertia
subgroups associated to cusps �= ∞. This completes the proof of Proposition
3.4.

Proposition 3.5 (Natural action of GT on the set of geometric dom-
inations). In the notation of Definition 3.3, (i), one may construct a natural
action of CGT(J) (⊆ Out(ΠX)) on the set of geometric dominations between
arbitrary arithmetic Belyi diagrams.

Proof. Let us consider the data of Remark 3.3.3, (i), (a), (b), (c), (d), (e), (f),
(g), (h), associated to B� and †B�. Then the data of

• “ΠU2

out
� M”, “ΠU†

2

out
� M”, together with

• the respective fiber subgroups of length 1 and cuspidal inertia subgroups
of such fiber subgroups

[cf. Definition 3.3, (i)] may be reconstructed from the data of Remark 3.3.3, (i),
(a), (b); Remark 3.3.3, (ii), (b); Remark 3.3.3, (vi) [i.e., “IFU3

”]. Thus, Propo-
sition 3.5 follows immediately, in light of the various definitions involved, from
the functoriality of the purely combinatorial/group-theoretic algorithm given in
Remark 3.3.3.
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Theorem 3.6 (Faithfulness via the CS-property for certain outer ac-
tions on configuration space groups induced by open immersions). Let
J ⊆ GT be a closed subgroup; N a normal open subgroup of J ;

ΠU

out
� N −−−−→ ΠX

out
� N⏐⏐�

ΠX

out
� N

an arithmetic Belyi diagram, which we denote by B�. Write U2 (respec-
tively, X2) for the second configuration space associated to U (respectively, X);
pU : ΠU2

→ ΠU (respectively, pX : ΠX2
→ ΠX) for the outer surjection induced

by the first projection. Thus, we have a commutative diagram

ΠU2

out
� N −−−−→ ΠX2

out
� N

pU

out
� idN

⏐⏐� pX

out
� idN

⏐⏐�
ΠU

out
� N −−−−→ ΠX

out
� N

as in Remark 3.3.4. We regard U as an open subscheme of X via the natural
open immersion U ↪→ X. For each sequence

U ⊆ V ⊆ W ⊆ X

of open subschemes of X, write V2, W2 for the second configuration spaces
associated to the hyperbolic curves V , W , respectively;

hV,W : OutgF(ΠV2)
cusp → OutgF(ΠW2)

cusp

for the homomorphism induced by the upper horizontal arrow of the above com-
mutative diagram [cf. Theorem 2.1; [CbGT], Corollary B; the well-known ele-
mentary structure of the natural inclusion S3 ↪→ S5]; NV2

⊆ OutgF(ΠV2
)cusp

for the image via the composite

N ↪→ OutgF(ΠU2
)cusp

hU,V→ OutgF(ΠV2
)cusp

[cf. Remark 3.3.4]. Suppose that B� satisfies the CS-property [cf. Definition
3.3, (iv)]. Then, for any V,W as above, the composite

ZOutgF(ΠV2
)cusp(NV2

) ⊆ OutgF(ΠV2
)cusp

hV,W→ OutgF(ΠW2
)cusp

is injective.

Proof. Write h
def
= hV,W ; Cusp(V ), Cusp(W ) for the set of cusps of V , W , re-

spectively. First, let us note that we may assume without loss of generality [i.e.,
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by forming the composite of the hV,W for suitable V , W ] that the cardinality
of the set Cusp(V ) \ Cusp(W ) is 1. Let

β ∈ ZOutgF(ΠV2
)cusp(NV2) (⊆ OutgF(ΠV2)

cusp)

be such that h(β) = 1. Then it suffices to verify that

β = 1.

Note that the natural composites

N
∼→ NV2

⊆ OutgF(ΠV2
)cusp, N

∼→ NW2
⊆ OutgF(ΠW2

)cusp

determine natural outer actions of N on ΠV2
, ΠW2

, hence also on ΠV , ΠW [by
applying the natural outer surjections ΠV2 → ΠV , ΠW2 → ΠW determined by
the respective first projections].

Next, let us write

• y for the unique element ∈ Cusp(V ) \ Cusp(W );

• ηj : OutgF(ΠV2
) → OutgF(ΠV ) for the natural homomorphism induced by

the j-th projection, where j ∈ {1, 2} [where we note that in fact, η1 = η2
— cf. Corollary 2.2; [CmbCsp], Proposition 1.2, (iii)];

• Y log for the [uniquely determined, up to unique isomorphism] smooth log
curve over Spec Q such that UY = V ;

• Y log
2 for the second log configuration space associated to Y log;

• ylog
def
= y ×Y Y log [where the fiber product is determined by the natural

map Y log → Y obtained by forgetting the log structure];

• Y log
y

def
= Y log

2 ×Y log ylog [where the fiber product is determined by the first

projection Y log
2 → Y log and the natural map ylog → Y log];

• Gy for the semi-graph of anabelioids of pro-Primes PSC-type determined
by the stable log curve Y log

y [cf. [CmbGC], Definition 1.1, (i)];

• cy, cΔ for the cusps of Gy that arise from y, the diagonal divisor of Y log
2 ,

respectively;

• vy for the vertex of Gy associated to the irreducible component that does
not contain cΔ;

• ΠGy for the PSC-fundamental group of Gy [cf. [CmbGC], Definition 1.1,
(ii)].
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Then we have a commutative diagram of profinite groups

1 −−−−→ ΠGy
−−−−→ ΠV2

out
� N −−−−→ ΠV

out
� N −−−−→ 1

qy

⏐⏐� ⏐⏐� ⏐⏐�
1 −−−−→ ΠV −−−−→ ΠW2

out
� N −−−−→ ΠW

out
� N −−−−→ 1,

where the middle and right-hand vertical arrows denote surjections that rep-
resent the outer surjection induced by the natural open immersion V ↪→ W ;

ΠV2

out
� N → ΠV

out
� N , ΠW2

out
� N → ΠW

out
� N denote surjections that repre-

sent the outer surjections induced by the respective first projections; qy denotes
the induced surjection. [Note that Ker(qy) coincides with the normal closed
subgroup topologically generated by the cuspidal inertia subgroups of ΠGy as-
sociated to cy.]

Since β ∈ ZOutgF(ΠV2
)cusp(NV2) (⊆ OutgF(ΠV2)

cusp), and ΠV2 is center-free

[cf. [MT], Proposition 2.2, (ii)], β determines a ΠV2
-outer automorphism γV of

ΠV2

out
� N that lies over the identity automorphism of N . Let Iy be a cuspidal

inertia subgroup of ΠV associated to y; γ̃V ∈ Aut(ΠV2

out
� N) a lifting of γV .

Write (γ̃V )1 for the automorphism of ΠV

out
� N induced by γ̃V via the surjec-

tion ΠV2

out
� N � ΠV

out
� N in the above commutative diagram. Then since

β ∈ OutgF(ΠV2
)cusp, by replacing γ̃V by a suitable composite with an inner

automorphism of ΠV2

out
� N [determined by an element of ΠV2

] if necessary, we
may assume without loss of generality that

(γ̃V )1(Iy) = Iy.

Let Πvy ⊆ ΠGy be a verticial subgroup associated to vy. Note that since V � W ,
vy is not of type (0, 3). Thus, it follows immediately from [CbTpII], Theorem 1.9,
(ii), that the restriction γ̃V |ΠGy

of γ̃V to ΠGy
preserves and fixes the conjugacy

class of Πvy . Moreover, by replacing γ̃V by a suitable composite with an inner

automorphism of ΠV2

out
� N [determined by an element of ΠGy ] if necessary, we

may assume without loss of generality that

γ̃V |ΠGy
(Πvy ) = Πvy

.

Write γ̃W ∈ Aut(ΠW2

out
� N) for the automorphism [that lies over N ] induced

by γ̃V [cf. Theorem 2.1] via the surjection ΠV2

out
� N � ΠW2

out
� N in the above

commutative diagram.
Next, we verify the following assertion:

Claim 3.6.A: The outer automorphism γ ∈ Out(ΠV ) determined by

the restriction γ̃W |ΠV
of γ̃W to ΠV (↪→ ΠW2

out
� N) coincides with

η2(β) ∈ Out(ΠV ).
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Recall that γ̃V |ΠGy
preserves the cuspidal inertia subgroups of ΠGy [cf. Corol-

lary 2.2]. Write qΔ : ΠGy � ΠV for the natural outer surjection induced by the
second projection V2 → V . Note that Ker(qΔ) coincides with the normal closed
subgroup topologically generated by the cuspidal inertia subgroups of ΠGy

as-
sociated to cΔ. On the other hand, it follows immediately from the various
definitions involved that

• γ (respectively, η2(β)) coincides with the outer automorphism induced by
γ̃V |ΠGy

via the surjection qy (respectively, qΔ);

• qy and qΔ determine the same outer isomorphism (ΠGy ⊇) Πvy

∼→ ΠV .

Thus, since γ̃V |ΠGy
(Πvy ) = Πvy

, we obtain the desired conclusion. This com-
pletes the proof of Claim 3.6.A.

Next, observe that since h(β) = 1, we have

γ̃W ∈ Inn(ΠW2

out
� N) ⊆ Aut(ΠW2

out
� N),

where the inner automorphism γ̃W is determined by an element ∈ ΠW2 . Write

• (γ̃W )1 for the inner automorphism of ΠW

out
� N [determined by an element

∈ ΠW ] induced by γ̃W via the surjection ΠW2

out
� N � ΠW

out
� N in the

above commutative diagram;

• Dy (
∼→ N) [cf. [CmbGC], Proposition 1.2, (ii)] for the image ofN

ΠV

out
� N

(Iy)

via the surjection ΠV

out
�N � ΠW

out
�N in the above commutative diagram.

Then it follows from our assumption that (γ̃V )1(Iy) = Iy that (γ̃W )1(Dy) =
Dy. Recall that since B� satisfies the CS-property, Dy is normally terminal in

ΠW

out
�N [cf. the final sentence of Definition 3.3, (iv); [CmbGC], Proposition 1.2,

(ii)]. Thus, we conclude that the inner automorphism (γ̃W )1 ∈ Inn(ΠW

out
� N) is

determined by a(n) [unique] element ∈ Dy∩ΠW = {1}, hence, in particular, that
the inner automorphism γ̃W is determined by an element ∈ ΠV ⊆ ΠW2 , i.e., that
γ = 1. Finally, it follows immediately from the injectivity of η2 [cf. Corollary
2.2; [CmbCsp], Theorem A, (i)], together with Claim 3.6.A, that β = 1. This
completes the proof of Theorem 3.6.

Corollary 3.7 (The CS-property implies the RGC-property). Let J ⊆
GT be a closed subgroup satisfying the CS-property [cf. Definition 3.3, (v)].
Then J satisfies the RGC-property [cf. Definition 3.3, (v)].

Proof. In the notation of Definition 3.3, (i), let φ, φ′ be arithmetic dominations
of B� by †B�, defined over a normal open subgroup M ⊆ J . Then it suffices
to prove that φ = φ′. Since Ker(φ) and Ker(φ′) are topologically generated by
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[certain of the] cuspidal inertia subgroups of ΠU† [cf. Definition 3.3, (i), (a)], it
follows immediately from the CS-property [where we take the “T” of Definition
3.3, (iv), to be “Cusp(ΠU†) \ Cusp(ΠX)”, “Cusp(ΠU ) \ Cusp(ΠX)”], together
with Definition 3.3, (i), (b) [cf. also Proposition 3.4], that

Ker(φ) = Ker(φ′).

Fix ΠU2
-outer surjections

φ2 : ΠU†
2

out
� M � ΠU2

out
� M, φ′

2 : ΠU†
2

out
� M � ΠU2

out
� M

[that lie over φ, φ′] as in Definition 3.3, (i), (a), respectively.
Next, we make the following observation:

Claim 3.7.A: φ2 and φ′
2 map the inertia subgroups of ΠU†

2
associ-

ated to the diagonal divisor of U †
2 isomorphically onto the inertia

subgroups of ΠU2
associated to the diagonal divisor of U2.

Indeed, Claim 3.7.A follows immediately from the discussion of Definition 3.3,
(i), (a). That is to say, it suffices to show that the inertia subgroups of ΠU†

2

associated to the diagonal divisor of U†
2 do not lie in the kernel of φ2 or φ′

2. On
the other hand, the assumption that any such inertia group lies in the kernel of
φ2 or φ′

2 leads immediately to a contradiction [cf. [MT], Theorem 1.5, applied
to the images via φ2 and φ′

2 of fiber subgroups of length 1; [MT], Proposition,
2.4, (v), and its proof [applied in the case of ΠU†

2
]; [CmbCsp], Proposition 1.7,

(d) [applied in the case of ΠU2
]].

Next, we verify the following assertion:

Claim 3.7.B: Ker(φ2) = Ker(φ′
2).

Indeed, write

φ∗ : ΠU†
out
� M � ΠU

out
� M, φ′

∗ : ΠU†
out
� M � ΠU

out
� M

for the ΠU -outer surjections determined by φ2, φ
′
2, respectively, via the outer

surjections ΠU†
2
� ΠU† , ΠU2

� ΠU induced by the respective second projections

[cf. the portion of Definition 3.3, (i), (a) concerning fiber subgroups]. Then it
follows immediately from Claim 3.7.A, together with a similar argument to
the argument applied in the proof of [CmbCsp], Proposition 1.2, (iii), that the
following assertion holds:

Claim 3.7.C: φ = φ∗, φ′ = φ′
∗. In particular, Ker(φ∗) = Ker(φ) =

Ker(φ′) = Ker(φ′
∗).

Thus, since Ker(φ2) and Ker(φ′
2) are topologically generated by [certain of the]

cuspidal inertia subgroups of fiber subgroups of ΠU†
2
of length 1 [cf. Definition

3.3, (i), (a)], we conclude, again from Claim 3.7.A [cf. also [CbTpII], Lemma
3.6, (i), (ii)], that Ker(φ2) = Ker(φ′

2). This completes the proof of Claim 3.7.B.
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It follows immediately from Claim 3.7.B that there exists a unique ΠU2 -outer

automorphism α : ΠU2

out
� M

∼→ ΠU2

out
� M such that φ2 = α ◦ φ′

2. On the other
hand, it follows from the CS-property, together with Definition 3.3, (i), (b),
that we may apply Theorem 3.6 to conclude that α is the identity, hence that
φ2 = φ′

2, φ = φ′. This completes the proof of Corollary 3.7.

4 Combinatorial construction of the field QBGT

In §3, we defined a certain class of closed subgroups BGT of GT [cf. Defi-
nition 3.3, (v)]. In this section, for each such closed subgroup BGT, we give a
purely combinatorial/group-theoretic construction of a set QBGT associated to
BGT equipped with “field-like operations”, together with a natural action by
CGT(BGT) that is compatible with these operations [cf. Theorem 4.4, (i)]. In
particular, when these operations determine a structure of field isomorphic to Q,

we construct a natural outer homomorphism CGT(BGT) → GQ
def
= Gal(Q/Q)

[cf. Theorem 4.4, (ii), (iii)].

Write X
def
= P1

Q
\{0, 1,∞}.

Definition 4.1. Let BGT ⊆ GT be a closed subgroup satisfying the BC-
property [cf. Definition 3.3, (v)]. For any arithmetic Belyi diagram B�

ΠU

out
� N −−−−→ ΠX

out
� N⏐⏐�

ΠX

out
� N

[where N is a normal open subgroup of BGT], write ΠB�

def
= ΠU ;

Cusp(B�)

for the set of conjugacy classes of cuspidal inertia subgroups [cf. [Tsjm], Theo-
rem 1.3, (i)] of ΠB� . Write

IBGT

for the set of the arithmetic Belyi diagrams over normal open subgroups of
BGT. We shall regard IBGT as a preordered set [i.e., a set equipped with a
reflexive and transitive binary relation] by means of the relation determined
by domination, i.e., the existence of an arithmetic domination [cf. Definition
3.3, (i); Proposition 3.4]. It follows immediately from the functorial nature of
the algorithm of Remark 3.3.3 [cf. also Remark 3.3.2; Proposition 3.5; [Tsjm],
Definition 1.4] that there is a natural action of CGT(BGT) on the preordered set
IBGT. Since BGT satisfies the COF-property [cf. Definition 3.3, (ii)], it follows
formally that the preordered set IBGT is directed, i.e., any pair of elements of
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the set admits a(n) [not necessarily minimal!] upper bound. Since BGT also
satisfies the RGC-property [cf. Definition 3.3, (iii)], if ‡B� ∈ IBGT dominates
†B� ∈ IBGT, then the unique geometric domination

Π‡B� � Π†B�

of †B� by ‡B� determines [cf. Proposition 3.4] a natural injection

κ†,‡ : Cusp(†B�) ↪→ Cusp(‡B�)

[which we shall often use to regard Cusp(†B�) as a subset of Cusp(‡B�)]. Thus,
we obtain a direct system (Cusp(‡B�), κ†,‡). We shall write

QBGT
def
= lim−→

B�∈IBGT

Cusp(B�) \ {∞},

Q
×
BGT

def
= QBGT \ {0}, Q

�
BGT

def
= QBGT \ {0, 1},

where 0, 1,∞ ∈ Cusp(B�) denote the elements determined by the ΠX -outer

surjection ΠU

out
� N � ΠX

out
� N [i.e., the horizontal arrow in B�] and the

conjugacy classes of cuspidal inertia subgroups of ΠX associated to 0, 1,∞,
respectively. We shall refer to QBGT as the BGT-realization of Q.

Remark 4.1.1. In the notation of Definition 4.1, it follows immediately from the
various definitions involved that the kernel of the unique geometric domination

Π‡B� � Π†B�

of †B� by ‡B� is the normal closed subgroup of Π‡B� topologically generated
by the cuspidal inertia subgroups associated to Cusp(‡B�) \ Cusp(†B�).

Proposition 4.2 (Countability of IBGT). In the notation of Definition 4.1,
IBGT is countable.

Proof. Let us observe that since ΠX is topologically finitely generated,

• the set of open subgroups of ΠX is countable;

• there exists a countable open basis of BGT ⊆ Out(ΠX).

Thus, since Cusp(B�) is finite, it follows from the various definitions involved
that IBGT is countable. This completes the proof of Proposition 4.2.

Proposition 4.3 (Natural action of CGT(BGT) on the set QBGT). There
is a natural continuous action of CGT(BGT) on the discrete set QBGT [cf. Def-
inition 4.1].
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Proof. In the notation of Definition 4.1, let σ ∈ CGT(BGT); x ∈ QBGT; B
� ∈

IBGT an arithmetic Belyi diagram

ΠU

out
� N −−−−→ ΠX

out
� N⏐⏐�

ΠX

out
� N

[where N is a normal open subgroup of BGT] such that Nσ def
= σNσ−1 ⊆ BGT

and x ∈ Cusp(B�). Recall that x is the conjugacy class of some cuspidal inertia
subgroup Ix of ΠU .

