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Abstract

In this paper, we give a purely combinatorial/group-theoretic construc-
tion of the conjugacy class of subgroups of the Grothendieck-Teichmiiller

group GT determined by the absolute Galois group Gg Lof Gal(Q/Q)
[where @ denotes the field of algebraic numbers] of the field of rational
numbers Q. In fact, this construction also yields, as a by-product, a purely
combinatorial /group-theoretic characterization of the GT-conjugates of
closed subgroups of Gg that are “sufficiently large” in a certain sense.
We then introduce the notions of TKND-fields [i.e., “torally Kummer-
nondegenerate fields”] and AVKF-fields [i.e., “abelian variety Kummer-
faithful fields”], which generalize, respectively, the notions of “torally
Kummer-faithful fields” and “Kummer-faithful fields” [notions that ap-
pear in previous work of Mochizuki]. For instance, if we write Q*CQ
for the maximal abelian extension field of @@, then every finite extension
of Q** is a TKND-AVKF-field [i.e., both TKND and AVKF]. We then
apply the purely combinatorial/group-theoretic characterization referred
to above to prove that, if a subfield K C Q is TKND-AVKF, then the
commensurator in GT of the subgroup Gk C Gg determined by K is
contained in Gg. Finally, we combine this computation of the commensu-
rator with a result of Hoshi-Minamide-Mochizuki concerning GT to prove
a semi-absolute version of the Grothendieck Conjecture for higher dimen-
sional [i.e., of dimension > 2] configuration spaces associated to hyperbolic
curves of genus zero over TKND-AVKF-fields.
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Introduction

The present paper builds on the theory of combinatorial Belyi cuspidaliza-
tion developed in [Tsjm]|, §1. The theory of combinatorial Belyi cuspidalization
may be understood as a certain combinatorial version of the theory of Belyi
cuspidalization developed in [AbsTopllI], §3.

In the present paper, we apply the theory of combinatorial Belyi cuspi-
dalization to give a purely combinatorial/group-theoretic definition of a certain
class of closed subgroups “BGT” [cf. Definition 3.3, (v)] of the Grothendieck-
Teichmdiller group

GT (C Out(ITP)),

where, for n > 1, TI'**4 denotes the étale fundamental group of the n-th con-
figuration space associated to the projective line, minus the three points “07,
“17, “c0”, over the field of algebraic numbers Q [cf. [CmbCsp], Definition 1.11,
(i); [CmbCsp|, Remark 1.11.1; the first display of [CbGT], Corollary C]. In the

following, we shall also write ITtPd def ngd. This class of closed subgroups
“BGT” is defined to be the class of closed subgroups of GT that satisfy certain
properties, which may be summarized roughly as follows:

e the COF-property, i.e., “cofiltered property” [cf. Definition 3.3, (ii)]:
for any pair of arithmetic Belyi diagrams [cf. [Tsjm], Definition 1.4], there
exists an arithmetic Belyi diagram that dominates [cf. Definition 3.3, (i)]
both of the given arithmetic Belyi diagrams;

e the RGC-property, i.e., “Relative Grothendieck Conjecture property”
[cf. Definition 3.3, (iii)]: if there exists a geometric domination between
two arithmetic Belyi diagrams, then it is the unique geometric domination
between the two arithmetic Belyi diagrams.



At a more conceptual level, these conditions may be understood as a single
condition of compatibility with Zariski localization on the projective line
minus three points.

Our first main result is the following [cf. Theorem 4.4]:

Theorem A (Combinatorial construction of an algebraic closure of the
field of rational numbers). Let BGT C GT be a closed subgroup that satisfies
the COF- and RGC-properties [cf. Definition 3.5, (ii), (iii), (v)]. Then one
may construct from BGT a set

Qpar

equipped with a natural action by the commensurator Cor(BGT) of BGT in GT
that satisfies the following properties:

(i) The set Qpar is equipped with natural operations

Hpat : Qpar X Qear — Qe

Mpat @ Qpar X Qeer — Qe

as well as natural involutions [i.e., self-bijections which are their own in-
verses]