Next, let us recall the right-hand square in the diagram of the final display
of the proof of [Tsjm], Corollary 1.6, (i), in the case where we take “J” to
be GT [cf. also Remark 3.3.2]. In the notation of the present discussion, this
right-hand square determines a commutative diagram of profinite groups

ΠU

out
� N −−−−→ ΠX

out
� N

σ

⏐⏐�� σ

⏐⏐��

ΠUσ

out
� Nσ −−−−→ ΠX

out
� Nσ,

where the horizontal arrows are the ΠX -outer surjections induced by the natural
open immersions U ↪→ X, Uσ ↪→ X of hyperbolic curves; the left- (respectively,
the right-) hand vertical arrow is a ΠUσ -outer (respectively, ΠX -outer) isomor-
phism of profinite groups. Write xσ ∈ QBGT for the element determined by
σ(Ix). Thus, to obtain a well-defined action of CGT(BGT) on QBGT, it suffices
to show that xσ does not depend on the choice of B�. But this follows for-
mally from the COF-property of BGT, together with Proposition 3.5 and the
construction of xσ. To verify that the resulting action is continuous, it suffices
to observe that there exists an open subgroup H ⊆ CGT(BGT) [which may be
obtained, for instance, by forming the intersection of CGT(BGT) with the open
subgroup “N ⊆ GT” of [Tsjm], Definition 1.4] such that xσ = x for σ ∈ H.
This completes the proof of Proposition 4.3.

Theorem 4.4 (Natural “field-like” operations on QBGT). The set QBGT,
equipped with its natural action by CGT(BGT) [cf. Proposition 4.3], satisfies
the following properties:

(i) The set QBGT is equipped with natural operations

�BGT : QBGT ×QBGT → QBGT,

�BGT : QBGT ×QBGT → QBGT,
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as well as natural involutions [i.e., self-bijections which are their own in-
verses]

�−1
BGT : QBGT ∪ {∞} → QBGT ∪ {∞},

(1−�)BGT : QBGT ∪ {∞} → QBGT ∪ {∞},
all of which are equivariant with respect to the natural action of CGT(BGT)
on QBGT ∪ {∞}. These operations and involutions satisfy the following
properties:

�BGT(0, y)
def
= y, �BGT(0, y)

def
= 0, �BGT(1, y)

def
= y,

�−1
BGT(0)

def
= ∞, �−1

BGT(1)
def
= 1, �−1

BGT(∞)
def
= 0,

(1−�)BGT(0)
def
= 1, (1−�)BGT(1)

def
= 0, (1−�)BGT(∞)

def
= ∞.

(ii) If the operations �BGT and �BGT determine, on QBGT, the addition and
multiplication operations of a structure, on QBGT, of field isomorphic to
Q, then we shall say that BGT satisfies the ArBC-property [i.e., “arith-
metic Belyi compatibility property”]. If BGT satisfies the ArBC-property,
then there exists a field isomorphism Q

∼→ QBGT, as well as a natural
outer homomorphism CGT(BGT) → GQ.

(iii) Suppose that BGT admits a conducting field K that satisfies the ZISC-
property [cf. Definition 3.3, (vi)]. Then BGT satisfies the ArBC-
property.

Proof. First, we construct natural “field-like” operations on the set QBGT, as
described in assertion (i). Write 0, 1 ∈ QBGT for the elements determined,
respectively, by the conjugacy classes of cuspidal inertia subgroups of ΠX asso-
ciated to the cusps “0”, “1” of X. Let

y ∈ QBGT ∪ {∞}

(respectively,
y ∈ QBGT ∪ {∞};

x ∈ Q
�
BGT, y ∈ QBGT);

B� an arithmetic Belyi diagram

ΠU

out
� N

f−−−−→ ΠX

out
� N⏐⏐�

ΠX

out
� N

[where N is a normal open subgroup of BGT] such that x, y ∈ Cusp(B�). Write
ι : U ↪→ X for the open immersion that gives rise to the horizontal arrow f
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of B� [cf. [Tsjm], Definition 1.1, (i); [Tsjm], Definition 1.4]; t for the standard

coordinate on X
def
= P1

Q
\{0, 1,∞};

ιt
−1

: U ↪→ X

(respectively,
ι1−t : U ↪→ X;

ιt/x : U ↪→ X)

for the open immersion obtained from ι : U ↪→ X by composing with the
automorphism t 	→ t−1 ofX [i.e., the automorphism ofX that switches the cusps
“0” and “∞”] (respectively, composing with the automorphism t 	→ 1− t of X
[i.e., the automorphism ofX that switches the cusps “0” and “1”]; compactifying
at the cusps other than “0”, “x”, “∞” [i.e., instead of at the cusps other than
“0”, “1”, “∞”] and then dividing by x). Then it follows immediately from

[Tsjm], Theorem 1.3, (ii) [cf. Remark 3.3.2], that the open immersion ιt
−1

:
U ↪→ X (respectively, ι1−t : U ↪→ X; ιt/x : U ↪→ X) determines a ΠX -outer
surjection

f t−1

: ΠU

out
� N → ΠX

out
� N

(respectively,

f1−t : ΠU

out
� N → ΠX

out
� N ;

f t/x : ΠU

out
� N → ΠX

out
� N).

Thus, by considering y relative to f t−1

(respectively, f1−t; f t/x) [cf. Definition

4.1], we obtain a new element yt
−1 ∈ QBGT∪{∞} (respectively, y1−t ∈ QBGT∪

{∞}; yt/x ∈ QBGT). In particular, by applying the COF-property of BGT, one
verifies immediately that we obtain natural bijections

• {t−1} : QBGT ∪ {∞} ∼→ QBGT ∪ {∞};
• {1− t} : QBGT ∪ {∞} ∼→ QBGT ∪ {∞};
• {t/x} : QBGT

∼→ QBGT

such that {t−1}(y) = yt
−1

, {1 − t}(y) = y1−t, and {t/x}(y) = yt/x. Here, we
observe that {t−1} and {1− t} are involutions, while {t/x} and {t/x−1}, where
we write x−1 def

= {t/x}(1) ∈ QBGT, are inverse to one another. Write

�−1
BGT

def
= {t−1}, (1−�)BGT

def
= {1− t}.

Then it follows immediately from the various definitions involved that

�−1
BGT(0)

def
= ∞, �−1

BGT(1)
def
= 1, �−1

BGT(∞)
def
= 0,

(1−�)BGT(0)
def
= 1, (1−�)BGT(1)

def
= 0, (1−�)BGT(∞)

def
= ∞.
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For each (x, y) ∈ Q
�
BGT ×QBGT, write

�BGT(x, y)
def
= {t/{t−1}(x)}(y),

�BGT(0, y)
def
= 0, �BGT(1, y)

def
= y.

Thus, we obtain a multiplication map

�BGT : QBGT ×QBGT → QBGT.

Write
B�
−1

for the arithmetic Belyi diagram [over a suitable normal open subgroup of BGT
— cf. the subgroup “M” of [Tsjm], Definition 1.4] determined by the unique
[up to isomorphism] connected finite étale covering of X of degree 2 ramified
over 0 and ∞;

−1BGT ∈ QBGT

for the element of QBGT determined by the unique element of Cusp(B�
−1) \

{0, 1,∞}. Then we obtain an addition map

�BGT : QBGT ×QBGT → QBGT

by taking

�BGT(x, y)
def
= �BGT(x, {1− t}(�BGT(−1BGT,�BGT({t−1}(x), y)))),

�BGT(0, y)
def
= y,

where (x, y) ∈ Q
×
BGT ×QBGT.

Next, we verify that the natural action of CGT(BGT) on the set QBGT [cf.
Proposition 4.3] is compatible with the “field-like” operations constructed above.
Let σ ∈ CGT(BGT). Recall that the maps �BGT and �BGT are completely

determined by �−1
BGT = {t−1}, (1 − �)BGT = {1 − t}, {t/x} (for x ∈ Q

�
BGT),

and −1BGT. Thus, since 0σ = 0 and 1σ = 1, it suffices to verify the following
assertion:

Claim 4.4.A: Let x ∈ Q
�
BGT, y ∈ Q

×
BGT. Then

• {t−1}(yσ) = {t−1}(y)σ,
• {1− t}(yσ) = ({1− t}(y))σ,
• {t/xσ}(yσ) = ({t/x}(y))σ,
• (−1BGT)

σ = −1BGT.

First, it follows from the uniqueness of the connected finite étale covering ofX of
degree 2 ramified over 0 and ∞ that σ induces an automorphism of B�

−1. Then
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since 0σ = 0 and 1σ = 1, the equality (−1BGT)
σ = −1BGT follows immediately

from the definition of −1BGT. Next, let B� be an arithmetic Belyi diagram

ΠU

out
� N

f−−−−→ ΠX

out
� N⏐⏐�

ΠX

out
� N

[where N is a normal open subgroup of BGT] such that Nσ def
= σNσ−1 ⊆ BGT,

and x, y ∈ Cusp(B�). Then, by considering the [right-hand square in the final
display of the] proof of [Tsjm], Corollary 1.6, (i) [cf. also Remark 3.3.2; the
functorial algorithm of Remark 3.3.3], in the case where J = GT, we obtain a
commutative diagram

ΠU

out
� N −−−−→

f
ΠX

out
� N

σ

⏐⏐�� σ

⏐⏐��

ΠUσ

out
� Nσ −−−−→

fσ
ΠX

out
� Nσ,

where the horizontal arrows are the ΠX -outer surjections induced by the natural
open immersions U ↪→ X, Uσ ↪→ X of hyperbolic curves; the left- (respectively,
the right-) hand vertical arrow is a ΠUσ -outer (respectively, ΠX -outer) isomor-
phism of profinite groups.

Note that {t−1}(yσ) (respectively, {1 − t}(yσ); {t/xσ}(yσ)) is completely
determined by yσ and the ΠX -outer surjection

(fσ)t
−1

: ΠUσ

out
� Nσ → ΠX

out
� Nσ

(respectively,

(fσ)1−t : ΠUσ

out
� Nσ → ΠX

out
� Nσ;

(fσ)t/x
σ

: ΠUσ

out
� Nσ → ΠX

out
� Nσ),

which sends (∞, 1, 0) (respectively, (1, 0,∞); (0, xσ,∞)) to (0, 1,∞).
On the other hand, ({t−1}(y))σ (respectively, ({1− t}(y))σ; ({t/x}(y))σ) is

completely determined by yσ and the ΠX -outer surjection

σ ◦ f t−1 ◦ σ−1 : ΠUσ

out
� Nσ → ΠX

out
� Nσ

(respectively,

σ ◦ f1−t ◦ σ−1 : ΠUσ

out
� Nσ → ΠX

out
� Nσ;

σ ◦ f t/x ◦ σ−1 : ΠUσ

out
� Nσ → ΠX

out
� Nσ),

which sends (∞, 1, 0) (respectively, (1, 0,∞); (0, xσ,∞)) to (0, 1,∞).
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Note that the ΠX -outer surjections of the displays of the last two paragraphs
exhibit analogous behavior on the cusps [i.e., more precisely, on the conjugacy
classes of cuspidal inertia subgroups]. Thus, we conclude from the above com-
mutative diagram [cf. also Remark 3.3.2; the functorial algorithm of Remark
3.3.3] that

• (fσ)t
−1

= σ ◦ f t−1 ◦ σ−1,

• (fσ)1−t = σ ◦ f1−t ◦ σ−1,

• (fσ)t/x
σ

= σ ◦ f t/x ◦ σ−1.

This completes the proof of Claim 4.4.A, hence of assertion (i). Assertion (ii)
follows immediately from the various definitions involved.

Next, we verify assertion (iii). In the following discussion, we shall identify

X(Q) with Q
�
. We begin by observing that, for any pair consisting of

• an arithmetic Belyi diagram B�

ΠU

out
� N −−−−→ ΠX

out
� N⏐⏐�

ΠX

out
� N

[where N is a normal open subgroup of BGT] and

• a finite subset F ⊆ Q
�
,

there exist

• an open immersion U† ↪→ U (↪→ X) over Q such that

F ⊆ X(Q) \ U†(Q) ⊆ X(Q) = Q
�

[where we regard U †(Q) as a subset of X(Q) by means of the composite
of the open immersion U † ↪→ U with the open immersion U ↪→ X that
gives rise to the horizontal arrow of the given arithmetic Belyi diagram],

• a normal open subgroup M† ⊆ N of BGT, and

• an arithmetic Belyi diagram †B�

ΠU†
out
� M† −−−−→ ΠX

out
� M†⏐⏐�

ΠX

out
� M†

[where the restriction ΠU† → ΠX of the horizontal arrow to ΠU† is the
ΠX -outer surjection that arises from the above open immersion U† ↪→
U (↪→ X) over Q]
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such that the outer action of M† on ΠU† is compatible, relative to the outer
surjection ΠU† � ΠU [induced by the open immersion U† ↪→ U ], with the
restriction to M† ⊆ N of the outer action of N on ΠU . Indeed, write g : U → X
for the connected finite étale covering that gives rise to the vertical arrow of the
given arithmetic Belyi diagram. Let ∗B� be an arithmetic Belyi diagram

ΠU∗
out
� M∗ −−−−→ ΠX

out
� M∗⏐⏐�

ΠX

out
� M∗

[where M∗ is a normal open subgroup of BGT] such that

U∗(Q) ⊆ X(Q) \ g(U(Q) ∩ F ) ⊆ X(Q) = Q
�

[cf., e.g., [NCBel], Corollary 1.1], where we regard U∗(Q) as a subset of X(Q)
by means of the open immersion U∗ ↪→ X that gives rise to the horizontal arrow

of ∗B�. Write U† def
= g−1(U∗). Thus, we conclude that there exist a normal

open subgroup M† ⊆ M∗ ⊆ N of BGT and a diagram

ΠU†
out
� M† −−−−→ ΠU

out
� N |M† −−−−→ ΠX

out
� N |M†⏐⏐� ⏐⏐�

ΠU∗
out
� M∗|M† −−−−→ ΠX

out
� N |M†⏐⏐�

ΠX

out
� M∗|M†

— where the upper right-hand portion of the diagram is the diagram obtained
by restricting B� to M†; the lower left-hand portion of the diagram is the
diagram obtained by restricting ∗B� to M†; the upper left-hand square of the
diagram is cartesian — such that the composite of the upper horizontal arrows
and the composite of the left-hand vertical arrows determine an arithmetic Belyi
diagram †B�

ΠU†
out
� M† −−−−→ ΠX

out
� M†⏐⏐�

ΠX

out
� M†

satisfying the desired property. This completes the proof of the above observa-
tion.

Next, let us fix an element B� ∈ IBGT. Then by applying the above obser-
vation in a recursive fashion [i.e., by applying the observation to B� and some
finite subset F to obtain †B�, then applying the observation to †B� and some
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other finite subset †F to obtain ‡B�, etc.], we conclude [cf. the definition of
QBGT] that one may construct a family of injections{

φB�,F : F ∪ {0, 1} ↪→ QBGT

}
{F⊆Q

�}

[indexed by the finite subsets F ⊆ Q
�
] such that the following conditions are

satisfied:

• Cusp(B�) \ {∞} ⊆ ⋃
F⊆Q

�
Im(φB�,F ).

• If F1 ⊆ F2 ⊆ Q
�
, then (φB�,F2

)|F1
= φB�,F1

.

Thus, the various injections φB�,F , indexed by the finite subsets F ⊆ Q
�
, de-

termine an injection
φB� : Q ↪→ QBGT

associated to B� ∈ IBGT such that Cusp(B�) \ {∞} ⊆ Im(φB�).
Next, let K be a conducting field for BGT that satisfies the ZISC-property.

Then one verifies immediately that, to verify assertion (iii), by replacing K and
BGT, respectively, by K ∩Q [where we think of K as being embedded in some
algebraic closure K of K that contains Q] and a suitable GT-conjugate of BGT,
we may assume without loss of generality that

GK ⊆ BGT (⊆ GT).

Then, to verify assertion (iii), it suffices to verify the following assertion:

Claim 4.4.B: The injection φB� is, in fact, a bijection. Moreover, the
“field-like” operations �BGT and �BGT on QBGT induce the usual
operations of addition and multiplication on Q via φB� .

Indeed, let x ∈ QBGT;
†B� an arithmetic Belyi diagram

ΠU†
out
� N† −−−−→ ΠX

out
� N†⏐⏐�

ΠX

out
� N†

[where N† is a normal open subgroup of BGT] such that x ∈ Cusp(†B�). Then
observe that, by restricting †B� to N† ∩ GK , we obtain an element xQ ∈ Q

associated to x ∈ Cusp(†B�) that, in light of the ZISC-property of K and
the COF-property of BGT, is independent of the choice of †B�. Therefore, it
follows immediately from the definition of φB� , together with the ZISC-property
of K and the COF-property of BGT, that φB�(xQ) = x. In particular, we

conclude that φB� is bijective. Next, we recall that {t−1}, {1−t}, and {t/x} (for

x ∈ Q
�
BGT) are defined by using the scheme-theoretic morphisms ιt

−1

, ι1−t, and
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ιt/x. In particular, by restricting via GK ⊆ BGT [cf. the functorial algorithm
of Remark 3.3.3] and applying the ZISC-property of K, we conclude that the

operations {t−1}, {1− t}, and {t/x} (for x ∈ Q
�
BGT) induce, via φB� , the usual

involutions and operation of multiplication by x−1

Q
on Q. In a similar vein,

it follows immediately from the definition of −1BGT, together with the ZISC-
property of K, that φB�(−1) = −1BGT. Thus, it follows immediately from the
various definitions involved [cf. also the bijectivity of φB� ] that the “field-like”
operations �BGT and �BGT on QBGT induce the usual operations of addition
and multiplication on Q via φB� . This completes the proof of Claim 4.4.B, hence
of assertion (iii) [and indeed of Theorem 4.4].

Remark 4.4.1. Let p be a prime number, F a field which is a finite extension
of the field of rational numbers Q or the field of p-adic numbers Qp. Thus, we
have a natural inclusion Q ⊆ F . Let F be an algebraic closure of F . By abuse
of notation, we shall identify Q with the algebraic closure of Q in F . Write

GF
def
= Gal(F/F ). Thus, we obtain natural injections

GF ↪→ GQ ↪→ GT ⊆ Out(ΠX)

[cf. the discussion at the beginning of [Tsjm], Introduction], which we use to
identify GF with its image in GT. Then it follows immediately from the fact
that F is Kummer-faithful [cf. [AbsTopIII], Definition 1.5; [AbsTopIII], Remark
1.5.4, (i)], together with a similar argument to the argument applied in the proof
of [Tsjm], Corollary 3.2, that F satisfies the ISC-property, and that GF satisfies
the CS-property. Thus, we conclude from Corollary 3.7 that GF satisfies the
RGC-property. Since, in this situation, the COF-property is immediate, we thus
conclude [cf. Theorem 4.4, (iii)] that GF satisfies the ArBC-property, i.e., that
we may take “BGT” to be GF , and, moreover, that the additional condition of
Theorem 4.4, (ii), holds. Finally, we observe that the evident scheme-theoretic
interpretation of the various arithmetic Belyi diagrams that appear determines
a natural isomorphism of fields QGF

∼→ Q that is compatible, relative to the
natural injection GF ↪→ GQ, with the respective natural actions, i.e., we obtain
a diagram as follows:

GF ↪→ GQ

� �
QGF

∼→ Q.