Osér : @ser U {00} — Qper U {00},
(1-D)ser : Qpar U {00} = Qpar U {oo},
all of which are equivariant with respect to the natural action of Cor(BGT)

on Qper U {oc}. These operations and involutions satisfy the following
properties:

Hear(0,9) = Y, Mpar(0,y) & 0, Xpar(l,y) def Y,

_ def _
DB(l}T(O) = oo, DB(l}T(l)

def def def

(1-0)per(0) =1, (1-0)per(1) =0, (1-0D0)par(c0) = oo
(ii) If the operations Bpct and Rt determine, on Qgar, the addition and
multiplication operations of a structure, on Qpar, of field isomorphic to
Q, then we shall say that BGT satisfies the ArBC-property [i.e., “arith-
metic Belyi compatibility property”]. If BGT satisfies the ArBC-property,
then there exists a field isomorphism Q = Qpar, as well as a natural
homomorphism

def

=1, D];(l}T(OO) o

=0,

def —
Car(BGT) — Gaper = Aut(Qsar)

to the group of automorphisms of the field Qpgr. [We refer to Theorem

F below for a special case, which is of central interest in the present paper,

of this sort of situation.] In particular, one may construct a natural outer

homomorphism

Car(BGT) = Go ¥ Gal(Q/Q)
to the absolute Galois group Gg of Q.



(iii) Suppose that BGT admits a conducting field K that satisfies the ZISC-
property [cf. Definition 3.3, (vi)]. Then BGT satisfies the ArBC-

property.

At the time of writing, the authors do not know whether or not the outer
homomorphism Cgr(BGT) — Gg of Theorem A, (ii), is injective in general.
On the other hand, by imposing further purely combinatorial/group-theoretic
conditions — i.e., the QAA- and AA-properties [cf. Definition 5.12; the brief
description following Theorem C below| — on BGT, one may conclude that the
following hold [cf. Theorems 5.15, (iii); 5.17, (i), (ii)]:

Theorem B (Injectivity of the natural outer homomorphism Cq1(BGT)
— Gg). Let BGT C GT be a closed subgroup that satisfies the COF- and
RGC-properties [cf. Definition 3.3, (ii), (iii), (v)]. Suppose further that BGT
satisfies the QA A-property [cf. Definition 5.12]. Then the natural outer
homomorphism

CGT(BGT) — GQ

of Theorem A, (ii), is injective.

Theorem C (Combinatorial construction of Gg).

(i) Write Out/®lATPd) C Out(II™9) for the closed subgroup of outer auto-
morphisms that induce the identity automorphism on the set of conjugacy
classes of cuspidal inertia subgroups of II**d. Then the conjugacy class
of subgroups of Outlcl(Htpd) determined by the absolute Galois group
of Q may be constructed from the abstract topological group H;pd [cf.
Corollary 4.5, Remark 4.5.1], in a purely combinatorial/group-theoretic
way, as the set of maximal elements [relative to the relation of inclusion]
in the set of closed subgroups of Out!/“/(II"9) that arise as Out/C(ITPd)-
conjugates of closed subgroups of GT that satisfy the QA A-property /[cf.
Definition 3.3, (v); Theorem 4.4, (ii); Definition 5.12].

(ii) The conjugacy class of subgroups of GT determined by the absolute
Galois group of Q may be constructed from the abstract topological group
ngd [ef. Corollary 4.5, Remark 4.5.1], in a purely combinatorial/group-
theoretic way, as the set of maximal elements [relative to the relation
of inclusion] in the set of closed subgroups of GT that arise as closed
subgroups of GT that satisfy the AA-property [cf. Definition 3.3, (v);
Theorem 4.4, (ii); Definition 5.12].

The class of closed subgroups “BGT” satisfying the QA A-property [i.e.,
“quasi-algebraically ample property”] (respectively, the A A-property [i.e., “al-
gebraically ample property”]) is defined to be the class of closed subgroups of GT
that satisfy the COF- and RGC-properties, together with the ArBC-property [cf.
Theorem A, (ii)], as well as certain further properties (i), (ii), (iii) (respectively,
(1), (ii), (iil), (iv)), which may be summarized roughly as follows:

(i) The Kummer theory associated to BGT is sufficiently nondegenerate.



(ii) The Kummer theory associated to the various arithmetic Belyi diagrams
arising from BGT is sufficiently nondegenerate.

(iii) There exists a family of Qggr-valued set-theoretic functions on a certain
set of cuspidal inertia subgroups associated to the various arithmetic Be-
lyi diagrams arising from BGT that satisfies properties satisfied by the
function fields arising from these arithmetic Belyi diagrams.

(iv) The family of set-theoretic functions in (iii) determines a Galois group
that satisfies a certain compatibility property involving H;pd.

Of course, it is by no means the case that the approach of Theorem C to
constructing the conjugacy class of subgroups of GT determined by G is, in any
sense, unique. On the other hand, the approach of Theorem C is an attractive
application of the technique of combinatorial Belyi cuspidalization developed in
[Tsjm], §1. Moreover, the approach of Theorem C has interesting applications,
i.e., Theorems F and G, given below.

The approach of Theorem C to constructing the conjugacy class of subgroups
of GT determined by Gg may be thought of as a sort of

conditional [cf. the condition of mazimality within a certain collec-
tion of closed subgroups| surjectivity counterpart of the well-known
injectivity result of Belyi, i.e., to the effect that the natural outer
homomorphism Gg — GT is injective, or, alternatively, as one [of
many possible] natural answer(s) to the problem posed by Belyi
in the discussion following the Corollary to [Belyi], Theorem 4, of
giving a group-theoretic description of the image of this outer injec-
tion Gg — GT.

The idea that there should exist such a [conditional] surjectivity counterpart of
Belyi injectivity that could be proven by applying Belyi maps in some suitable
fashion [i.e., just as in the case of Belyi injectivity!] was motivated in part by
the proofs given in [CmbCsp], §2, §3, of the injectivity/bijectivity of the natural
homomorphism

Out™(11,,) — Out™(11,,_1)

of [CmbCsp], Theorem A, (i). That is to say, these proofs given in [CmbCsp],
§2, 63, are remarkable in the sense that

the conditional surjectivity proven in [CmbCsp], §3, is proven by
applying an argument that is entirely similar to the argument ap-
plied in the proof of the corresponding injectivity result in [CmbCsp],
2.

In this context, it is of interest to note that this fascinating general phenomenon
— i.e., of obtaining [conditional] surjectivity results by means of essentially sim-
ilar arguments to the arguments used to verify corresponding injectivity results
— may also be observed in numerous well-known aspects of algebraic topol-
ogy, such as the theory of long exact sequences of (co)homology groups and the
homotopy theory of CW-complexes.



The proofs of Theorems B and C depend on the following elementary field-
theoretic results proven in §1 [cf. Theorem 1.2, Corollary 1.3]:

Theorem D (Non-algebricity of field automorphisms of algebraically
closed fields). Let K be an algebraically closed field. Write Aut(K) for the
group of field automorphisms of K. Let a € Aut(K). Write

ar: K — K x K = A*(K)

for the graph of «, i.e., the map K > x +— (z,2%) € K x K. If K is of
characteristic O (respectively, p > 0), then we shall write Fr € Aut(K) for the
identity automorphism (respectively, the Frobenius automorphism [i.e., given by
raising to the p-th power]) of K; Fr” C Aut(K) for the subgroup generated by
Fr. Ti%en the image Im(ar) C A%(K) of ar is Zariski-dense if and only if
a ¢ Fro.

Corollary E (A criterion for the algebricity of certain set-theoretic

automorphisms). In the notation of Theorem D, write X o PL [i.e., the
projective line over K]. Let Y — X be a finite [possibly] ramified Galois cov-
ering of smooth, proper, connected curves over K. Write X (K) (respectively,
Y(K)) for the set of K-valued points of X (respectively, Y ); Autx g (Y (K))
for the group of bijections Y (K) = Y (K) which preserve the fibers of the
natural map Y (K) — X(K); K(Y) for the rational function field of Y. For
T € Autx gy (Y(K)), f € Fn(Y(K), K U{cc}) [where “Fn(—,—)" denotes the
set of maps from the first argument to the second argument], write

Y for e Fn(Y(K), K U{oo}).