Remark 4.4.2. It is not clear to the authors at the time of writing whether or
not GT satisfies the BC-property, i.e., whether or not “GT = BGT”.

Corollary 4.5 (Group-theoretic nature of BGT). Let n be an integer such
that n ≥ 2. Write Xn for the n-th configuration space of X = P1

Q
\{0, 1,∞};

GTn
def
= OutgF(ΠXn

) ⊆ Out(ΠXn
). Recall that we have a natural isomorphism
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GTn
∼→ GT [cf. the first display of [CbGT], Corollary C]. Then one may

reconstruct from ΠXn , in a purely combinatorial/group-theoretic way, i.e., in
a way that only involves the structure of ΠXn as a topological group [cf. also
Remark 4.5.1 below],

• the subgroups GTn ⊆ Out(ΠXn
), GT ⊆ Out(ΠX), where we regard ΠX as

the quotient of ΠXn by a generalized fiber subgroup, and we recall [cf. the
first display of [CbGT], Corollary C] that Out(ΠXn) normalizes GTn and
acts, by conjugation, on GTn via inner automorphisms of GTn;

• the natural isomorphism GTn
∼→ GT;

• the collection of closed subgroups J ⊆ GTn such that J satisfies [i.e., the
image of J , via the natural isomorphism, in GT satisfies] the BC-property
[cf. Definition 3.3, (v)];

• the collection of closed subgroups J ⊆ GTn such that J satisfies [i.e.,
the image of J , via the natural isomorphism, in GT satisfies] the ArBC-
property [cf. Theorem 4.4, (ii)].

If, moreover, a closed subgroup J = BGT ⊆ GT ⊆ Out(ΠX) satisfies the BC-
property, then the construction from ΠXn [cf. also Remark 4.5.1 below] of

• the preordered set of arithmetic Belyi diagrams IBGT [cf. Definition 4.1],

• the natural action of CGT(BGT) on the preordered set IBGT [cf. Definition
4.1],

• the set Cusp(−) associated to any element of IBGT [cf. Definition 4.1],

• the direct limit QBGT [cf. Definition 4.1],

• the natural continuous action of CGT(BGT) on QBGT [cf. Proposition
4.3], and

• the field structure on QBGT, whenever J satisfies the ArBC-property [cf.
Theorem 4.4, (ii)],

may be phrased in purely combinatorial/group-theoretic terms, i.e., in terms that
only involve the structure of ΠXn

as a topological group.

Proof. The various assertions of Corollary 4.5 follow immediately from Defini-
tions 3.3, 4.1; Remarks 3.3.2, 3.3.3 [cf. also Remark 4.5.1 below]; Proposition
4.3 [and its proof]; Theorem 4.4 [and its proof]; [CbGT], Theorem A, (ii); the
first display of [CbGT], Corollary C; [Tsjm], Theorem 1.3, (i); [Tsjm], Definition
1.4.

Remark 4.5.1.
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(i) Here, in the context of Remark 3.3.3, (i), we observe that the natural
isomorphism GTn

∼→ GT [cf. the first display of [CbGT], Corollary C],
together with the algorithm of Corollary 3.1, (ii), implies that there is in
fact no substantive difference between

• constructions starting from ΠXn [where we recall that n ≥ 2] and

• constructions starting from ΠX3
.

(ii) In the situation discussed in (i) [cf. also Remark 3.3.3, (i)], suppose that
we apply the constructions discussed in Corollary 4.5 to ΠX3

, regarded as
an abstract topological group. Then the algorithm of Corollary 3.1, (ii),
determines a subgroup

S3 ⊆ Out(ΠX),

[i.e., where, by a slight abuse of notation, we use the notation “S3” to
denote this subgroup which is isomorphic to the symmetric group on 3
letters] of the group of outer automorphisms Out(ΠX) of the quotient ΠX

of the given abstract topological group ΠX3
discussed in Remark 3.3.3,

(i), (d).

(iii) We maintain the notation of (ii). Then observe that since the quotient ΠX

of the given abstract topological group ΠX3
is not equipped with a natural

bijection between its set of cusps and the set of symbols {0, 1,∞}, it follows
that this quotient ΠX is only related to any of the “ΠX ’s” that appear in
the arithmetic Belyi diagrams discussed in the statement of Corollary 4.5
[not by a single outer isomorphism, but rather] by an S3-torsor of outer
isomorphisms.

5 Combinatorial construction of the conjugacy
class of subgroups of GT determined by GQ

Write X
def
= P1

Q
\{0, 1,∞}; Xn for the n-th configuration space associated

to X, where n ≥ 2. In this section, we reconstruct from the topological group
ΠXn , in a purely combinatorial/group-theoretic way, the conjugacy class of sub-
groups of the Grothendieck-Teichmüller group GT ⊆ Out(ΠX) determined by
the absolute Galois group of Q as the set of maximal closed subgroups BGT of
GT satisfying a certain purely combinatorial/group-theoretic condition that we
refer to as the AA-property [cf. Definition 5.12; Theorem 5.17, (ii)].

Write ΠX0∞ for the quotient of ΠX by the normal closed subgroup topologi-
cally generated by the cuspidal inertia subgroups associated to the cusp “1” [so

ΠX0∞ is isomorphic to Ẑ as an abstract topological group]. Let J be a closed
subgroup of GT ⊆ Out(ΠX). Then we shall write [by a slight abuse of notation]

ΠX

out
� J � ΠX0∞ � J
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for the quotient by the normal closed subgroup topologically generated by the
cuspidal inertia subgroups associated to the cusp “1”.

Definition 5.1. In the notation of Definition 4.1:

(i) Write

Π
def
= lim←−

B�∈IBGT

ΠB� ,

where the transition morphisms are the unique geometric dominations

Π‡B� � Π†B� .

Here, we observe that even though these transition morphisms are, strictly
speaking, outer [surjective] homomorphisms, it follows immediately from
Proposition 4.2 that one may choose a coherent system of homomorphism
representatives of the given system of outer homomorphisms; in partic-
ular, Π is well-defined as a profinite group, up to inner automorphisms.
It follows immediately from Proposition 3.5, together with the various
definitions involved, that the natural action of CGT(BGT) on IBGT [cf.
Definition 4.1] induces a natural outer action of CGT(BGT) on the group
Π.

(ii) In the context of the inverse limit of Definition 5.1, (i), we shall refer to
an inverse limit of cuspidal inertia subgroups of some cofinal collection
of ΠB� ’s [where the induced transition morphisms are necessarily isomor-
phisms] as a cuspidal inertia subgroup of Π. For each open subgroup Π∗ of
Π, we shall refer to the intersection of Π∗ with a cuspidal inertia subgroup
of Π as a cuspidal inertia subgroup of Π∗ and write

Cusp(Π∗)

for the set of Π∗-conjugacy classes of cuspidal inertia subgroups of Π∗.
Thus, it follows immediately from the definitions that we obtain a natural
surjection

Cusp(Π∗) � Cusp(Π)

with finite fibers. For each finite subset E∗ ⊆ Cusp(Π∗), write

Π∗ � Π∗
E∗

for the topologically finitely generated [cf. Remark 5.1.1 below] quotient
profinite group of Π∗ obtained by forming the quotient of Π∗ by the nor-
mal closed subgroup topologically generated by the cuspidal inertia sub-
groups associated to Cusp(Π∗)\E∗. Observe that the natural outer action
of CGT(BGT) on Π [cf. Definition 5.1, (i)] induces a natural action of
CGT(BGT) on Cusp(Π). Finally, we observe that it follows immediately
from the various definitions involved [cf., especially, Definition 4.1] that
we have a natural CGT(BGT)-equivariant bijection

Cusp(Π)
∼→ QBGT ∪ {∞}.
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(iii) Write
CBGT

for the set of finite subsets of Cusp(Π) that contain {0, 1,∞}. Observe
that the natural action of CGT(BGT) on Cusp(Π) [cf. Definition 5.1, (ii)]
induces a natural action of CGT(BGT) on CBGT. We shall write

Cst
BGT ⊆ CBGT

for the subset of CGT(BGT)-stable elements, i.e., elements fixed by the
action of CGT(BGT). Finally, we observe that the assignment IBGT �
B� 	→ Cusp(B�) ∈ CBGT induces a natural CGT(BGT)-equivariant map

IBGT → CBGT.

Remark 5.1.1. In the notation of Definition 5.1, it follows immediately from
Remark 4.1.1 that the kernel of the natural outer surjection

Π � ΠB�

is the normal closed subgroup of Π topologically generated by the cuspidal
inertia subgroups associated to Cusp(Π)\Cusp(B�). In particular, the quotient
Π � ΠB� may be naturally identified with the quotient

Π � ΠCusp(B�)

of the third display of Definition 5.1, (ii) [i.e., where we take “Π∗” to be Π and
“E∗” to be Cusp(B�)].

Remark 5.1.2. Let E ∈ Cst
BGT [cf. Definition 5.1, (iii)]. Then it follows im-

mediately from the various definitions involved that the natural outer action of
CGT(BGT) on Π [cf. Definition 5.1, (i)] induces, via the natural outer surjection
Π � ΠE , a natural continuous outer action of CGT(BGT) on the topologically
finitely generated profinite group ΠE [cf. the discussion entitled “Topological
groups” in Notations and Conventions; Definition 5.1, (ii); [Tsjm], Lemma 1.2,
(b); [Tsjm], Theorem 1.3, (ii); [Tsjm], Definition 1.4].

Remark 5.1.3. Observe that it follows immediately from the continuity [cf.
Proposition 4.3] of the natural action of CGT(BGT) onQBGT∪{∞} ( ∼→ Cusp(Π))
[cf. Definition 5.1, (ii)], together with the COF-property of BGT, that

for any E ∈ CBGT, there exists an element Est ∈ Cst
BGT (respectively,

B� ∈ IBGT) such that E ⊆ Est (respectively, E ⊆ Cusp(B�)).
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In particular, we conclude [cf. Remarks 5.1.1, 5.1.2; Proposition 5.2, (ii), below]
that we may write

Π = lim←−
E∈CBGT

ΠE = lim←−
Est∈Cst

BGT

ΠEst ,

Π
out
� BGT = lim←−

Est∈Cst
BGT

ΠEst

out
� BGT

—where, in the inverse limits, we regard CBGT and Cst
BGT as directed preordered

sets by means of the relation of inclusion of subsets of Cusp(Π).

Proposition 5.2 (Basic properties of Π). In the notation of Definition 5.1,
the following hold:

(i) For each E ∈ CBGT of cardinality r, there exists an isomorphism of profi-
nite groups between ΠE, on the one hand, and the étale fundamental group
of an open subscheme of X obtained by removing r−3 distinct points from
X, on the other, that induces a bijection between the respective sets of cus-
pidal inertia subgroups.

(ii) For each E ∈ CBGT, ΠE is slim. In particular, Π is slim.

(iii) The group Π
out
� BGT admits a natural structure of profinite group.

(iv) Let Π∗ be a normal open subgroup of Π. Then, for any sufficiently small
normal open subgroup M ⊆ BGT, there exist an outer action of M on Π∗

and an open injection Π∗ out
� M ↪→ Π

out
� BGT such that

(a) the outer action of M on Π∗ preserves the set of cuspidal inertia
subgroups of Π∗;

(b) the outer action of M on Π∗ extends uniquely [cf. the slimness of Π]
to a Π∗-outer action on Π that is compatible with the outer action of

BGT (⊇ M) on Π; the injection Π∗out�M ↪→ Π
out
�BGT is the injection

determined by the inclusions Π∗ ⊆ Π and M ⊆ BGT, together with
the Π∗-outer actions of M on Π∗ and Π.

(v) In the notation of (iv), the homomorphism Π∗ out
� M → Aut(Π∗) deter-

mined by conjugation is injective.

Proof. Assertion (i) follows immediately from the various definitions involved.
Assertion (ii) follows immediately from [MT], Proposition 1.4. Assertion (iii)
follows immediately, in light of the second line of the final display of Remark
5.1.3, from Remark 5.1.2. Next, since, in the notation of Definition 5.1, (i), Π∗

arises as the inverse image in Π of some normal open subgroup of some ΠB� ,
assertion (iv) follows immediately from a similar argument to the argument
applied in the proof of [Tsjm], Lemma 1.2.
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Finally, we verify assertion (v). First, we note that since Π, hence also Π∗, is

slim [cf. Proposition 5.2, (ii)], the restriction of the homomorphism Π∗ out
� M →

Aut(Π∗) to Π∗ is injective. Note also that since the natural surjection Π � ΠX

is compatible with the respective outer actions of M , and M ⊆ GT ⊆ Out(ΠX),
the natural homomorphism M → Out(Π) is injective. In particular, since Π is
slim, it follows immediately from condition (b) of Proposition 5.2, (iv), that the
natural homomorphism M → Out(Π∗) is injective. Thus, we conclude that the

homomorphism Π∗ out
� M → Aut(Π∗) is injective. This completes the proof of

assertion (v), hence of Proposition 5.2.

Definition 5.3. In the following, we consider the analogues of [Tsjm], Definition
1.5, (i), (ii); [Tsjm], Corollary 1.6, (ii), obtained by replacing “ΠX” by ΠX0∞ .
Let J be a closed subgroup of GT ⊆ Out(ΠX).

(i) Fix an arithmetic Belyi diagram B�

ΠU

out
� M −−−−→ ΠX

out
� M⏐⏐�

ΠX

out
� M

[cf. [Tsjm], Definition 1.4]. Write

D0∞(B�,M, J)

for the set consisting of the images via the natural composite ΠX0∞ -outer

homomorphism ΠU

out
� M � ΠX

out
� M ↪→ ΠX

out
� J � ΠX0∞ � J of the

normalizers in ΠU

out
� M of the cuspidal inertia subgroups of ΠU that are

not associated to 0 and ∞;

D0∞(B�, J)

for the quotient set
( �M†⊆J D0∞(B�|M† ,M †, J)

)
/ ∼, where M† ranges

over the normal open subgroups of J contained in M , and we write
D0∞(B�|M† ,M†, J) � GM† ∼ GM‡ ∈ D0∞(B�|M‡ ,M‡, J) if GM†∩GM‡ is
open in both GM† and GM‡ . Finally, we observe that ΠX0∞ acts naturally
on D0∞(B�,M, J) and D0∞(B�, J).

(ii) Write

D0∞(J)

59



for the quotient set
( �B� D0∞(B�, J)

)
/ ∼, where B� ranges over all

arithmetic Belyi diagrams, and we write D0∞(†B�, J) � G†B� ∼ G‡B� ∈
D0∞(‡B�, J) if GM† ∩GM‡ is open in both GM† and GM‡ for some repre-
sentative GM† (respectively, GM‡) of G†B� (respectively, G‡B�). Observe
that ΠX0∞ acts naturally on D0∞(J).

(iii) Write

D0∞(J)

for the quotient set D0∞(J)/ΠX0∞ .

Remark 5.3.1. In the following, we consider certain slightly generalized ana-
logues of [Tsjm], Corollary 1.6, (ii), (iii), obtained by replacing “ΠX” by ΠX0∞ .
Let J be a closed subgroup of GT ⊆ Out(ΠX). Then it follows immediately
from a similar argument [cf. also Remarks 3.3.2, 3.3.3] to the argument ap-
plied in the proof of [Tsjm], Corollary 1.6, together with the various definitions
involved, that:

• D0∞(J) admits a natural action by CGT(J), hence, in particular, by J .

• Let J1 and J2 be closed subgroups of GT. If J1 ⊆ J2 ⊆ GT, then the
inclusion J1 ⊆ J2 induces, by considering the intersection of subgroups of
ΠX0∞ � J2 with ΠX0∞ � J1, a natural surjection

D0∞(J2) � D0∞(J1)

that is equivariant with respect to the natural actions of J1 (⊆ J2) on the
domain and codomain.

Lemma 5.4 (Kummer classes of group-theoretic constant functions).
We maintain the notation of Definitions 4.1, 5.3. Then the following hold:

(i) There exists a natural injection

ιBGT : D0∞(BGT) ↪→ lim−→
M⊆BGT

H1(M,ΠX0∞),

where M ranges over the normal open subgroups of BGT.

(ii) There exists a natural surjection

ψBGT : Q
×
BGT � D0∞(BGT).

(iii) The above maps ιBGT and ψBGT are compatible with the respective natural
actions of CGT(BGT) [cf. Proposition 4.3, Remark 5.3.1].
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(iv) The composite

ιBGT ◦ ψBGT : Q
×
BGT → lim−→

M⊆BGT

H1(M,ΠX0∞)

is compatible with the operations “�BGT” and “�−1
BGT” on the domain

[cf. Theorem 4.4, (i)] and the corresponding operations arising from the
natural group structure on the codomain. In particular, the image of this
composite is a subgroup of the codomain.

Proof. First, we verify assertion (i). Let I1 be a cuspidal inertia subgroup of
ΠX associated to the cusp “1”. Then the image of the normalizer

N
ΠX

out
� BGT

(I1) ⊆ ΠX

out
� BGT

via the natural surjection ΠX

out
� BGT � ΠX0∞ �BGT determines a section s1

[cf. [CmbGC], Proposition 1.2, (ii)] of the second to last arrow of the natural
exact sequence

1 −→ ΠX0∞ −→ ΠX0∞ � BGT −→ BGT −→ 1.

On the other hand, note that an element x ∈ D0∞(B�,M,BGT), where B�

denotes an arithmetic Belyi diagram as in Definition 5.3, (i) [i.e., where we take
“J” to be BGT], determines a section sx [cf. [CmbGC], Proposition 1.2, (ii)]
of the restriction to M of the second to last arrow of the above exact sequence.
Thus, by forming the difference κx between sx and the restriction to M of s1,
one verifies immediately that the assignment sx 	→ κx determines, by allowing
B� ∈ IBGT [hence also “M”] to vary, a natural map

ιBGT : D0∞(BGT) → lim−→
M⊆BGT

H1(M,ΠX0∞),

whereM ranges over the normal open subgroups of BGT. Finally, the injectivity
of ιBGT follows immediately from the definitions of D0∞(−) andH1(−,−). This
completes the proof of assertion (i). Assertion (ii) follows immediately from the

definitions of Q
×
BGT and D0∞(BGT). Assertion (iii) follows immediately from

the definitions of the natural actions of CGT(BGT) [cf., especially, the proof of
Proposition 4.3]. Assertion (iv) follows immediately from the construction of the
multiplication operation on the field QBGT [i.e., the construction of “�BGT” in
the proof of Theorem 4.4, (i)] by means of the well-known natural group structure
on P1

Q
\{0,∞}, i.e., “(Gm)Q”. This completes the proof of Lemma 5.4.