We shall regard K(Y') as a subset of Fn(Y (K), K U{oo}) by evaluating rational
functions at closed points of Y and Gal(Y/X) as a subgroup of Autx i) (Y (K))
by means of the natural action of Gal(Y/X) on Y(K). Let k C K be a subfield
such that the covering Y — X descends to a Galois covering Y, — Xy defined

over k, and
(Aut(K) D) Aut(K/k) € Fr” (C Aut(K)),

where we write Aut(K/k) C Aut(K) for the subgroup of automorphisms that
restrict to the identity automorphism of k. Let o € Autx x)(Y (K)) that satisfies
the following property: for each f € K(Y)*, there exist

o5 € Fn(Y(K), k™) (S Fn(Y(K), K U{oc})), gr € K(Y)*

such that f7 = ¢y - g5. Then o € Gal(Y/X).

Next, let K C Q be a subfield. Write Gx 2 Gal(Q/K). If K is stably x -

indivisible [cf. [Tsjm], Definition 3.3, (v)], then we recall from [Tsjm], Corollary
E, that one may construct a natural homomorphism

CGT(GK) — GQ



whose restriction to Cg,(Gk) € Car(Gk) is the natural inclusion.

In the present paper, we shall say that the subfield K C Q is an AVKF-field
[i.e., “abelian variety Kummer-faithful field”] if the following property holds [cf.
Definition 6.1, (iii)]:

Let A be an abelian variety over a finite extension L of K. Write
A(L)% for the group of divisible elements € A(L). Then A(L)>* =

1.

Here, we recall in passing that any finite extension of the maximal abelian ex-
tension field Q** C Q of Q is a stably x p-indivisible AVKF-field [cf. Proposition
6.3, (i)]. On the other hand, it is not clear to the authors at the time of writing

e whether or not there exist AVKF-fields that are not stably x u-indivisible;
e whether or not there exist stably x u-indivisible fields that are not AVKF.

If K is an AVKF-field, then Gk satisfies the COF-, RGC-, and ArBC-
properties [cf. Corollary 6.5], hence may be taken to be the subgroup “BGT” of
Theorem A. In particular, by applying Theorem A, (ii), (iii) [cf. also Proposition
6.4], one may also construct a natural homomorphism

CGT(GK) — GQ

whose restriction to Cq, (Gx) € Car(Gk) is the natural inclusion [cf. Corollary
6.5, (iii)].

At the time of writing, the authors do not know whether or not these natural
homomorphisms [i.e., of Corollary 6.5, (iii), and [Tsjm], Corollary E] are injec-
tive in general. On the other hand, by imposing a further condition on K, one
may conclude that the natural homomorphism Cer(Gg) — Gg arising from
Corollary 6.5, (iii), is injective [cf. Theorem F below]. We shall say that the
subfield K C Q is a TKND-field [i.e., “torally Kummer-nondegenerate field”] if
the following property holds [cf. Definition 6.6, (ii)]:

Write
Kdiv déf U L><oo g @v
L/K

where L C Q ranges over the finite extensions of K, and we write

L LIN{0}, L (L), Lo € QIL*®) C L.

m>1

Then Q is an infinite field extension of K gjy.

We shall say that the subfield K C Q is a TKND-AVKF-field if K is both TKND
and AVKF. Our main result concerning TKND-AVKF-fields is the following [cf.
Theorem 6.8]:



Theorem F (Injectivity of the natural homomorphism Cqr(Gk) — Gg).
Suppose that K C Q is a TKND-AVKF-field. Then its absolute Galois group
G satisfies the AA-, hence also the COF-, RGC-, ArBC-, and QA A-properties.
In particular, [cf. Theorem B] the natural homomorphism Car(Gr) — Gg of
Theorem A, (ii), is injective and restricts to the natural inclusion Cay(Gr) —
GQ on C’GQ(GK) - OGT(GK).

Theorem F is proved by applying the theory developed in §3, §4, §5 of the
present paper, i.e., the theory that underlies the proof of Theorem C [cf. the
discussion surrounding Theorem C].

Finally, by combining Theorem F with certain combinatorial anabelian re-
sults proven in §2 of the present paper and applying the theory of [CbGT] [cf.
[CbGT], Theorem A; [CbGT], Corollary B; the first display of [CbGT], Corol-
lary C], we obtain a semi-absolute version of the Grothendieck Conjecture for
higher dimensional [i.e., of dimension > 2] configuration spaces [cf. [MT], Defi-
nition 2.1, (i)] associated to hyperbolic curves of genus 0 over K [cf. Theorem
6.10]:

Theorem G (Semi-absolute Grothendieck Conjecture-type result over
TKND-AVKF-fields). Let (m,n) be a pair of positive integers; K, L C Q
TKND-AVKF-fields; X (respectively, Y1) a hyperbolic curve over K (respec-
tively, L). Write (gx,rx) (respectively, (gy,ry)) for the type [i.e., genus and
degree of the divisor of marked points] of X (respectively, Y1,); (X )m (respec-
tively, (Y1)n) for the m-th (respectively, n-th) configuration space associated to

X (respectively, Y1, ); Gk def Gal(Q/K) (respectively, G, def Gal(Q/L));

OUt(H(XK)m/GK, H(YL),,,/GL)

Jor the set of outer isomorphisms Il x,), . = (y,), that induce outer isomor-
phisms between G and Gr. Then the following hold:

(i) Suppose that

em>4orn>4ifrx =0 orry =0;
em>3o0rn>3ifrx 0 orry #0.

Then the outer isomorphism
Gk = Gy,

induced by any outer isomorphism € Out(Il x,., /G, Hey,), /GL) arises
from a field isomorphism K = L.

(i) Suppose that

e m>2o0rn>2;

e gx =0 orgy =0.



Then the natural map
Isom((Xx)m, (Yo)n) — Out(lixy),, /G, Uy, /GL)
is bijective.

In this context, we observe that any finite extension K of Q*" is a TKND-
AVKF-field [cf. Proposition 6.3, (i); Remark 6.6.3]. Other interesting examples
of TKND-AVKF-fields are given in Proposition 6.3, (ii) [cf. also Remarks 6.3.3,
6.3.4, 6.3.5, 6.6.3, 6.6.4]. In particular, we observe [cf. Remark 6.3.5] that

Theorem G constitutes an interesting example of [semi-absolute]
anabelian geometry over fields that cannot be treated by means of
well-known techniques of anabelian geometry that require the use of
p-adic Hodge theory or Frobenius elements of absolute Galois
groups of finite fields [c¢f. [Tama], Theorem 0.4; [LocAn], Theorem
A; [AnabTop], Theorem 4.12].

Next, suppose that K is a sub-p-adic subfield [cf. [LocAn], Definition 15.4,
(i)] of Q, i.e., [as is easily verified] a subfield of Q that is isomorphic to a subfield
of a finite extension of the field of p-adic numbers Q,,, for some prime number p.
Then K is a Kummer-faithful field [cf. [AbsTopIII], Definition 1.5; [AbsTopIII],
Remark 1.5.4, (i)], hence, in particular, a TKND-AVKF-field. Thus, Theorem
G may be regarded as a sort of partial generalization of [AbsTopIIl], Theorem
1.9. On the other hand, let us recall that the proof of [AbsToplIIl], Theorem
1.9, depends, in an essential way, on [LocAn], Theorem A, hence, in particular,
on Faltings’ p-adic Hodge theory. By contrast, we observe [cf. Remark 3.3.2]
that

the proof of Theorem G [say, in the case where K and L are as-
sumed to be sub-p-adic subfields of Q] is based solely on results and
techniques from combinatorial anabelian geometry and hence
is, in particular, entirely independent of results concerning the
Grothendieck Conjecture for hyperbolic curves over sub-p-
adic fields [i.e., [LocAn], Theorem A; [Tama|, Theorem 0.4].

Moreover, unlike, for instance, [LocAn|, Theorem A; [Tama], Theorem 0.4;
[AbsCsp], Theorem 3.2,

the proof of Theorem G [say, in the case where K and L are assumed
to be sub-p-adic local subfields of Q] does not involve the use of any
arguments involving theories of “weights”, i.e., theories such as
Faltings’ p-adic Hodge theory or the Weil Conjectures.