In the remainder of the present paper, we shall identify D0∞(BGT) with
Im(ιBGT) via the natural injection ιBGT.

Proposition 5.5 (Synchronizations of cuspidal inertia subgroups). We
maintain the notation of Definition 5.1. Then the following hold:
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(i) For each cuspidal inertia subgroup Ix of Π associated to x ∈ Cusp(Π), the
natural scheme-theoretic isomorphism

Ix
∼→ ΠX0∞

may be reconstructed, in a purely combinatorial/group-theoretic way, from
the collection of data

(Π; Cusp(Π); {0,∞} ⊆ Cusp(Π))

consisting of

• a profinite group Π;

• a set Cusp(Π) of conjugacy classes of subgroups of Π;

• a subset {0,∞} ⊆ Cusp(Π) of cardinality 2 [equipped with labels “0”,
“∞”] of the set Cusp(Π).

(ii) Let Π∗ ⊆ Π be an open subgroup; x ∈ Cusp(Π∗); I∗x a cuspidal inertia
subgroup of Π∗ associated to x. Then one may construct a natural iso-
morphism

I∗x
∼→ ΠX0∞

as follows: Write Ix
def
= NΠ(I

∗
x). Note that Ix = NΠ(Ix) = CΠ(Ix) =

CΠ(I
∗
x) is the unique cuspidal inertia subgroup of Π containing I∗x [cf.

Proposition 5.2, (i); [CmbGC], Proposition 1.2, (i), (ii)], and that the
subgroup I∗x ⊆ Ix is of finite index m. Then since cuspidal inertia sub-

groups are abstractly isomorphic to Ẑ [cf. [CmbGC], Remark 1.1.3], divi-
sion by m determines an isomorphism I∗x

∼→ Ix. Thus, by composing with
the isomorphism of (i), we obtain a natural isomorphism I∗x

∼→ ΠX0∞ .

Proof. First, we verify assertion (i). Let I0 be a cuspidal inertia subgroup of Π
associated to the cusp “0 ∈ Cusp(Π)”. Write

Π � Π{0,x}

for the quotient profinite group of Π obtained by forming the quotient of Π
by the normal closed subgroup topologically generated by the cuspidal inertia
subgroups associated to Cusp(Π) \ {0, x}. Then the surjection Π � Π{0,x}
induces isomorphisms

α0 : I0
∼→ Π{0,x}, αx : Ix

∼→ Π{0,x}.

Write α : Ix
∼→ I0 for the composite of α−1

0 ◦αx with the inversion map I0
∼→ I0.

Thus, by composing α with the restriction to I0 of the natural surjection Π �
ΠX0∞ , we obtain an isomorphism Ix

∼→ ΠX0∞ . The desired functoriality follows
immediately from the construction. This completes the proof of assertion (i).

Assertion (ii) follows immediately from the various definitions involved. This
completes the proof of Proposition 5.5.
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Definition 5.6. In the notation of Definition 5.1, let Π∗ ⊆ Π be an open
subgroup. Fix

• a normal open subgroup M ⊆ BGT,

• an outer action of M on Π∗, and

• an open injection fM : Π∗ out
� M ↪→ Π

out
� BGT

such that

(a) the outer action of M on Π∗ preserves the set of cuspidal inertia subgroups
of Π∗;

(b) the outer action of M on Π∗ extends uniquely [cf. the slimness of Π]
to a Π∗-outer action on Π that is compatible with the outer action of

BGT (⊇ M) on Π; the injection Π∗ out
� M ↪→ Π

out
� BGT is the injection

determined by the inclusions Π∗ ⊆ Π and M ⊆ BGT, together with the
Π∗-outer actions of M on Π∗ and Π

[cf. Proposition 5.2, (iv)]. Write

I(Π∗,Π)

for the set of open injections fΠ∗ : Π∗ ↪→ Π satisfying the following properties:

(1) For each cuspidal inertia subgroup I∗ of Π∗, the commensurator CΠ(fΠ∗(I∗))
of fΠ∗(I∗) in Π is a cuspidal inertia subgroup of Π [which implies, by
Proposition 5.5, (ii), that CΠ(fΠ∗(I∗)) = NΠ(fΠ∗(I∗))].

(2) For each cuspidal inertia subgroup I of Π, the inverse image f−1
Π∗ (I) ⊆ Π∗

is a cuspidal inertia subgroup of Π∗.

(3) Let I∗ be a cuspidal inertia subgroup of Π∗; I a cuspidal inertia subgroup
of Π such that I∗ = f−1

Π∗ (I). Then the composite

ΠX0∞
∼← I∗ ↪→ I

∼→ ΠX0∞

—where the first and final arrows are the isomorphisms of Proposition 5.5,
(i), (ii) — coincides with the homomorphism determined by multiplication
by some positive integer.

(4) For any sufficiently small normal open subgroup N∗ ⊆ M of BGT, there
exists a(n) [necessarily unique — cf. Remark 5.6.1 below] open injection

Π∗ out
� N∗ ↪→ Π

out
� N∗

that is compatible with the open injection between respective subgroups
fΠ∗ : Π∗ ↪→ Π and the surjections to N∗ (⊆ BGT).
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Remark 5.6.1. Note that any open injection Π∗out�N∗ ↪→ Π
out
�N∗ as in Definition

5.6, (4), is unique. Indeed, let f : Π∗ out
� N∗ ↪→ Π

out
� N∗ be an open injection as

in Definition 5.6, (4); Π∗∗ ⊆ Π an open subgroup such that Π∗∗ ⊆ fΠ∗(Π∗), and

Π∗∗ ⊆ Π
out
� N∗ is a normal closed subgroup. Write AutΠ∗∗(Π) ⊆ Aut(Π) for the

subgroup of automorphisms that preserve the normal open subgroup Π∗∗ ⊆ Π.
Then we have a commutative diagram

Π∗ out
� N∗ f−−−−→ Π

out
� N∗⏐⏐� ⏐⏐�

Aut(Π∗∗) ←−−−− AutΠ∗∗(Π),

where the vertical arrows denote the injections determined by the respective
actions by conjugation; the lower horizontal arrow denotes the natural injection

[cf. Proposition 5.2, (ii)]. Thus, we conclude that the open injection f : Π∗ out
�

N∗ ↪→ Π
out
� N∗ is uniquely determined by the open injection fΠ∗ and the

respective outer actions of N∗ on Π∗ and Π, hence that any open injection as
in Definition 5.6, (4), is unique.

Remark 5.6.2. In the notation of Definition 5.6, let Π∗∗ ⊆ Π be an open sub-
group contained in Π∗. Then the inclusion Π∗∗ ⊆ Π∗ determines a natural map
I(Π∗,Π) → I(Π∗∗,Π) [cf. Propositions 5.2, (iv); 5.5, (ii)].

Proposition 5.7 (Kummer classes of group-theoretic nonconstant func-
tions). In the notation of Definition 5.6, let fΠ∗ ∈ I(Π∗,Π). Then fΠ∗ natu-
rally determines an element of

lim−→
N∗⊆BGT

H1(Π∗ out
� N∗,ΠX0∞),

where N∗ ranges over the normal open subgroups of BGT. In particular, we
obtain a natural map

κΠ∗ : I(Π∗,Π) → lim−→
N∗⊆BGT

H1(Π∗ out
� N∗,ΠX0∞).

Proof. Let Π∗ out
� N∗ ↪→ Π

out
� N∗ be an open injection as in Definition 5.6, (4).

Write

sfΠ∗ : Π∗ out
� N∗ ↪→ Π

out
� N∗ � ΠX0∞ �N∗

for the composite of this open injection Π∗ out
� N∗ ↪→ Π

out
� N∗ with the natural

ΠX0∞ -outer surjection Π
out
� N∗ � ΠX0∞ � N∗. Let I1 be a cuspidal inertia
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subgroup of ΠX associated to the cusp “1”. Then I1 determines a section s1|N∗

of the surjection ΠX0∞ � N∗ � N∗ [cf. the proof of Lemma 5.4, (i)]. In

particular, by composing s1|N∗ with the natural surjection Π∗ out
� N∗ � N∗, we

obtain a homomorphism

s1|
Π∗out

� N∗
: Π∗ out

� N∗ → ΠX0∞ �N∗.

Thus, by forming the difference between sfΠ∗ and s1|
Π∗out

� N∗
, we obtain an

element ∈ H1(Π∗ out
� N∗,ΠX0∞), hence an element

fκ
Π∗ ∈ lim−→

N∗⊆BGT

H1(Π∗ out
� N∗,ΠX0∞).

Finally, it follows immediately from the various definitions involved that fκ
Π∗

is independent of the choice of I1 [within its ΠX -conjugacy class]. This completes
the proof of Proposition 5.7.

Definition 5.8. Wemaintain the notation of Definition 5.6. Let fΠ∗ ∈ I(Π∗,Π);
x ∈ Cusp(Π∗); Ix a cuspidal inertia subgroup of Π∗ associated to x. Then we
define the value

fΠ∗(x) ∈ QBGT ∪ {∞}
of fΠ∗ at x to be the image of the element ∈ Cusp(Π) determined by the cusp-
idal inertia subgroup NΠ(fΠ∗(Ix)) ⊆ Π via the natural CGT(BGT)-equivariant
bijection Cusp(Π)

∼→ QBGT ∪ {∞} [cf. Definition 5.1, (ii)]. It follows immedi-
ately from the various definitions involved that fΠ∗(x) ∈ QBGT ∪ {∞} does not
depend on the choice of Ix within its Π∗-conjugacy class.

Definition 5.9. We maintain the notation of Definition 5.8.

(i) Write
FΠ∗ : I(Π∗,Π) → Fn(Cusp(Π∗), QBGT ∪ {∞})

(respectively,

BΠ∗ : QBGT → Fn(Cusp(Π∗), QBGT ∪ {∞}))

for the natural map determined by considering the value (respectively, the
constant value) at each of the elements ∈ Cusp(Π∗). Then we shall write

LΠ∗
def
= Im FΠ∗

⋃
Im BΠ∗ ⊆ Fn(Cusp(Π∗), QBGT ∪ {∞})).
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(ii) For each finite subset S ⊆ Cusp(Π∗), we shall write

Π∗
S

for the quotient of Π∗ by the normal closed subgroup topologically gen-
erated by the cuspidal inertia subgroups associated to Cusp(Π∗) \ S [cf.
Definition 5.1, (ii)]. Suppose that the open subgroup N ⊆ BGT [cf. Def-
inition 4.1] is contained in the open subgroup M ⊆ BGT [cf. Definition
5.6], and, moreover, that

N ⊆ BGT induces the identity automorphism on S.

Then we shall write

Π∗
�N

def
= Π∗ out

� N, Π∗
S�N

def
= Π∗

S

out
� N.

[cf. Proposition 5.2, (ii)]. Write

IS(Π
∗,Π)

for the inverse image of

Fn(Cusp(Π∗) \ S, Q
×
BGT) (⊆ Fn(Cusp(Π∗) \ S, QBGT ∪ {∞}))

by the composite of FΠ∗ with the restriction map

Fn(Cusp(Π∗), QBGT ∪ {∞}) � Fn(Cusp(Π∗) \ S, QBGT ∪ {∞});

FΠ∗,S : IS(Π
∗,Π) → Fn(Cusp(Π∗) \ S, Q

×
BGT)

for the natural map induced by FΠ∗ ;

κΠ∗,S : IS(Π
∗,Π) → lim−→

N∗⊆N

H1(Π∗
�N∗ ,ΠX0∞)

— where N∗ ranges over the normal open subgroups of BGT contained
in N — for the restriction of κΠ∗ to IS(Π

∗,Π) [cf. Proposition 5.7]. Here,
we note that it follows immediately from the various definitions involved
[cf. the proof of Proposition 5.7] that κΠ∗,S factors as the composite of a
natural map

κΠ∗
S
: IS(Π

∗,Π) → lim−→
N∗⊆N

H1(Π∗
S�N∗ ,ΠX0∞)

with the injection given by the inflation map

lim−→
N∗⊆N

H1(Π∗
S�N∗ ,ΠX0∞) ↪→ lim−→

N∗⊆N

H1(Π∗
�N∗ ,ΠX0∞).
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(iii) In the notation of (ii), let x ∈ Cusp(Π∗) \ S; Nx a normal open subgroup
of BGT contained in N that stabilizes x; Ix ⊆ Π∗ a cuspidal inertia
subgroup associated to x. Then the image of NΠ∗

�Nx
(Ix) via the natural

surjection Π∗
�Nx

� Π∗
S�Nx

determines a section Nx ↪→ Π∗
S�Nx

of the
natural surjection Π∗

S�Nx
� Nx [cf. the proof of Lemma 5.4, (i)]. Thus,

in particular, by allowing “Nx” to vary, we obtain a natural map

DΠ∗
S
: lim−→
N∗⊆N

H1(Π∗
S�N∗ ,ΠX0∞) −→ Fn(Cusp(Π∗) \ S,

�
H1(N,ΠX0∞)),

where
�
H1(N,ΠX0∞)

def
= lim−→

N∗⊆N

H1(N∗,ΠX0∞).

Remark 5.9.1. In the remainder of the present paper, we shall use the injection
given by the inflation map in the final display of Definition 5.9, (ii), to regard
the group lim−→

N∗⊆N

H1(Π∗
S�N∗ ,ΠX0∞) as a subgroup of lim−→

N∗⊆N

H1(Π∗
�N∗ ,ΠX0∞).

Remark 5.9.2. We maintain the notation of Definition 5.9. Note that, for each
element fΠ∗ ∈ I(Π∗,Π), the set of Π∗-conjugacy classes of cuspidal inertia
subgroups I∗ of Π∗ such that fΠ∗(I∗) is contained in a fixed Π-conjugacy class
of cuspidal inertia subgroups of Π is finite. Indeed, this follows immediately
from the fact that fΠ∗ is an open injection that induces a bijection between the
cuspidal inertia subgroups of Π∗ and Π — cf. Definition 5.6, (1), (2). Thus, it
follows immediately from the various definitions involved that

I(Π∗,Π) =
⋃

S⊆Cusp(Π∗)

IS(Π
∗,Π),

where S ranges over the finite subsets of Cusp(Π∗).

Definition 5.10. We maintain the notation of Definition 5.9, (ii). Suppose
that S �= ∅, and that, for each normal open subgroup N∗ of BGT contained in
N ,

H1(Π∗
∅,ΠX0∞)N

∗
= {0}.

Then we shall construct a subgroup

Kκ
Π∗

S
⊆ lim−→

N∗⊆N

H1(Π∗
S�N∗ ,ΠX0∞)

as follows: First, we observe that the natural exact sequence

1 −→ Π∗
S −→ Π∗

S�N∗ −→ N∗ −→ 1

determines an exact sequence

0 −→ H1(N∗,ΠX0∞) −→ H1(Π∗
S�N∗ ,ΠX0∞)

r−→ H1(Π∗
S ,ΠX0∞)N

∗
.
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Thus, by allowing the normal open subgroup N∗ to vary, we obtain an exact
sequence

0 −→ lim−→
N∗⊆N

H1(N∗,ΠX0∞) −→ lim−→
N∗⊆N

H1(Π∗
S�N∗ ,ΠX0∞) −→ lim−→

N∗⊆N

H1(Π∗
S ,ΠX0∞)N

∗
.

Here, we observe that

H1(Π∗
S ,ΠX0∞)N

∗
= H1((Π∗

S)
ab,ΠX0∞)N

∗
.

Next, for each x ∈ S, let Ix be a cuspidal inertia subgroup of Π∗ associated to
x. Then we have an exact sequence of N∗-modules⊕

x∈S

Ix −→ (Π∗
S)

ab −→ (Π∗
∅)

ab −→ 0,

which determines an exact sequence of modules

0 −→ H1((Π∗
∅)

ab,ΠX0∞)N
∗ −→ H1((Π∗

S)
ab,ΠX0∞)N

∗ −→
⊕
x∈S

H1(Ix,ΠX0∞).

Thus, by applying our assumption that H1((Π∗
∅)

ab,ΠX0∞)N
∗
= {0}, we obtain

a natural injection

i : H1((Π∗
S)

ab,ΠX0∞)N
∗
↪→

⊕
x∈S

H1(Ix,ΠX0∞).

Write
1x ∈ H1(Ix,ΠX0∞) = Hom(Ix,ΠX0∞)

for the isomorphism Ix
∼→ ΠX0∞ of Proposition 5.5, (ii);

Zx ⊆ H1(Ix,ΠX0∞)

for the subgroup generated by 1x;

ix : N∗ ↪→ Π∗
∅�N∗

for the section of the natural surjection Π∗
∅�N∗ � N∗ determined by the image

of NΠ∗
S�N∗ (Ix) via the natural surjection Π∗

S�N∗ � Π∗
∅�N∗ [cf. the proof of

Lemma 5.4, (i)]. Next, we fix x0 ∈ S. Write

Dx ∈ H1(N∗, (Π∗
∅)

ab)

for the element obtained by forming the difference between ix0
and ix;

PS ⊆
⊕
x∈S

Zx (⊆
⊕
x∈S

H1(Ix,ΠX0∞))

for the subgroup consisting of (nx)x∈S ∈ ⊕
x∈S Zx such that∑

x∈S

nx = 0,
∑
x∈S

nx ·Dx = 0 (∈ H1(N∗, (Π∗
∅)

ab))

68



[where we note that one verifies immediately that these conditions on (nx)x∈S

are independent of the choice of x0 ∈ S];

Pκ
S

for the image of (i◦r)−1(PS) via the natural homomorphism H1(Π∗
S�N∗ ,ΠX0∞)

→ lim−→
M∗⊆N

H1(Π∗
S�M∗ ,ΠX0∞), where M∗ ranges over the normal open subgroups

of BGT contained in N . Then we define

Kκ
Π∗

S

def
= Pκ

S

⋂
D−1

Π∗
S
(Fn(Cusp(Π∗)\S, D0∞(BGT))) ⊆ lim−→

M∗⊆N

H1(Π∗
S�M∗ ,ΠX0∞)

[cf. Lemma 5.4, (i); Definition 5.9, (iii)] and

Kκ
Π∗

def
=

⋃
T

Kκ
Π∗

T
⊆ lim−→

M∗⊆N

H1(Π∗
�M∗ ,ΠX0∞),

where T ranges over the finite subsets of Cusp(Π∗).

Remark 5.10.1. In the notation of Definition 5.10, suppose that BGT = GQ

[cf. Remark 4.4.1]. Then the above construction of Kκ
Π∗ may be understood

as a sort of reconstruction of the set of Kummer classes of rational functions
associated to Π∗, i.e., in the spirit of [AbsTopIII], Proposition 1.8.