Here, we recall that a somewhat weaker version of Theorem G in the case
where m = n =1 and K and L are assumed to be stably p-xu/x u-indivisible
fields of characteristic O [cf. [Tsjm], Definition 3.3, (v)], i.e., but not necessarily
to be TKND-AVKEF, is given in [Tsjm], Theorem F. Also, we recall that a version



of Theorem G in the case where m = n = 1 and K and L are assumed to be
generalized sub-p-adic may be found in [Hsh2], Corollary 5.6, (ii), (iii).

This paper is organized as follows. In §1, we prove Theorem D and Corollary
E, which will be of use in §5. In §2, we give some preliminaries on combinato-
rial anabelian geometry which will be of use in later sections. In §3, we give a
purely combinatorial /group-theoretic definition of a certain class of closed sub-
groups BGT of GT [cf. the discussion preceding Theorem A] and discuss the
basic properties of this class of closed subgroups of GT. In §4, for each such
closed subgroup BGT C GT, we give a purely combinatorial/group-theoretic
construction of a set Qpr that is equipped with “field-like” operations, as well
as a natural action by Cor(BGT). In particular, when these “field-like” opera-
tions determine a structure of field isomorphic to Q, we obtain a natural outer
homomorphism Cqr(BGT) — Gg [cf. Theorem A, (ii)]. In §5, by imposing
on BGT certain further combinatorial /group-theoretic conditions, we obtain a
certain class of closed subgroups BGT [cf. the discussion following Theorem
C] — whose definition is purely combinatorial/group-theoretic — for which the
natural outer homomorphism Cqr(BGT) — Gy is injective [cf. Theorem B].
Moreover, we obtain Theorem C as a consequence of this injectivity. Finally, in
86, we study various types of fields and apply the theory of §1, §2, 83, §4, §5, to
prove Theorems F and G.
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Notations and Conventions

Sets: Let A, B be sets. Then we shall write Fn(A, B) for the set of maps from
Ato B. f Fu(A,B) > f : A — B is held fized in a discussion, then we shall
write Autp(A) for the group of bijections A = A which preserve the fibers of f
over B.

Numbers: The notation Brimes will be used to denote the set of prime num-
bers. The notation N will be used to denote the set or, by a slight abuse of
notation, additive monoid of non-negative integers.

Fields: The notation Q will be used to denote the field of rational numbers.
The notation Z will be used to denote the ring of integers of Q; by a slight abuse
of notation, the notation Z will also be used to denote the underlying additive
group of this ring. The notation C will be used to denote the field of complex
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numbers. The notation Q C C will be used to denote the set or field of algebraic
numbers € C. We shall refer to a finite extension field of Q as a number field.
If ¢ is a power of a prime number, then we shall write F, for the finite field
consisting of ¢ elements.

Let F be a field, p a prime number, n a positive integer. Then we shall write
Aut(F) for the group of field automorphisms of F;

F*ER\{0y; FM"EF\{0,1}; pn(F) € {ze F* |a" =1}

u(F) = (P P () ()™

m>1 m>1
def oo def m
ppoe (F) = | i (F); - P75 () ()P,
m2>1 m>1

where m ranges over the positive integers. If K is an extension field of F', then
we shall write Aut(K/F) C Aut(K) for the subgroup of automorphisms that
restrict to the identity automorphism of F'.

Topological groups: Let G be a topological group and H C G a closed
subgroup of G. Then we shall denote by Zg(H) (respectively, Ng(H); Co(H))
the centralizer (vespectively, normalizer; commensurator) of H C G, i.e.,

Za(H) < {g € G| ghg™ = h for any h € H}

(respectively, Ng(H) def {9€Glg-H-g'=H};
Co(H) def {9€ G| HNg-H-g!isof finite index in H and g- H - g~1}),

and write
def

Z°°(@) = limy Zg(U),

U
where U ranges over the open subgroups of G, for the local centralizer of G. We
shall say that the closed subgroup H is normally terminal in G if H = Ng(H).
We shall say that the closed subgroup H is commensurably terminal in G if
H = Cg(H). We shall say that G is slim if Z¢(U) = {1} for any open subgroup
U of G.