Lemma 5.11 (Kummer classes of abstract functions). We maintain the
notation of Definitions 5.9, 5.10. Suppose that the restriction DΠ∗

S
|Kκ

Π∗
S

of DΠ∗
S

to Kκ
Π∗

S
[cf. Definition 5.9, (iii); Definition 5.10] is injective for arbitrary choices

of “S” and “N” as in Definition 5.10. Then there exists a unique map

Im(FΠ∗,S) → Im(κΠ∗
S
)

[cf. Definition 5.9, (ii)] whose composite with the natural surjection IS(Π
∗,Π) �

Im(FΠ∗,S) determined by FΠ∗,S coincides with the natural surjection IS(Π
∗,Π) �

Im(κΠ∗
S
) determined by κΠ∗

S
, and whose image lies in Kκ

Π∗
S
. Moreover, by al-

lowing S to vary, one obtains a natural map

LΠ∗ \ {0} → lim−→
N∗⊆N

H1(Π∗
�N∗ ,ΠX0∞),

[cf. Remarks 5.9.1, 5.9.2] whose image lies in Kκ
Π∗ .

Proof. First, we observe that it follows from the various definitions involved
that there exists a commutative diagram

IS(Π
∗,Π)

FΠ∗,S−−−−→ Fn(Cusp(Π∗) \ S, Q
×
BGT)

κΠ∗
S

⏐⏐� ⏐⏐�
lim−→

N∗⊆N

H1(Π∗
S�N∗ ,ΠX0∞) −−−−→

DΠ∗
S

Fn(Cusp(Π∗) \ S, lim−→
N∗⊆N

H1(N∗,ΠX0∞)),
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where the right-hand vertical arrow is the natural map induced by the homo-
morphism

ιBGT ◦ ψBGT : Q
×
BGT → lim−→

N∗⊆N

H1(N∗,ΠX0∞)

[cf. Lemma 5.4, (iv)].
Next, we observe that κΠ∗

S
factors as the composite of a map

IS(Π
∗,Π) −→ Kκ

Π∗
S

with the inclusion Kκ
Π∗

S
⊆ lim−→

N∗⊆N

H1(Π∗
S�N∗ ,ΠX0∞) [cf. Definition 5.10]. In-

deed, since (Π∅)ab = {0} [hence, in particular, H1(N∗, (Π∅)ab) = {0}], it
follows immediately from the various definitions involved that κΠ{0,∞} maps
id ∈ I{0,∞}(Π,Π) [cf. Proposition 5.5, (ii)] to an element of Kκ

Π{0,∞} . Thus,

since any element fΠ∗ ∈ IS(Π
∗,Π) may be thought of as the pull-back “via

fΠ∗” of id ∈ I{0,∞}(Π,Π), by applying the functoriality of the constructions
involved [cf. also Definition 5.6, (3)], we obtain the desired conclusion.

Next, we apply our assumption that DΠ∗
S
|Kκ

Π∗
S

is injective. Thus, since the

above diagram is commutative, there exists a unique map Im(FΠ∗,S) → Im(κΠ∗
S
)

that is compatible with the maps FΠ∗,S and κΠ∗
S
in the desired sense. In par-

ticular, since all of the constructions involved are functorially compatible with
enlargement of the finite subset S ⊆ Cusp(Π∗), by allowing S ⊆ Cusp(Π∗) to
vary, we obtain a natural map

Im(FΠ∗) → lim−→
N∗⊆N

H1(Π∗
�N∗ ,ΠX0∞)

[cf. Remarks 5.9.1, 5.9.2]. On the other hand, by considering the composite of
ιBGT ◦ ψBGT with the inflation map

lim−→
N∗⊆N

H1(N∗,ΠX0∞) ↪→ lim−→
N∗⊆N

H1(Π∗
�N∗ ,ΠX0∞),

we obtain a natural map

Im(BΠ∗) \ {0} → lim−→
N∗⊆N

H1(Π∗
�N∗ ,ΠX0∞).

Thus, since LΠ∗ = Im FΠ∗ ∪ Im BΠ∗ [where we note that Im FΠ∗ ∩ Im BΠ∗ = ∅
— cf. Remark 5.9.2], we obtain the desired conclusion. This completes the
proof of Lemma 5.11.

Definition 5.12. Let BGT ⊆ GT be a closed subgroup that satisfies the
ArBC-property [cf. Theorem 4.4, (ii)]. In the following discussion, we apply
the notation of Definitions 4.1, 5.1, 5.6, 5.8, 5.9. Write t ∈ LΠ for the element
determined by id ∈ I(Π,Π) [cf. Proposition 5.5, (ii)]. Then, if BGT satisfies the
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following purely combinatorial/group-theoretic [cf. Corollary 4.5, together with
the various definitions involved] conditions (i), (ii), (iii) (respectively, (i), (ii),
(iii), (iv)), then we shall say that BGT satisfies the QAA-property [i.e., “quasi-
algebraically ample property”] (respectively, AA-property [i.e., “algebraically
ample property”]):

(i) Write (QBGT)div ⊆ QBGT for the subfield generated over Q by Ker(ιBGT ◦
ψBGT) [cf. Lemma 5.4, (iv)]. Then (QBGT)div ⊆ QBGT is an infinite
extension of fields.

(ii) For

• each normal open subgroup Π† ⊆ Π,

• each nonempty finite subset S ⊆ Cusp(Π†), and

• any sufficiently small normal open subgroup N† of BGT,

it holds that H1(Π†
∅,ΠX0∞)N

†
= {0} [cf. Definition 5.10], and the restric-

tion DΠ†
S
|Kκ

Π
†
S

of DΠ†
S
to Kκ

Π†
S

[cf. Definition 5.9, (iii); Definition 5.10] is

injective [cf. Lemma 5.11].

(iii) Assume that condition (ii) holds. There exists a family of subsets

{KΠ† ⊆ LΠ†}Π†⊆Π

— where Π† ranges over the normal open subgroups of Π — satisfying the
following conditions:

(a) Let Π‡ ⊆ Π† be normal open subgroups of Π. Then the natural injec-
tion LΠ† ↪→ LΠ‡ [determined by the natural surjection Cusp(Π‡) �
Cusp(Π†) — cf. Proposition 5.5, (ii); Remarks 5.6.2, 5.9.2] induces
an injection

KΠ† ↪→ KΠ‡ .

In the remainder of the present paper, we regard KΠ† as a subset of
KΠ‡ via this injection.

(b) For each normal open subgroup Π† ⊆ Π, and each finite subset R ⊆
Cusp(Π†), the restriction to KΠ† of the natural restriction map

Fn(Cusp(Π†), QBGT ∪ {∞}) � Fn(Cusp(Π†) \R, QBGT ∪ {∞})

is injective.

(c) For each normal open subgroup Π† ⊆ Π, KΠ† admits a [necessarily
unique — cf. (b)] field structure compatible with the ring structure
of Fn(Cusp(Π†), QBGT) in the following sense: Let f, g ∈ KΠ† , T ⊆
Cusp(Π†) a finite subset such that f(x), g(x) ∈ QBGT for any x ∈
Cusp(Π†)\T . [For given elements f, g ∈ KΠ† , the existence of such a
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finite set T follows immediately from Remark 5.9.2.] Then the images
of f + g and fg via the restriction map

Fn(Cusp(Π†), QBGT ∪ {∞}) � Fn(Cusp(Π†) \ T, QBGT ∪ {∞})

coincide, respectively, with the functions

Cusp(Π†) \ T � x 	→ f(x) + g(x) ∈ QBGT,

Cusp(Π†) \ T � x 	→ f(x)g(x) ∈ QBGT.

Moreover, relative to these unique field structures, KΠ ⊆ KΠ† is a
finite Galois extension.

(d) QBGT = Im BΠ ⊆ KΠ, and t ∈ KΠ. Moreover, if we write QBGT(t) ⊆
KΠ for the subfield generated by QBGT and t, then KΠ = QBGT(t).

(e) For each normal open subgroup Π† ⊆ Π, the natural action of Π on
LΠ† [cf. Proposition 5.2, (iv)] preserves KΠ† . Moreover, the natural
homomorphism

Π/Π† → Gal(KΠ†/KΠ)

is an isomorphism.

(f) For each normal open subgroup Π† ⊆ Π, the restriction to K×
Π† (⊆

LΠ†) of the natural map

LΠ† \ {0} → Kκ
Π†

(
⊆ lim−→

N†⊆BGT

H1(Π†
�N† ,ΠX0∞)

)

[cf. condition (ii); Definition 5.10; Lemma 5.11] is surjective.

(iv) Assume that conditions (ii), (iii) hold. In the notation of condition (iii),
write QBGT[t,

1
t ,

1
t−1 ] ⊆ LΠ for the QBGT-subalgebra generated by t, 1

t ,

and 1
t−1 ; XQBGT

def
= Spec QBGT[t,

1
t ,

1
t−1 ]. [Thus, it follows immediately

from Lemma 5.13, (i), (ii), below that the natural outer surjection Π �
ΠX determines a natural outer isomorphism ΠX

QBGT

∼→ ΠX .] Then the

natural outer isomorphism ΠX
QBGT

∼→ ΠX is induced by a(n) [uniquely

determined, up to composition with an element of S5 ⊆ Out(ΠX2
) that

fixes the element 5 ∈ {1, 2, 3, 4, 5} — cf. Corollary 3.1, (ii); Remark 4.5.1;
[CbTpII], Theorem A, (i); the first display of [CbGT], Corollary C] outer
isomorphism

ΠX2

∼→ Π(X
QBGT

)2

via the natural outer surjections ΠX2 � ΠX and Π(X
QBGT

)2 � ΠX
QBGT

determined by the respective first projections [cf. Remark 5.12.2 below].
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Remark 5.12.1. In the notation of Remark 4.4.1, it follows immediately from
Remark 4.4.1, together with the various definitions involved and the fact that F
is Kummer-faithful [cf. [AbsTopIII], Definition 1.5; [AbsTopIII], Remark 1.5.4,
(i)], that GF satisfies the AA-property [cf. Theorem 6.8, (i) [and its proof, as
well as Remark 6.6.2], below, for more details].

Remark 5.12.2. In condition (iv), we regard ΠX2 as an abstract topological
group and ΠX as a quotient of ΠX2 , i.e., as in Corollary 4.5 [cf. also Remark
4.5.1].

Lemma 5.13 (Geometric interpretation of the set of cuspidal inertia
subgroups of Π). Suppose that BGT satisfies conditions (ii), (iii) of Definition
5.12. Let

{KΠ† ⊆ LΠ†}Π†⊆Π

be a family of subsets as in Definition 5.12, (iii). Write

K̃Π
def
= lim−→

Π†⊆Π

KΠ† ,

where Π† ranges over the normal open subgroups of Π. Then the following hold:

(i) Let Π† ⊆ Π be a normal open subgroup. Write YΠ† → P1
QBGT

for the finite

ramified Galois covering of smooth, proper, connected curves over QBGT

corresponding to the extension of function fields QBGT(t) = KΠ ⊆ KΠ†

[cf. Definition 5.12, (iii), (a), (c), (d), (e)]; YΠ†(QBGT) for the set of
QBGT-valued points of YΠ† . Then the natural map

evΠ† : Cusp(Π†) → YΠ†(QBGT)

induced by evaluating elements of KΠ† at elements of Cusp(Π†) is bijec-
tive.

(ii) K̃Π is an algebraic closure of QBGT(t) = KΠ. Moreover, the natural

action of Π on K̃Π determines an isomorphism

Π
∼→ GQBGT(t)

def
= Gal(K̃Π/QBGT(t))

that induces a bijection between the respective sets of cuspidal inertia
subgroups of Π and GQBGT(t).

Proof. Let Kalg
Π be an algebraic closure of K̃Π. First, we verify assertion (i).

Note that it follows immediately from the various definitions involved [cf. espe-
cially, Definitions 5.1, (ii); 5.12, (iii), (d)] that evΠ is bijective. Note, moreover,
that the natural map evΠ† : Cusp(Π†) → YΠ†(QBGT) is compatible with the
isomorphism Π/Π† ∼→ Gal(KΠ†/KΠ) [cf. Definition 5.12, (iii), (e)] and the
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respective natural actions of Π/Π† and Gal(KΠ†/KΠ). Thus, it follows imme-
diately from the transitivity of the natural action of Gal(KΠ†/KΠ) on the fibers
of the finite ramified Galois covering YΠ† → P1

QBGT
that evΠ† is surjective.

Write

C̃usp(Π)
def
= lim←−

Π‡⊆Π

Cusp(Π‡), Ỹ (QBGT)
def
= lim←−

Π‡⊆Π

YΠ‡(QBGT),

where Π‡ ranges over the normal open subgroups of Π. Observe that the natural

maps {evΠ‡}Π‡⊆Π induce a natural map ẽv : C̃usp(Π) → Ỹ (QBGT) that, for each
normal open subgroup Π‡ of Π, fits into a commutative diagram

C̃usp(Π)
ẽv−−−−→ Ỹ (QBGT)⏐⏐� ⏐⏐�

Cusp(Π‡)
ev

Π‡−−−−→ YΠ‡(QBGT).

One verifies easily that this commutative diagram is compatible with the natural
isomorphism Π

∼→ Gal(K̃Π/QBGT(t)) [cf. Definition 5.12, (iii), (e)] and the

respective natural actions of Π and Gal(K̃Π/QBGT(t)).
Suppose that evΠ†(c1) = evΠ†(c2), where c1, c2 ∈ Cusp(Π†). Let I1 ⊆ Π†,

I2 ⊆ Π†, J ⊆ Gal(K̃Π/KΠ†) be cuspidal inertia subgroups associated to c1,
c2, evΠ†(c1), respectively. Thus, since ẽv is compatible with the isomorphism

Π† ∼→ Gal(K̃Π/KΠ†) and the respective natural actions, one verifies immediately
that by choosing suitable conjugates of I1, I2, and J , we may assume without
loss of generality that the natural isomorphism Π† ∼→ Gal(K̃Π/KΠ†) induces
inclusions ι1 : I1 ↪→ J , ι2 : I2 ↪→ J . Next, observe that any cuspidal inertia
subgroup of Gal(K̃Π/KΠ†) is a quotient of some cuspidal inertia subgroup of

Gal(Kalg
Π /KΠ†) via the natural surjection Gal(Kalg

Π /KΠ†) � Gal(K̃Π/KΠ†),

and that every cuspidal inertia subgroup of Gal(Kalg
Π /KΠ†) is isomorphic to Ẑ.

Thus, we conclude that J is abelian, and hence, by applying the inclusions ι1,
ι2, that I1 ⊆ NΠ†(I2), I2 ⊆ NΠ†(I1), which [cf. Proposition 5.5, (ii)] implies
that I1 = I2, as desired. This completes the proof of the injectivity of evΠ† and
hence of assertion (i).

Next, we verify assertion (ii). For each E ∈ CBGT [cf. Definition 5.1, (iii)],
write

Gal(Kalg
Π /QBGT(t)) � Gal(Kalg

Π /QBGT(t))E ,

Gal(K̃Π/QBGT(t)) � Gal(K̃Π/QBGT(t))E

for the respective quotients determined by the field extensions of QBGT(t) that
are unramified outside of E. Recall from Proposition 5.2, (i), that there exists an

isomorphism ξE : ΠE
∼→ Gal(Kalg

Π /QBGT(t))E of profinite groups. In particular,

since the natural isomorphism Π
∼→ Gal(K̃Π/QBGT(t)) [cf. Definition 5.12, (iii),

(e)] induces a bijection between the respective sets of cuspidal inertia subgroups
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of Π and Gal(K̃Π/QBGT(t)) [cf. Lemma 5.13, (i)], hence, in particular, a natural

isomorphism ΠE
∼→ Gal(K̃Π/QBGT(t))E , it follows that the composite morphism

Gal(Kalg
Π /QBGT(t))E � Gal(K̃Π/QBGT(t))E

∼← ΠE
∼→
ξE

Gal(Kalg
Π /QBGT(t))E

is a surjective endomorphism of a topologically finitely generated profinite group
[i.e., which, as is well-known, satisfies the “Hopfian property”], hence is an iso-

morphism. Thus, by allowing E ∈ CBGT to vary, we conclude that Kalg
Π = K̃Π.

This completes the proof of assertion (ii), hence of Lemma 5.13.

Theorem 5.14 (Uniqueness of function fields). Suppose that BGT satisfies
the QAA-property [cf. Definition 3.3, (v); Theorem 4.4, (ii); Definition 5.12].
Then any family

{KΠ† ⊆ LΠ†}Π†⊆Π

of subsets as in Definition 5.12, (iii), is unique.

Proof. Let {KΠ† ⊆ LΠ†}Π†⊆Π, {•KΠ† ⊆ LΠ†}Π†⊆Π be families of subsets as in
Definition 5.12, (iii). Recall that, if Π‡ ⊆ Π† are normal open subgroups of Π,
then KΠ† ⊆ KΠ‡ and •KΠ† ⊆ •KΠ‡ [cf. Definition 5.12, (iii), (a)]. Write

K̃Π
def
= lim−→

Π†⊆Π

KΠ† , •K̃Π
def
= lim−→

Π†⊆Π

•KΠ† ,

where Π† ranges over the normal open subgroups of Π. Then since K̃Π and
•K̃Π are algebraic closures of KΠ [cf. Lemma 5.13, (ii)], there exists an abstract

field isomorphism β : K̃Π
∼→ •K̃Π over KΠ, which determines an isomorphism

of profinite groups α : Gal(•K̃Π/KΠ)
∼→ Gal(K̃Π/KΠ). Fix a normal open

subgroup Π† ⊆ Π.
Write

• ◦KΠ†
def
= β−1(•KΠ†) ⊆ K̃Π;

• Y → P1
QBGT

(respectively, •Y → P1
QBGT

, ◦Y → P1
QBGT

) for the finite

ramified Galois covering of smooth, proper, connected curves over QBGT

corresponding to the extension of function fields QBGT(t) = KΠ ⊆ KΠ†

(respectively, QBGT(t) = KΠ ⊆ •KΠ† , QBGT(t) = KΠ ⊆ ◦KΠ†) [cf. Defi-
nition 5.12, (iii), (a), (c), (d), (e)];

• P1
QBGT

(QBGT), Y (QBGT),
•Y (QBGT),

◦Y (QBGT) for the respective sets of

QBGT-valued points of P1
QBGT

, Y , •Y , ◦Y .