Let G be a topological group. Then we shall write G2® for the quotient
of G by the closure of the commutator subgroup [G,G] C G; Aut(G) for the
group of [continuous] automorphisms of G; Inn(G) C Aut(G) for the group of
inner automorphisms of G; Out(G) of Aut(G)/Inn(G). Now suppose that G is
center-free [i.e., Zg(G) = {1}]. Then we have an exact sequence of groups

1 — G (5 Inn(GQ)) — Aut(G) — Out(G) — 1.

If J is a group, and p : J — Out(G) is a homomorphism, then we shall denote
by

out
X
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the group obtained by pulling back the above exact sequence of groups via p.
Thus, we have a natural exact sequence of groups

1—>G—>GO>13tJ—>J—>1

Suppose further that G is profinite and topologically finitely generated. Then
one verifies immediately that the topology of G admits a basis of characteristic
open subgroups, which thus induces a profinite topology on the groups Aut(G)
and Out(G) with respect to which the above exact sequence relating Aut(G)
and Out(G) determines an exact sequence of profinite groups. In particular, one
verifies easily that if, moreover, J is profinite, and p : J — Out(G) is continuous,

out
then the above exact sequence relating G x J to G and J determines an exact
sequence of profinite groups.

Fundamental groups: For a connected Noetherian scheme S, we shall write
[Ig for the étale fundamental group of S, relative to a suitable choice of base-
point.

Schemes: For a morphism of scheme S — T, we shall write Autr(S) for the
group of automorphisms of the T-scheme S. If T = Spec Z, then we shall write
Aut(S) for Autp(S).

Log schemes: We shall, by a slight abuse of notation, regard schemes as log
schemes equipped with the trivial log structure. If S'°8 is a log scheme, then we
shall write S for the underlying scheme of S$'°¢ and Ug C S for the interior of
S8 ie., the largest open subscheme of S over which the log structure of S'°&
is trivial.

Curves: We shall use the terms “hyperbolic curve”, “cusp”, “stable log curve”,
“smooth log curve”, and “tripod’ as they are defined in [CmbGC], §0; [CmbCsp],
§0. We shall use the terms “n-th configuration space” and “n-th log configuration
space” as they are defined in [MT], Definition 2.1, (i).

1 The non-algebricity of field automorphisms

In this section, we discuss an interesting elementary property of field au-
tomorphisms of algebraically closed fields, namely, that, with the exception of
integral powers of the Frobenius automorphism, such field automorphisms can-
not be expressed algebraically [cf. Theorem 1.2]. We then apply this property to
give a criterion for the algebricity of certain set-theoretic automorphisms of sets
of rational points of curves valued in algebraically closed fields [cf. Corollary
1.3]. This criterion will play an important role in the theory to be developed in
the present paper.
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Lemma 1.1 (The inversion map on the multiplicative group of a field).
Let k be a field. Write
o:k*U{0} > kX U{0}

for the bijection such that
e o(z) =21 for each v € k*,
e 5(0)=0.
Then the following hold:
(i) The bijection o is a field automorphism if and only if k = Fo, F3, or Fy.

(ii) If k = Fy or F3 (respectively, k = F4), then o is the identity (respectively,
the unique non-trivial) automorphism of k.

Proof. First, we verify assertion (i). Sufficiency is immediate. Next, to verify
necessity, we observe that if o is a field automorphism, then, for « € k\ {0, -1},

1+2 = o(1)+o(x) = o(l+z) = ﬁ (<=2*+2+1=0).

Since the equation 2 +x +1 = 0 has at most 2 solutions in %, we thus conclude
that the cardinality of k is < 4. Assertion (ii) follows immediately from the
definitions. This completes the proof of Lemma 1.1. O

Theorem 1.2 (Non-algebricity of field automorphisms of algebraically
closed fields). Let K be an algebraically closed field; o € Aut(K). Write

ar: K = K x K = A*(K)

for the graph of «, i.e., the map K > x — (z,2%) € K x K. If K is of
characteristic O (respectively, p > 0), then we shall write Fr € Aut(K) for the
identity automorphism (respectively, the Frobenius automorphism [i.e., given by
raising to the p-th power/) of K ; R’ C Aut(K) for the subgroup generated by Fr.
Then the image Im(ar) C A%(K) of ar is Zariski-dense if and only if a ¢ Fr”,

Proof. Necessity is immediate. Thus, it remains to verify sufficiency. If ar is
not Zariski-dense, then there exists a nonzero polynomial

0# f=f(X,Y)=> a;; X'V € K[X,Y]

such that
Im(ar) C V(f) € A*(K),

where V(f) denotes the zero set of f. In particular, for x € K, we have

Z ai ja' (7)™ = 0.