Observe that there exist natural bijections

Cusp(Π)
∼→
evΠ

P1
QBGT

(QBGT), Cusp(Π†) ∼→
ev

Π†
Y (QBGT), Cusp(Π†) ∼→•ev

Π†

•Y (QBGT)
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[cf. Lemma 5.13, (i)] that fit into a commutative diagram

Gal(K̃Π/KΠ)
∼← Π

∼→ Gal(•K̃Π/KΠ)
∼→
α

Gal(K̃Π/KΠ)

↓ ↓ ↓ ↓
Gal(KΠ†/KΠ)

∼← Π/Π† ∼→ Gal(•KΠ†/KΠ)
∼→
α

Gal(◦KΠ†/KΠ)

� � � �
Y (QBGT)

∼←
ev

Π†
Cusp(Π†) ∼→•ev

Π†
•Y (QBGT)

∼→
β

◦Y (QBGT)

↓ ↓ ↓ ↓
P1
QBGT

(QBGT)
∼←
evΠ

Cusp(Π)
∼→
evΠ

P1
QBGT

(QBGT) = P1
QBGT

(QBGT),

where the vertical arrows denote the natural surjections; the horizontal arrows
Gal(•KΠ†/KΠ)

∼→
α

Gal(◦KΠ†/KΠ) and •Y (QBGT)
∼→
β

◦Y (QBGT) denote the

bijections induced, respectively, by α and β.
Note that it follows immediately from the above commutative diagram that

the sets ⊆ P1
QBGT

(QBGT) of branch points of the finite ramified Galois coverings

Y → P1
QBGT

and ◦Y → P1
QBGT

coincide. Write T ⊆ Cusp(Π) for the image of

the set of branch points of the finite ramified Galois covering Y → P1
QBGT

via

the bijection ev−1
Π . Then, by replacing the normal open subgroup Π† ⊆ Π by

the pull-back of a suitable characteristic open subgroup of ΠT [cf. Definition
5.1, (ii)] via the natural surjection Π � ΠT , we may assume without loss of
generality that KΠ† = ◦KΠ† , Y = ◦Y .

Write
σ : Y (QBGT)

∼→ ◦Y (QBGT) = Y (QBGT)

for the composite of the horizontal arrows in the third row of the above commu-
tative diagram. Recall that the images of K×

Π† ,
•K×

Π† (⊆ LΠ†) via the natural
map

LΠ† \ {0} → lim−→
N†⊆BGT

H1(Π†
�N† ,ΠX0∞)

coincide withKκ
Π† [cf. Definition 5.12, (iii), (f)]. In particular, for each f ∈ K×

Π† ,
there exist

φf ∈ Fn(Y (QBGT), (QBGT)
×
div) (⊆ Fn(Y (QBGT),QBGT ∪ {∞})), gf ∈ K×

Π†

such that fσ def
= f ◦ σ = φf · gf [cf. Definitions 5.9; 5.10; 5.12, (i)]. Note that it

follows immediately from the above commutative diagram that σ lies over the
identity automorphism of P1

QBGT
(QBGT). Thus, we conclude from Corollary 1.3

[cf. also Definition 5.12, (i)] that, relative to the notational conventions of loc.
cit., σ ∈ Gal(KΠ†/KΠ) and hence that KΠ† = •KΠ† . This completes the proof
of Theorem 5.14.
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Theorem 5.15 (Injectivity of CGT(BGT) → Aut(QBGT)). Suppose that
BGT satisfies the QAA-property [cf. Definition 3.3, (v); Theorem 4.4, (ii);
Definition 5.12]. Write

{KΠ† ⊆ LΠ†}Π†⊆Π

for the unique family of subsets as in Definition 5.12, (iii) [cf. Theorem 5.14];

K̃Π
def
= lim−→

Π†⊆Π

KΠ† ,

where Π† ranges over the normal open subgroups of Π;

GQBGT(t)
def
= Gal(K̃Π/KΠ) (= Gal(K̃Π/QBGT(t)))

[cf. Definition 5.12, (iii), (d)];

ρ : CGT(BGT) → GQBGT

def
= Aut(QBGT)

for the homomorphism induced by the natural action of CGT(BGT) on the field
QBGT [cf. Theorem 4.4, (ii)]. Then the following hold:

(i) Π
out
� CGT(BGT) acts naturally on the algebraically closed field K̃Π [cf.

Lemma 5.13, (ii)]. Moreover, this action induces a commutative diagram

CGT(BGT)
ρ−−−−→ GQBGT⏐⏐� ⏐⏐�

Out(Π)
∼−−−−→ Out(GQBGT(t)),

where the left-hand vertical arrow denotes the homomorphism induced by
the natural outer action of CGT(BGT) on Π [cf. Definition 5.1, (i)];
the right-hand vertical arrow denotes the natural outer representation; the
lower horizontal arrow denotes the isomorphism induced by the isomor-
phism Π

∼→ GQBGT(t) [cf. Lemma 5.13, (ii)].

(ii) The commutative diagram of (i) induces a commutative diagram

CGT(BGT)
ρ−−−−→ GQBGT⏐⏐� ⏐⏐�

Out(ΠX)
∼−−−−→ Out(ΠX

QBGT
),

where the left-hand vertical arrow denotes the homomorphism induced by
the natural faithful outer action of CGT(BGT) ⊆ GT on ΠX ; the right-
hand vertical arrow denotes the natural outer representation; the lower
horizontal arrow denotes the isomorphism induced by the isomorphism
ΠX

∼→ ΠX
QBGT

[cf. Lemma 5.13, (i), (ii)].

77



(iii) The homomorphism ρ is injective. In particular, the restriction ρ|BGT

of ρ to BGT is injective.

(iv) Suppose, moreover, that BGT satisfies the AA-property. Write GTBGT ⊆
Out(Π(X

QBGT
)2) for the Grothendieck-Teichmüller group associated [cf.

Corollary 4.5] to Π(X
QBGT

)2 . Then the commutative diagram of (ii) in-

duces a commutative diagram

CGT(BGT)
ρ−−−−→ GQBGT⏐⏐� ⏐⏐�

GT
∼−−−−→ GTBGT,

where the vertical arrows denote the natural injections; the lower hori-
zontal arrow denotes the isomorphism induced by an outer isomorphism
ΠX2

∼→ Π(X
QBGT

)2 as in Definition 5.12, (iv).

Proof. First, we verify assertion (i). Note that it follows immediately from the

various definitions involved that Π
out
� CGT(BGT) acts naturally on the family

of sets {LΠ†}Π†⊆Π, where Π† ranges over the normal open subgroups of Π [cf.
Definition 5.8]. Thus, we conclude from the uniqueness of the family of subsets

{KΠ† ⊆ LΠ†}Π†⊆Π [cf. Theorem 5.14] that Π
out
� CGT(BGT) acts naturally

on the algebraically closed field K̃Π. Moreover, it follows immediately from
the various definitions involved that this natural action induces the desired
commutative diagram. This completes the proof of assertion (i). Next, since
the natural surjection Π � ΠX is compatible with the respective outer actions
of CGT(BGT) [cf. Definition 5.1, (i)], assertion (ii) follows immediately from
Theorem 5.15, (i). Assertion (iii) follows immediately from Theorem 5.15, (ii).
Assertion (iv) follows immediately from the various definitions involved. This
completes the proof of Theorem 5.15.

Lemma 5.16 (Elementary property of profinite groups). Let G be a
profinite group, H ⊆ G a closed subgroup, g ∈ G an element such that H ⊆
Hg := g ·H · g−1. Then H = Hg.

Proof. By considering quotients of G by normal open subgroups, one reduces
immediately to the case where G is finite. Then the equality H = Hg follows
immediately from the fact that H and Hg have the same cardinality. This
completes the proof of Lemma 5.16.

Theorem 5.17 (Combinatorial construction of GQ).
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(i) Write Out|C|(ΠX) ⊆ Out(ΠX) for the closed subgroup of outer automor-
phisms that induce the identity automorphism on the set of conjugacy
classes of cuspidal inertia subgroups of ΠX . Then the conjugacy class of
subgroups of Out|C|(ΠX) determined by the absolute Galois group of Q
may be constructed from the abstract topological group ΠX2

[cf. Corollary
4.5, Remark 4.5.1], in a purely combinatorial/group-theoretic way, as the
set of maximal elements [relative to the relation of inclusion] in the set

of closed subgroups of Out|C|(ΠX) that arise as Out|C|(ΠX)-conjugates of
closed subgroups of GT that satisfy the QAA-property [cf. Definition
3.3, (v); Theorem 4.4, (ii); Definition 5.12].

(ii) The conjugacy class of subgroups of GT determined by the absolute
Galois group of Q may be constructed from the abstract topological group
ΠX2 [cf. Corollary 4.5, Remark 4.5.1], in a purely combinatorial/group-
theoretic way, as the set of maximal elements [relative to the relation
of inclusion] in the set of closed subgroups of GT that arise as closed
subgroups of GT that satisfy the AA-property [cf. Definition 3.3, (v);
Theorem 4.4, (ii); Definition 5.12].

Proof. Recall from Remark 5.12.1 that GQ = Gal(Q/Q) may be regarded as a
closed subgroup of GT that satisfies the AA-property, hence may itself be taken
to be “BGT”. Thus, it follows formally from Theorem 5.15, (ii) [cf. also Lemma

5.13, (ii)] (respectively, Theorem 5.15, (iv)), that any Out|C|(ΠX)-conjugate
(respectively, GT-conjugate) of a closed subgroup of GT that satisfies the QAA-
property (respectively, AA-property) is contained in — hence equal to, whenever
it is maximal with respect to the relation of inclusion among such conjugates of
closed subgroups — some Out|C|(ΠX)-conjugate (respectively, GT-conjugate) of

GQ. In particular, the maximality of any Out|C|(ΠX)-conjugate (respectively,
GT-conjugate) of GQ follows formally from Lemma 5.16. This completes the
proof of Theorem 5.17.

6 Application to semi-absolute anabelian geom-
etry over TKND-AVKF-fields

In this section, we introduce the notion of a TKND-AVKF-field [cf. Def-
inition 6.6, (iii)] and show that the absolute Galois group of a TKND-AVKF
subfield of Q satisfies the AA-property [cf. Theorem 6.8, (i)]. We then apply the
theory developed in the present paper to prove a semi-absolute version of the
Grothendieck Conjecture for higher dimensional configuration spaces [of dimen-
sion ≥ 2] associated to hyperbolic curves of genus 0 over TKND-AVKF-fields
[cf. Theorem 6.10, (ii)].

Write Qab (⊆ Q) for the maximal abelian extension of Q.
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Definition 6.1. Let p ∈ Primes; Σ ⊆ Primes a nonempty subset.

(i) Let M be an abelian group. Then we shall say that M is p∞-tor-finite if
the subgroup of p-power torsion elements of M is finite. We shall say that
M is Σ∞-tor-finite if, for each l ∈ Σ, M is l∞-tor-finite.

(ii) Let G be a profinite group. Then we shall say that G is p-subfree if there
exists a closed subgroup of G isomorphic to Zp. We shall say that G is
Σ-subfree if, for each l ∈ Σ, G is l-subfree. We shall say that G is p-sparse
if the maximal pro-p quotient of every open subgroup of G is finite. We
shall say that G is Σ-sparse if, for each l ∈ Σ, G is l-sparse.

(iii) Let K be a field. If K satisfies the following condition, then we shall say
that K is an AVKF-field [i.e., “abelian variety Kummer-faithful field”]:

Let A be an abelian variety over a finite extension L of K.
Write A(L)∞ for the group of divisible elements ∈ A(L). Then
A(L)∞ = {1}.

If K is an AVKF-field, then we shall also say that K is AVKF.

(iv) Let K be a field. If K satisfies the following condition, then we shall say
that K is p-AV-tor-indivisible (respectively, p∞-AV-tor-finite):

Let A be an abelian variety over a finite extension L of K. Write

• A(L)p
∞

for the group of p-divisible elements ∈ A(L);

• A(L)∞ for the group of torsion elements ∈ A(L);

• A(L)p∞ for the group of p-power torsion elements ∈ A(L).

Then A(L)p
∞ ⊆ A(L)∞ (respectively, A(L)p∞ is finite).

We shall say that K is Σ-AV-tor-indivisible (respectively, Σ∞-AV-tor-
finite) if, for each l ∈ Σ, K is l∞-AV-tor-indivisible (respectively, l∞-AV-
tor-finite).

(v) Let K be a field. Then we shall say that K is stably Σ-×μ-indivisible (re-
spectively, stably μΣ∞-finite) if, for each l ∈ Σ, K is stably l-×μ-indivisible
(respectively, stably μl∞-finite) [cf. the final portion of Remark 6.1.2;
[Tsjm], Definition 3.3, (v), (vii)].

Remark 6.1.1. If a profinite group G is Σ-subfree (respectively, Σ-sparse), then
so is any open subgroup of G.

Remark 6.1.2. Let � be one of the following properties:

• AVKF,
• Σ-AV-tor-indivisible,
• Σ∞-AV-tor-finite,
• stably Σ-×μ-indivisible,
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• stably μΣ∞-finite.

Then one verifies immediately that if L is an extension field of a field K, then
the following implication holds:

L is � ⇒ K is �.

Also, we observe that the second and third properties are the respective ana-
logues for abelian varieties of the fourth and fifth properties, which may be
regarded as properties concerning rational points of the “torus” Gm.

Remark 6.1.3. In the notation of Definition 6.1, (iii), suppose further that K
is of characteristic 0. Then it follows immediately from [AbsTopIII], Definition
1.5, that the following implication concerning K holds:(

torally Kummer-faithful and AVKF

)
⇐⇒ Kummer-faithful.

Lemma 6.2 (Stably p-×μ-indivisible and p-AV-tor-indivisible fields).
Let p ∈ Primes, K a field of characteristic �= p. Then:

(i) Let L be a [not necessarily finite!] Galois extension of K such that
Gal(L/K) is p-sparse. Let � be one of the following properties:

• stably p-×μ-indivisible,
• stably μp∞-finite,
• p-AV-tor-indivisible,
• p∞-AV-tor-finite.

Then if K is �, then so is L.

(ii) Let L be a [not necessarily finite!] Galois extension of K.

(ii×) Suppose that L is stably μp∞-finite. Then if K is stably p-×μ-
indivisible, then so is L.

(iiAV ) Suppose that L is p∞-AV-tor-finite. Then if K is p-AV-tor-
indivisible, then so is L.

(iii) The following properties hold:

(iii×) Suppose that K is stably p-×μ-indivisible, stably μPrimes∞-finite,
and of characteristic 0. Then K is torally Kummer-faithful. If,
moreover, K is AVKF, then K is Kummer-faithful [cf. Remark
6.1.3].

(iiiAV ) Suppose that K is p-AV-tor-indivisible and Primes∞-AV-tor-
finite. Then K is AVKF.

(iv) The following properties hold:
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(iv×) If K is torally Kummer-faithful, then K is stably μPrimes∞-
finite.

(ivAV ) If K is AVKF, then K is Primes∞-AV-tor-finite.

(v) Suppose that K is a sub-p-adic field [cf. [LocAn], Definition 15.4, (i)].
Then K is

• stably p-×μ-indivisible,
• stably μPrimes∞-finite,
• p-AV-tor-indivisible,
• Primes∞-AV-tor-finite.

Proof. First, we consider assertion (i). We begin by observing that any finite
extension field L† of L arises as a Galois extension of some finite extension field
K† of K such that Gal(L†/K†) is p-sparse. Next, we observe that the Galois
group Gal(M/K) of any [not necessarily finite!] Galois extension M of K that
arises by

• adjoining compatible systems of p-power roots of elements of K or by

• adjoining infinitely many p-power roots of unity,

admits an open subgroup which is a pro-p group. Assertion (i) in the case where
� is taken to be one of the first two properties then follows immediately from the
above observations, together with our assumption that Gal(L/K) is p-sparse.
Assertion (i) in the case where � is taken to be one of the latter two properties
follows by a similar argument [cf. the final portion of Remark 6.1.2]. This
completes the proof of assertion (i).

Assertion (ii×) follows immediately from [Tsjm], Lemma D, (v). Next, we
verify assertion (iiAV ). Let L† be a finite extension field of L; A† an abelian
variety over L†. To verify assertion (iiAV ), it suffices to prove that A†(L†)p

∞ ⊆
A†(L†)∞. Let x ∈ A†(L†)p

∞
. By replacing K by a finite extension field of K,

we may assume without loss of generality that

• L† = L;

• A† = A×K L, where A is an abelian variety over K;

• x ∈ A(K).

Thus, since K is p-AV-tor-indivisible, it suffices to verify the following assertion:

Claim 6.2.A: x ∈ A(K)p
∞
.

Indeed, let n be a positive integer. Since L is p∞-AV-tor-finite, A(L)p∞ is finite.
Write pm for the cardinality of A(L)p∞ . Then since x ∈ A(L)p

∞
, there exists

an element xm+n ∈ A(L) such that pm+n · xm+n = x. Write xn
def
= pm · xm+n.

Thus, since pn ·xn = x, it suffices to prove that xn ∈ A(K). Let σ ∈ Gal(L/K).
Observe that

pm+n · ((xm+n)
σ − xm+n) = xσ − x = 0,
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hence, in particular, that (xm+n)
σ − xm+n ∈ A(L)p∞ . Thus, we conclude that

xσ
n − xn = pm · ((xm+n)

σ − xm+n) = 0,

hence that xn ∈ A(K). This completes the proof of Claim 6.2.A, hence of
assertion (iiAV ).

Assertions (iii×), (iiiAV ) follow immediately from the fact that, for any l ∈
Primes, the divisible group Ql/Zl has no nontrivial finite quotient.

Next, we verify assertion (iv). Recall that, for any l ∈ Primes, the group of
l-torsion points of an abelian variety over an algebraically closed field is finite
[cf. e.g., [Mumf], p. 64]. Thus, assertion (iv) follows immediately from the fact
that, for any l ∈ Primes, every infinite subgroup of Ql/Zl is divisible.

Finally, we consider assertion (v). One verifies immediately that we may
assume without loss of generality that K is a finitely generated field extension
of Qp. Moreover, by applying the “relative Mordell-Weil Theorem” [cf. [Lang],
Chapter 6, Theorem 2], together with well-known elementary facts concerning
the multiplicative group of a function field, one concludes that we may assume
without loss of generality that K is a finite field extension of Qp. Then assertion
(v) follows immediately from a similar argument to the argument applied in
[AbsTopIII], Remark 1.5.4, (i). This completes the proof of Lemma 6.2.

Remark 6.2.1. The argument applied in the proof of Claim 6.2.A [in the proof
of Lemma 6.2, (iiAV )] is similar to the argument applied in the proof of [Moon],
Proposition 7.

Proposition 6.3 (Examples of AVKF-fields). Let F ⊆ Q be a number field.

(i) Let L be a [not necessarily finite!] Galois extension of F · Qab ⊆ Q such
that Gal(L/F ·Qab) is Primes-sparse. Then L is

• stably Primes-×μ-indivisible,
• Primes-AV-tor-indivisible,
• Primes∞-AV-tor-finite.

In particular, L is a stably ×μ-indivisible AVKF-field [cf. Lemma
6.2, (iiiAV ); [Tsjm], Lemma D, (i)].

(ii) Let {v1, v2, . . . } be an infinite set of non-archimedean primes of F . [Here,
we assume, for simplicity, that the indices of the “vj” are chosen in such
a way that vj �= vj′ for j �= j′.] Let {Σj ⊆ Primes}j≥1 be a family of
subsets such that, for any positive integer j,⋃

i≥j

Σi = Primes,

where i ranges over the positive integers ≥ j; M ⊆ Q a [not necessarily
finite!] Galois extension of F ; L a [not necessarily finite!] Galois
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extension of M ⊆ Q such that Gal(L/M) is Primes-sparse. Suppose
that for each positive integer j, the absolute Galois group of the residue
field of the ring of integers of M at [every prime that divides] vj is Σj-
subfree. Then L is

• stably Primes-×μ-indivisible,
• stably μPrimes∞-finite,
• Primes-AV-tor-indivisible,
• Primes∞-AV-tor-finite.

In particular, L is a Kummer-faithful field [cf. Lemma 6.2, (iii×),
(iiiAV )].

Proof. First, we verify assertion (i). Note that it follows immediately from
Lemma 6.2, (i), that we may assume without loss of generality that L = F ·Qab.
Then since L is an abelian extension of a number field, it follows immediately
from [Tsjm], Lemma D, (iii), (iv), that L is stably Primes-×μ-indivisible. On
the other hand, it follows immediately from [KLR], Appendix, Theorem 1, that
L is Primes∞-AV-tor-finite. Next, observe that F is Primes-AV-tor-indivisible
[cf. Lemma 6.2, (v)]. Thus, since L is a Primes∞-AV-tor-finite Galois extension
of F , we conclude from Lemma 6.2, (iiAV ), that L is Primes-AV-tor-indivisible.
This completes the proof of assertion (i).

Next, we verify assertion (ii). Note that it follows immediately from Lemma
6.2, (i), that we may assume without loss of generality that L = M . For each
positive integer j, write pj for the residue characteristic of vj . Then it follows
immediately from our assumption on various unions of the subsets Σi ⊆ Primes
that, for any positive integer j,⋃

i≥j

(
Σi \ {pi}

)
= Primes,

where i ranges over the positive integers ≥ j. Let p ∈ Primes; L† a finite
extension of L; A† an abelian variety over L†; j a positive integer such that
p ∈ Σj \ {pj}, and A† has good reduction at some prime ṽj of L† that divides
vj [cf. the above display!]. Write

• O†
ṽj

⊆ L† for the ring of integers at ṽj ;

• k†ṽj
for the residue field of O†

ṽj
;

• A†
j for the abelian scheme over O†

ṽj
whose generic fiber is A†;

• A†
ṽj

def
= A†

j ×O†
ṽj

k†ṽj .

Then since the morphism A†
j → A†

j given by multiplication by a power of p is
finite étale, it follows immediately that there exists a natural injection

A†(L†)p∞ ↪→ A†
ṽj
(k†ṽj

).

Thus, it follows immediately from
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• our assumption [cf. Remark 6.1.1] that the absolute Galois group of k†ṽj is
Σj-subfree,

• the well-known fact that the absolute Galois group of a finite field is iso-
morphic to Ẑ, and

• the well-known fact that, for any positive integer n, GLn(Zp) contains an
open subgroup which is a pro-p-group

that A†(L†)p∞ is finite. Thus, by allowing p to vary, we conclude that L
is Primes∞-AV-tor-finite. A similar argument applied to the multiplicative
group Gm implies that L is stably μPrimes∞-finite. Next, observe that L is a
Primes∞-AV-tor-finite Galois extension of the Primes-AV-tor-indivisible field
F [cf. Lemma 6.2, (v)]. Thus, we conclude from Lemma 6.2, (iiAV ), that L is
Primes-AV-tor-indivisible. A similar argument implies that L is stably Primes-
×μ-indivisible. This completes the proof of assertion (ii), hence of Proposition
6.3.

Remark 6.3.1. The following example was suggested to the authors of the
present paper by A. Tamagawa. Let {Gi}i∈I be a family of nonabelian finite
simple groups [i.e., such as the alternating group on n letters An, where n ≥ 5].
Then the direct product group

G
def
=

∏
i∈I

Gi

endowed with the product topology is Primes-sparse. Indeed, this follows imme-
diately from the definition of the product topology, together with the elementary
fact that, for each p ∈ Primes, i ∈ I, the maximal pro-p quotient of Gi is triv-
ial. If I is countable, and we assume that there exists a positive integer n ≥ 5
such that Gi is isomorphic to An for all i ∈ I, then it follows immediately from
well-known facts concerning the Hilbertian nature of number fields and the reg-
ularity of An [cf. [FJ], §6.2; [FJ], Theorem 13.4.2; [FJ], Proposition 16.2.8, (b);
[FJ], Proposition 16.7.6] that G may be realized as the Galois group of a Galois
extension E of a number field F . Here, we note that such a Galois extension E
of F is necessarily linearly disjoint from any abelian field extension of F .

Remark 6.3.2. Later [cf. Remark 6.6.3 below], we shall see that the fields “L”
of Proposition 6.3, (i), (ii), are in fact “TKND-AVKF-fields”.

Remark 6.3.3. Let F ⊆ Q be a number field such that
√−1 ∈ F ; {v1, v2, . . . }

an infinite set of non-archimedean primes of F . [Here, we assume, for simplicity,
that the indices of the “vj” are chosen in such a way that vj �= vj′ for j �= j′.]
Let {Σj ⊆ Primes}j≥1 be a family of finite subsets such that, for any positive
integer j, ⋃

i≥j

Σi = Primes,
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where i ranges over the positive integers ≥ j. For each positive integer j, write
Primes \ Σj = {pj,m}m≥1; Fvj for the completion of F at vj . For each pair
of positive integers i, j such that j ≤ i, write F †

vj
[i] for the finite unramified

[abelian] extension of Fvj
of degree∏

1≤m≤i

pij,m.

For each positive integer j, let F ‡
vj

be an abelian totally wildly ramified infinite
extension of Fvj . For each pair of positive integers i, j such that j ≤ i, let
F ‡
vj [i] ⊆ F ‡

vj be a finite subextension of Fvj such that

F ‡
vj [i] ⊆ F ‡

vj
[i+ 1],

⋃
j≤m

F ‡
vj
[m] = F ‡

vj
,

where m ranges over the positive integers ≥ j. [Here, we observe that the
existence of such extensions of Fvj follows immediately from [NSW], Theorem
7.2.11.] Next, let i be a positive integer; Mi an abelian extension of F such
that, for each pair of positive integers i, j such that j ≤ i, the local extensions
of Mi/F at vj coincide with the extension F †

vj [i] · F ‡
vj
[i]/Fvj

. [Here, we observe

that, in light of our assumption that
√−1 ∈ F , the existence of such an abelian

extension Mi of F follows immediately from [NSW], Definitions 9.1.5, 9.1.7;
[NSW], Theorem 9.2.8.] Write

M ⊆ Q

for the field generated by {Mi}i≥1 over F . Then we make the following obser-
vations, each of which follows immediately from the construction of M :

(a) M is an abelian extension of F ;

(b) for each positive integer j, the absolute Galois group of the residue field of
the ring of integers of M at [every prime that divides] vj is Σj-subfree;

(c) for each positive integer j, the ramification index of the extension M/F at
vj is infinite [so if {v1, v2, . . . } coincides with the set of all non-archimedean
primes of F , then M is not a generalized sub-p-adic field for any prime
number p — cf. [AnabTop], Definition 4.11];

(d) for each positive integer j, the residue field of the ring of integers of M at
[every prime that divides] vj is infinite.

Thus, in particular, any Galois extension L of M whose Galois group is Primes-

sparse — such as, for instance, a composite field L
def
= M · E, where E is as in

Remark 6.3.1 — satisfies the assumptions of Proposition 6.3, (ii), as well as the
properties discussed in (c), (d).
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Remark 6.3.4. Note that it follows immediately from the various definitions
involved that the field “L” of Proposition 6.3, (i), satisfies properties analogous
to the properties (c), (d) of Remark 6.3.3. That is to say, in the notation of
Proposition 6.3, (i),

• the ramification index of the extension L/F at every non-archimedean
prime of L is infinite [so L is not a generalized sub-p-adic field for any
prime number p — cf. [AnabTop], Definition 4.11];

• the residue field of the ring of integers of L at every non-archimedean
prime of L is algebraically closed, hence infinite.

Remark 6.3.5. The properties (c), (d) of Remark 6.3.3 [cf. also Remark 6.3.4]
are of interest in that they show that

anabelian geometry over fields such as the fields L of Proposition
6.3, (i), (ii) [cf. Theorem 6.10 below] cannot be treated by means
of well-known techniques of anabelian geometry that require the
use of p-adic Hodge theory or Frobenius elements of absolute Galois
groups of finite fields [cf. [Tama], Theorem 0.4; [LocAn], Theorem
A; [AnabTop], Theorem 4.12].

Proposition 6.4 (AVKF-fields satisfy the ISC-, CS-properties). Let

K ⊆ Q be an AVKF-field [cf. Definition 6.1, (iii)]. Write GK
def
= Gal(Q/K) ⊆

GQ
def
= Gal(Q/Q). Thus, we obtain natural injections

GK ⊆ GQ ↪→ GT ⊆ Out(ΠX)

[cf. the discussion at the beginning of [Tsjm], Introduction], which we use to
identify GK with its image in GT. Then K satisfies the ISC-property, and
the closed subgroup GK ⊆ GT satisfies the CS-property.

Proof. Indeed, it follows immediately from a similar argument to the argument
applied in the proof of [Tsjm], Theorem 3.1, and [Tsjm], Corollary 3.2, that K
satisfies the ISC-property. The CS-property for the closed subgroup GK ⊆ GT
then follows formally. This completes the proof of Proposition 6.4.

Corollary 6.5 (AVKF-fields satisfy the ArBC-property). In the notation
of Proposition 6.4, the closed subgroup GK ⊆ GT satisfies the ArBC-property
[cf. Theorem 4.4, (ii), (iii)]. Moreover, if one takes “BGT” to be GK [cf.
Definition 3.3, (v); Theorem 4.4, (ii)], then the following hold:
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(i) In the notation of Theorem 4.4, (ii), there exists a natural isomorphism
of fields

QGK

∼→ Q

that is compatible, relative to the respective natural actions, with the in-
clusion GK ⊆ GQ. In the remainder of the present §6, we shall use this
natural isomorphism to identify QGK

with Q.

(ii) In the notation of Definition 5.1, there exists a natural outer isomor-
phism

Π
∼→ GKX

between the profinite group Π and the absolute Galois group GKX
of

the function field KX of X
def
= P1

Q
\{0, 1,∞}. This natural outer isomor-

phism is compatible with the respective natural outer actions of BGT = GK

on Π and GKX
.

(iii) There exists a natural homomorphism

CGT(GK) → GQ

[cf. Theorem 4.4, (ii)] whose restriction to CGQ
(GK) is the natural inclu-

sion CGQ
(GK) ⊆ GQ.

Proof. First, we observe that it follows immediately — from the evident scheme-
theoretic interpretation of the various arithmetic Belyi diagrams that arise —
that the closed subgroup GK ⊆ GT satisfies the COF-property. Thus, it follows
immediately from Corollary 3.7; Theorem 4.4, (iii); Proposition 6.4, together
with the various definitions involved, that the closed subgroup GK ⊆ GT sat-
isfies the ArBC-property. Next, we observe that it follows immediately — from
the evident scheme-theoretic interpretation of the various arithmetic Belyi dia-
grams that arise — that these arithmetic Belyi diagrams determine

• a natural isomorphism of fields QGK

∼→ Q that is compatible with the
inclusion GK ⊆ GQ, and

• a natural outer isomorphism Π
∼→ GKX

that is compatible with the re-
spective natural outer actions of BGT = GK on Π and GKX

[cf. the proof of Theorem 4.4, (ii), (iii)]. Thus, we conclude [cf. the proof of
Theorem 4.4, (ii), (iii)] that there exists a natural homomorphism

CGT(GK) → GQ

whose restriction to CGQ
(GK) is the natural inclusion CGQ

(GK) ⊆ GQ. This
completes the proof of Corollary 6.5.

Definition 6.6. LetK be a field, K an algebraic closure ofK. WriteKprm ⊆ K
for the prime field of K.
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(i) Write

Kdiv
def
=

⋃
L/K

L×∞ ⊆ K,

where L (⊆ K) ranges over the finite extensions of K, and we write

L×∞
def
= Kprm(L

×∞) ⊆ L

[cf. the discussion entitled “Fields” in Notations and Conventions].

(ii) If Kdiv ⊆ K is an infinite field extension, then we shall say that K is a
TKND-field [i.e., “torally Kummer-nondegenerate field”]. IfK is a TKND-
field, then we shall say that K is TKND.

(iii) If K ⊆ K is both TKND and AVKF, then we shall say that K is a
TKND-AVKF-field. If K is a TKND-AVKF-field, then we shall say that
K is TKND-AVKF.

Remark 6.6.1. One verifies immediately that if L is an algebraic extension of a
field K [which implies that K and L admit a common algebraic closure], then
the following implication holds:

L is TKND ⇒ K is TKND.

Remark 6.6.2. In the notation of Definition 6.6, suppose further that K is
of characteristic 0. Then the following implications concerning K hold [cf.
Definition 6.1, (iii); [AbsTopIII], Definition 1.5; [Tsjm], Definition 3.3, (v); the
well-known fact that Qab ⊆ Q is an infinite field extension [cf., e.g., [Tsjm],
Lemma D, (iii), (iv)]]:

torally Kummer-faithful ⇒ stably ×μ-indivisible ⇒ TKND;

Kummer-faithful ⇒ stably ×μ-indivisible and AVKF ⇒ TKND-AVKF.

Remark 6.6.3. It follows immediately from Remark 6.6.2 that the fields “L” of
Proposition 6.3, (i), (ii), are TKND-AVKF-fields.

Remark 6.6.4. Recall that

• the TKND-field “L” of Proposition 6.3, (i) [cf. Remark 6.6.3], contains
the entire subset μ(Q), while

• the TKND-field “L” of Proposition 6.3, (ii) [cf. Remark 6.6.3], is stably
μPrimes∞-finite.
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That is to say, the TKND-fields of Proposition 6.3, (i), (ii), may be thought of
as two “extremal cases”, i.e., with regard to the property of containing roots
of unity. On the other hand, a detailed analysis of the various “intermediate
cases” that, in some sense, lie in between these two “extremal cases” is beyond
the scope of the present paper.

Lemma 6.7 (Generalities on rational functions). Let K be a field of char-
acteristic 0; K an algebraic closure of K; Y a smooth curve over K. For each

algebraic extension M (⊆ K) of K, write GM
def
= Gal(K/M); YM

def
= Y ×K M ;

Y (M) for the set of M -rational points of Y ; O×
YM

for the group of invertible
regular functions on YM ;

κY : O×
YK

= lim−→
K⊆K†

O×
Y
K† −→ lim−→

K⊆K†
H1(ΠY

K† , μ̂Z
(K))

for the Kummer map, where μ
̂Z
(K)

def
= Hom(Q/Z, μ(K)); K† (⊆ K) ranges

over the finite extensions of K. Let y ∈ Y (K†), where K† (⊆ K) is a finite
extension of K. Thus, y ∈ Y (K†) determines a section GK† ↪→ ΠY

K† [i.e.,
strictly speaking, an outer homomorphism] of the natural surjection ΠY

K† �
GK† . In particular, by allowing K† and y ∈ Y (K†) to vary, we obtain a natural
homomorphism

DY : lim−→
K⊆K†

H1(ΠY
K† , μ̂Z

(K)) −→ Fn(Y (K), lim−→
K⊆K†

H1(GK† , μ
̂Z
(K))).

Then the following hold:

(i) Suppose that K is AVKF, and Y is proper over K. Then

H1(ΠYK
, μ

̂Z
(K))GK = {0}.

(ii) Suppose that

• K ⊆ K = Q, and K is AVKF;

• Y is affine, and the function field of YQ is equipped with the structure
of a finite Galois extension of KX [cf. Corollary 6.5, (ii)].

We apply the notation of Definition 5.9, (ii), where we take “BGT” to
be GK [cf. Corollary 6.5], “Π∗ ⊆ Π” to be the normal open subgroup
determined by YQ [cf. Corollary 6.5, (ii)], and “S ⊆ Cusp(Π∗)” to be the
subset corresponding to the set of cusps of the hyperbolic curve YQ. Then

the natural outer isomorphism Π∗
S

∼→ ΠY
Q
[which is compatible with the

respective outer actions of N (⊆ BGT = GK) — cf. Corollary 6.5, (ii)]
and the natural scheme-theoretic isomorphism ΠX0∞

∼→ μ
̂Z
(K) induce an

isomorphism Im(κY )
∼→ Kκ

Π∗
S
[cf. (i); Definition 5.10].
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(iii) Suppose that K is TKND-AVKF. Then the restriction DY |Im(κY ) of DY

to Im(κY ) is injective.

Proof. First, we verify assertion (i). Recall that since Y is a smooth, proper
curve over K, Πab

YK
is naturally isomorphic to the Tate module of the Jacobian

J of Y . In particular, if (Πab
YK

)GK �= {1}, then there exists a nontrivial divisible

element of J(K). Thus, since K is AVKF, we conclude that (Πab
YK

)GK = {1}.
On the other hand, Poincaré duality yields a GK-equivariant isomorphism of
topological modules

H1(ΠYK
, μ

̂Z
(K)) = Hom(Πab

YK
, μ

̂Z
(K))

∼→ Πab
YK

.

Thus, we conclude that H1(ΠYK
, μ

̂Z
(K))GK = {0}. This completes the proof of

assertion (i). Assertion (ii) follows immediately from the various definitions in-
volved [cf. Remark 5.10.1; the argument applied in the proof of [Tsjm], Theorem
3.1].

Finally, we verify assertion (iii). First, we observe that it follows from the
various definitions involved that there exists a commutative diagram

O×
YK

evY−−−−→ Fn(Y (K), K
×
)

κY

⏐⏐� ⏐⏐�
lim−→

K⊆K†
H1(ΠY

K† , μ̂Z
(K))

DY−−−−→ Fn(Y (K), lim−→
K⊆K†

H1(GK† , μ
̂Z
(K))),

where evY denotes the homomorphism induced by evaluating elements of O×
YK

at elements of Y (K); the right-hand vertical arrow denotes the natural homo-
morphism induced by the Kummer map

K
×
= lim−→

K⊆K†
(K†)× −→ lim−→

K⊆K†
H1(GK† , μ

̂Z
(K)).

Let f ∈ Ker(DY ◦ κY ). Then the commutativity of the above diagram implies

that Im(evY (f)) ⊆ K×
div ⊆ K

×
. On the other hand, we note that, for any

nonconstant rational function g ∈ O×
YK

, the complement K
× \ Im(evY (g)) is a

finite set. In particular, it follows immediately from our assumption that K is
TKND [i.e., the fact that Kdiv ⊆ K is an infinite field extension] that f is a
constant function such that κY (f) = 0. Thus, we conclude that DY |Im(κY ) is
injective. This completes the proof of assertion (iii), hence of Lemma 6.7.

Theorem 6.8 (TKND-AVKF-fields satisfy the AA-property). Let K ⊆
Q be a TKND-AVKF-field. Then the following hold:

(i) The closed subgroup GK ⊆ GT satisfies the AA-property [cf. Definition
5.12].
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(ii) The natural homomorphism

CGT(GK) → GQ

[cf. Corollary 6.5, (iii)] is injective and compatible with the respective
natural injections CGT(GK) ↪→ GT and GQ ↪→ GT into GT [cf. Corollary
5.15, (iv)].

Proof. First, we verify assertion (i). Since K is AVKF, it follows from Corollary
6.5 that the closed subgroup GK ⊆ GT satisfies the ArBC-property. Next,
since K is TKND, it follows immediately from the various definitions involved
that the closed subgroup GK ⊆ GT satisfies condition (i) of Definition 5.12.
Moreover, since K is TKND-AVKF, it follows immediately from Lemma 6.7,
(i), (ii), (iii), together with the various definitions involved, that the closed
subgroup GK ⊆ GT satisfies condition (ii) of Definition 5.12. On the other
hand, since K is AVKF, it follows immediately from Lemma 6.7, (ii), together
with the various definitions involved, that the function fields of finite ramified
Galois coverings of P1

Q
[i.e., the projective line over Q] determine a family

{KΠ† ⊆ LΠ†}Π†⊆Π

of subsets as in Definition 5.12, (iii). Finally, it follows immediately from the
various definitions involved that condition (iv) of Definition 5.12 holds. Thus,
we conclude that the closed subgroup GK ⊆ GT satisfies the AA-property. This
completes the proof of assertion (i). Assertion (ii) follows immediately from
assertion (i), together with Theorem 5.15, (iii), (iv). This completes the proof
of Theorem 6.8.

Remark 6.8.1. Theorem 6.8, (i), may be regarded as a generalization of Remark
5.12.1 [cf. Remark 6.6.2]. In this context, we observe that the proof of Theorem
6.8, (i), (ii), can be simplified considerably in the case where K is assumed to be
Kummer-faithful, in which case one may combine the techniques of [AbsTopIII],
Theorem 1.11, or [Hsh1], Theorem A, with the combinatorial approach to Belyi
cuspidalizations developed in §3 of the present paper.

Corollary 6.9 (Semi-absolute Grothendieck Conjecture-type result over
TKND-AVKF-fields for tripods). Let n be an integer ≥ 2; K,L ⊆ Q

TKND-AVKF-fields. Write XK
def
= P1

K\{0, 1,∞}; XL
def
= P1

L\{0, 1,∞}; (XK)n
(respectively, (XL)n) for the n-th configuration space associated to XK (respec-

tively, XL); GK
def
= Gal(Q/K) (respectively, GL

def
= Gal(Q/L));

Out(Π(XK)n/GK ,Π(XL)n/GL)

for the set of outer isomorphisms Π(XK)n
∼→ Π(XL)n that induce outer isomor-

phisms GK
∼→ GL. Then the natural map

Isom((XK)n, (XL)n) −→ Out(Π(XK)n/GK ,Π(XL)n/GL)

is bijective.
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Proof. Write X
def
= P1

Q
\{0, 1,∞}; Xn for the n-th configuration space associated

to X. Let σ ∈ Out(Π(XK)n/GK ,Π(XL)n/GL);

σ̃ : Π(XK)n
∼→ Π(XL)n

an isomorphism that lifts σ. Write σQ ∈ Out(ΠXn
) for the outer automorphism

determined by the restriction of σ̃ to ΠXn
; σ̃Gal : GK

∼→ GL for the isomorphism
induced by the isomorphism σ̃. Thus, it follows immediately from the various
definitions involved that there exists a commutative diagram

GK −−−−→ Out(ΠXn
)

σ̃Gal

⏐⏐�� ισ
Q

⏐⏐��

GL −−−−→ Out(ΠXn
),

where the horizontal arrows denote the natural outer representations; the right-
hand vertical arrow denotes the automorphism ισ

Q
obtained by conjugating by

σQ. Next, we verify the following assertion:

Claim 6.9.A: The isomorphism σ̃Gal arises from an isomorphism Q
∼→

Q that maps K ⊆ Q onto L ⊆ Q.

Indeed, [cf. the above commutative diagram] since the closed subgroups GK ⊆
GT and GL ⊆ GT satisfy the ArBC-property [cf. Corollary 6.5], the functorial
constructions of Corollary 4.5, together with the isomorphism of Corollary 6.5,
(i) [applied to GK and GL], determine a commutative diagram

GK = GK

σ̃Gal∼→ GL = GL

� � � �
Q

∼← QGK

∼→ QGL

∼→ Q,

where the lower horizontal arrows are isomorphisms of fields. Thus, we obtain
the desired conclusion. This completes the proof of Claim 6.9.A.

Now it follows from Claim 6.9.A that we may assume without loss of gener-
ality that K = L ⊆ Q. Next, it follows from Theorem 6.8, (ii), together with
the various definitions involved, that

NGT(GK) ⊆ CGT(GK) ⊆ GQ.

In particular, we conclude that NGT(GK)/GK = NGQ
(GK)/GK . Note that

since ΠXn
is center-free [cf. [MT], Proposition 2.2, (ii)], there exists [cf. the

above commutative diagram involving ισ
Q
] a natural isomorphism

Out(Π(XK)n/GK)
∼→ NOut(ΠXn )(GK)/GK ,

where Out(Π(XK)n/GK) denotes the set of outer automorphisms of Π(XK)n

that induce outer automorphisms of GK . In particular, σ ∈ Out(Π(XK)n/GK)
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determines an element of

NOut(ΠXn )(GK)/GK = NGT×Sn+3
(GK)/GK

= (NGT(GK)/GK)× Sn+3

[cf. the first display of [CbGT], Corollary C]. Thus, in light of the natural
isomorphism

Aut(K)
∼→ NGQ

(GK)/GK = NGT(GK)/GK ,

we conclude that the natural group homomorphism

Aut((XK)n) −→ Out(Π(XK)n/GK)

is surjective, and [by considering the various fiber subgroups of ΠXn
and cusp-

idal inertia subgroups of ΠX ] that any element α ∈ Aut((XK)n) in the kernel
of this group homomorphism is K-linear and compatible with the identity auto-
morphism of XK relative to any of the n+ 3 generalized projection morphisms
(XK)n → XK [cf. [CbGT], Definition 2.1, (i)]. But this implies that any such
α is equal to the identity automorphism of (XK)n. This completes the proof of
Corollary 6.9.

Remark 6.9.1. Note that Corollary 6.9 [cf. the final portion of the proof of
Corollary 6.9], together with the well-known commensurable terminality of GQp

in GQ [cf., e.g., [AbsAnab], Theorem 1.1.1, (i)] gives a new proof of the equalities

CGT(GQ) = GQ, CGT(GQp
) = GQp

,

hence also, by applying the well-known slimness of GQ [cf., e.g., [AbsAnab],
Theorem 1.1.1, (ii)], the equality

Z loc(GT) = {1}.

In particular, Corollary 6.9 yields a purely combinatorial/group-theoretic proof
of the portion of [CbGT], Corollary C, concerning “Z loc(Out(Πn))” [in the no-
tation of loc. cit., where we take“Σ” to be Primes] that does not depend on
the proofs of the Grothendieck Conjecture for hyperbolic curves over number
fields given in [LocAn], Theorem A; [Tama], Theorem 0.4 [cf. the discussion of
Remark 3.1.1].

Theorem 6.10 (Semi-absolute Grothendieck Conjecture-type result
over TKND-AVKF-fields for arbitrary hyperbolic curves). Let (m,n)
be a pair of positive integers; K,L ⊆ Q TKND-AVKF-fields; XK (respectively,
YL) a hyperbolic curve over K (respectively, L). Write (gX , rX) (respectively,
(gY , rY )) for the type [i.e., genus and degree of the divisor of marked points] of
XK (respectively, YL); (XK)m (respectively, (YL)n) for the m-th (respectively,
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n-th) configuration space associated to XK (respectively, YL); GK
def
= Gal(Q/K)

(respectively, GL
def
= Gal(Q/L));

Out(Π(XK)m/GK ,Π(YL)n/GL)

for the set of outer isomorphisms Π(XK)m
∼→ Π(YL)n that induce outer isomor-

phisms between GK and GL. Then the following hold:

(i) Suppose that

• m ≥ 4 or n ≥ 4 if rX = 0 or rY = 0;

• m ≥ 3 or n ≥ 3 if rX �= 0 or rY �= 0.

Then the outer isomorphism

GK
∼→ GL

induced by any outer isomorphism ∈ Out(Π(XK)m/GK ,Π(YL)n/GL) arises

from a field isomorphism K
∼→ L.

(ii) Suppose that

• m ≥ 2 or n ≥ 2;

• gX = 0 or gY = 0.

Then the natural map

Isom((XK)m, (YL)n) −→ Out(Π(XK)m/GK ,Π(YL)n/GL)

is bijective.

Proof. Write

• ZK
def
= P1

K\{0, 1,∞}; ZL
def
= P1

L\{0, 1,∞};

• X
def
= XK ×K Q; Y

def
= YL ×L Q; Z

def
= ZK ×K Q = ZL ×L Q;

For each positive integer i, write

• Xi (respectively, Yi, Zi) for the i-th configuration space associated to X
(respectively, Y , Z).

Note that, to verify assertions (i), (ii), it follows immediately from the various
definitions involved that we may assume without loss of generality that

Out(Π(XK)m/GK ,Π(YL)n/GL) �= ∅.

Thus, we conclude from [CbGT], Theorem A, (i), that

m = n ≥ 2, gX = gY , rX = rY .
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Let σ ∈ Out(Π(XK)n/GK ,Π(YL)n/GL);

σ̃ : Π(XK)n
∼→ Π(YL)n

an isomorphism that lifts σ. Write σQ : ΠXn

∼→ ΠYn for the outer isomorphism

determined by the restriction of σ̃ to ΠXn
; σ̃Gal : GK

∼→ GL for the isomorphism
induced by the isomorphism σ̃.

Next, we verify assertion (i). Note that m = n ≥ 3. Let Πctpd
X ⊆ ΠX3

(respectively, Πctpd
Y ⊆ ΠY3) be a 3-central {1, 2, 3}-tripod of ΠXn (respectively,

ΠYn
) [cf. [CbTpII], Definition 3.7, (ii)]. Then since m = n, gX = gY , and

rX = rY , it follows immediately from [CbGT], Corollary B; [CbTpII], The-
orem A, (ii); [CbTpII], Theorem C, (ii); the discussion of [CbTpII], Remark
4.14.1, that, after possibly replacing σ by the composite of σ with an element
∈ Out(Π(XK)n/GK ,Π(XK)n/GK) that arises from an element of the symmetric
group “Sn∗” of [CbGT], Corollary B, we may assume without loss of generality
that

• σQ induces bijections between the respective sets of fiber subgroups and
inertia subgroups;

• the outer isomorphism ΠX3

∼→ ΠY3 induced by σQ determines an outer

isomorphism σctpd : Πctpd
X

∼→ Πctpd
Y ;

• there exists a commutative diagram of profinite groups

OutFC(ΠXn
) −−−−→

TX

Out(Πctpd
X )⏐⏐��

⏐⏐��

OutFC(ΠYn
) −−−−→

TY

Out(Πctpd
Y ),

where the vertical arrows denote the isomorphisms induced by the outer
isomorphisms σQ and σctpd, and TX and TY denote the respective tripod
homomorphisms.

Here, we identify ΠZ with Πctpd
X , Πctpd

Y , via outer isomorphisms ΠZ
∼→ Πctpd

X ,

ΠZ
∼→ Πctpd

Y that arise from the respective S3-torsors of scheme-theoretic iso-
morphisms of tripods over Q in such a way that

• the outer automorphism σZ : ΠZ
∼→ Πctpd

X
∼→ Πctpd

Y
∼← ΠZ obtained by

conjugating σctpd by these identifying outer isomorphisms determines an
element ∈ GT ⊆ Out(ΠZ)

[cf. [CbTpII], Theorem C, (iv), together with our assumptions on m = n].
Moreover, it follows immediately [again from [CbTpII], Theorem C, (iv), to-
gether with our assumptions on m = n] that

• the images of TX and TY are contained in GT ⊆ Out(ΠZ).
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In particular, the above commutative diagram, together with the natural outer
representations GK → OutFC(ΠXn), GL → OutFC(ΠYn), determines a commu-
tative diagram of profinite groups

GK −−−−→ GT

σ̃Gal

⏐⏐�� σZ

⏐⏐��

GL −−−−→ GT,

where the right-hand vertical arrow denotes the inner automorphism obtained
by conjugating by σZ ; the horizontal arrows denote the natural injections. Ob-
serve that since ΠZ2

is center-free [cf. [MT], Proposition 2.2, (ii)], this last
commutative diagram determines an outer isomorphism Π(ZK)2

∼→ Π(ZL)2 that
lies over σ̃Gal between the second configuration spaces (ZK)2, (ZL)2 associated
to ZK , ZL, respectively. Thus, we conclude from Corollary 6.9 that the outer
isomorphism determined by σ̃Gal : GK

∼→ GL arises from a field isomorphism
K

∼→ L. This completes the proof of assertion (i).
Next, we verify assertion (ii). First, it follows from a similar argument to the

argument applied in the final portion of the proof of Corollary 6.9 [after possibly
passing to suitable finite Galois extensions of K and L and, if rX = rY ≥ 4,
applying Corollary 2.2] that the natural map

Isom((XK)n, (YL)n) −→ Out(Π(XK)n/GK ,Π(YL)n/GL)

is injective. Thus, it suffices to prove that this map is surjective. We begin by
observing that, by applying the injectivity that has already been verified, we may
pass to suitable finite Galois extensions of K and L and apply Galois descent.
In particular, we may assume without loss of generality that every cusp of X
(respectively, Y ) is K-rational (respectively, L-rational). On the other hand,
since gX = gY = 0, it suffices to consider the case where rX = rY ≥ 4 [cf.
Corollary 6.9].

Next, we verify the following assertion:

Claim 6.10.A: There exists an isomorphism of schemes XK
∼→ YL.

Indeed, observe that it follows from Theorem 2.1 [cf. our assumption that
rX = rY ≥ 4] that there exist open immersions XK ↪→ ZK , YL ↪→ ZL over
K, L, respectively, which, together with σ̃, determine a ΠZn

-outer isomorphism
σZn : Π(ZK)n

∼→ Π(ZL)n that lies over the isomorphism σ̃Gal and fixes the cusps
of Z. Thus, by applying Corollary 6.9 [cf. also the final portion of the proof of
Corollary 6.9], we may assume without loss of generality that

• K = L;

• σ̃Gal is the identity automorphism;

• σZn is the identity ΠZn -outer automorphism.
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In particular, since σQ induces a bijection between the respective sets of fiber
subgroups and inertia subgroups [cf. Corollary 2.2; the discussion of [CbTpII],
Remark 4.14.1], σ̃ determines a ΠY -outer isomorphism σ1 : ΠXK

∼→ ΠYK
[cf.

[CbTpI], Theorem A, (i)] such that

• σ1 lies over GK ;

• σ1 induces a bijection between the respective sets of cuspidal inertia sub-
groups.

Thus, we conclude from the fact that K satisfies the ISC-property [cf. Proposi-
tion 6.4], applied to ZK [cf. the proof of Lemma 5.4, (i)], that there exists an
isomorphism XK

∼→ YK over K. This completes the proof of Claim 6.10.A.
In summary, it follows formally from Claim 6.10.A, together with the above

discussion, that we may assume without loss of generality that

• K = L, XK = YK ;

• σ̃ is an automorphism of Π(XK)n that lies over the identity automorphism
of GK ;

• the ΠZn -outer automorphism σZn : Π(ZK)n
∼→ Π(ZK)n [induced by σ̃ and

the open immersion XK ↪→ ZK over K] is the identity ΠZn-outer auto-
morphism;

• the outer automorphism σQ : ΠXn

∼→ ΠXn
[determined by σ̃] induces the

identity automorphism on the set of fiber subgroups;

• the ΠX -outer automorphism σ1 : ΠXK

∼→ ΠXK
[determined by σ̃] induces

the identity automorphism on the set of conjugacy classes of cuspidal iner-
tia subgroups of ΠX [cf. the discussion above of the ISC-property applied
to ZK ].

Thus, if we regard GK as a subgroup of OutgF(ΠXn)
cusp via the natural in-

jection GK ↪→ OutgF(ΠXn)
cusp [cf. [CbTpI], Theorem A, (i), (ii)], then σQ ∈

ZOutgF(ΠXn )cusp(GK). Write

β ∈ ZOutgF(ΠX2
)cusp(GK)

for the element determined by σQ via the natural injection OutgF(ΠXn
)cusp ↪→

OutgF(ΠX2
)cusp [cf. [CbTpII], Theorem A, (i)];

h : OutgF(ΠX2
)cusp → OutgF(ΠZ2

)cusp

for the natural homomorphism induced by the natural open immersionX2 ↪→ Z2

[cf. Theorem 2.1]. Then it follows immediately from our assumption that σZn
:

Π(ZK)n
∼→ Π(ZK)n is the identity ΠZn -outer automorphism that h(β) = 1. Thus,

we conclude from Theorem 3.6 [where we apply [NCBel], Corollary 1.1, and we
take “V ⊆ W” to be the open immersion X ↪→ Z in the above discussion],

98



together with Proposition 6.4, that β = 1, hence that σQ = 1. Finally, since
ΠXn is center-free [cf. [MT], Proposition 2.2, (ii)], it holds that σ̃ is an inner
automorphism, hence that σ = 1. Thus, we obtain the desired surjectivity. This
completes the proof of assertion (ii), hence of Theorem 6.10.

Remark 6.10.1. In the notation of Theorem 6.10, write

Out(Π(XK)m ,Π(YL)n)

for the set of outer isomorphisms Π(XK)m
∼→ Π(YL)n . Suppose that GK and GL

are very elastic [cf. [AbsTopI], Definition 1.1, (ii)]. Then since ΠXm
and ΠYn

are topologically finitely generated [cf. [MT], Proposition 2.2, (ii)], it follows
formally that

Out(Π(XK)m ,Π(YL)n) = Out(Π(XK)m/GK ,Π(YL)n/GL),

i.e., that the “absolute version” of Theorem 6.10 holds.

Remark 6.10.2. In the notation of Theorem 6.10, suppose that K and L arise
as fields “L” of the sort discussed in Proposition 6.3, (i), (ii) [cf. Remark 6.6.3].
Suppose, further, that K and L are abelian extensions of number fields [cf., e.g.,
the field “F ·Qab” of Proposition 6.3, (i); the field “M” of Remark 6.3.3]. Then
K and L are very elastic [cf. [FJ], §6.2; [FJ], Theorem 13.4.2; [FJ], Theorem
16.11.3; [Mi], Theorem 2.1]. In particular, it follows immediately from Remark
6.10.1 that the absolute version of Theorem 6.10 holds.
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