13



For x € K*, write p; ;(x) %ef z(z7)* € K*. Then p;; : K* — KX is a
character. Thus, it follows immediately from Artin’s well-known result on the
linear independence of characters that there exist pairs of integers (i1, j1) #
(12,J2) € N x N such that p;, j, = pi, j,. In particular, there exists a pair of
integers

(i,5) € Z x Z\ {(0,0)}
such that

iL’i _ (xj)oc

for every x € K*. Since K is algebraically closed, it follows that i # 0, j # 0.
Moreover, since K * is divisible, we may assume without loss of generality that
i and j are co-prime.

Now suppose that the characteristic of K is p > 0. Write ¢; : K* —
K* (respectively, ¢; : K* — K*) for the surjection determined by z ~ !
(respectively, x — x7). Since ' = (29)* for z € K*, it follows that Ker(¢;) =
Ker(¢;). Since i and j are co-prime, we thus conclude that i,j € {+p?}.
Moreover, we may assume without loss of generality that 7 = 1. Thus, by
applying Lemma 1.1, (i), we conclude that o € Fr”.

Next, we consider the case where the characteristic of K is 0. In this case,
we have, for example, 2¢ = 27. This implies that = j. Thus, since i and j
are co-prime, we conclude that o € Fr”. This completes the proof of Theorem
1.2. O

Remark 1.2.1.

(i) Theorem 1.2 was in some sense motivated by the following complex analytic
analogue of Theorem 1.2, i.e., the non-holomorphicity of the automorphism
of C given by complex conjugation. Let n be a positive integer; U C
C a nonempty relatively compact open subset; {f;(2)}1<j<n a family of
holomorphic functions on U. Write p for the Lebesgue measure on C;
%z € C for the complex conjugate of z € C. Then

Jz € U such that Z ¢ {f;(2)}1<j<n-

Indeed, suppose that Z € {f;(2)}1<j<n for every z € U. By enlarging
the family of holomorphic functions {f;(z)}1<;j<n if necessary, we may
assume without loss of generality that it is stabilized by multiplication by
—1. Write
def def _
9i(2) = fi(x) + 2, E; = {zeU| £z = f;(2)}.

Then it follows immediately from the definitions that £; C U is a closed
[hence, in particular, Lebesgue measurable] subset, and U = |, <<, Ej.
Thus, we conclude that o

0<u)< > ulE;) < oo

1<j<n

14



(i)

In particular, there exists an element j € {1,...,n} such that p(E;) >
0. Fix such an element j. Since the family of holomorphic functions
{fi(2)}1<j<n is stabilized by multiplication by —1, by possibly replacing
J by j/ € {1,...,n} such that f;(z) = —fj/(2) for z € U [which implies
that E; = E;/], we may assume without loss of generality that g,(z) is
a non-constant holomorphic function. But then g;(E;) C RU+y/—1-R,
which implies that

0 < p(g;(E) < p(RUV-1-R) =0
— a contradiction!

Finally, we observe that Theorem 1.2 in the case where K = C, and « is
the automorphism given by complex conjugation follows immediately from
the fact verified in Remark 1.2.1, (i). Indeed, if ar is not Zariski-dense,
then there exists a nonzero polynomial

0#f=FfX,Y)=> a;;X'Y/ € C[X,Y]

such that
Im(ar) C V(f) € A*(C),

where V(f) denotes the zero set of f. Since the map V(f) — C induced
by the first projection C x C — C is a nonconstant algebraic map [i.e.,
corresponds to a dominant morphism between one-dimensional schemes
of finite type over C], there exists a nonempty relatively compact open
subset U C C such that the induced map

VNl €V NUxC) - U

determines a split finite étale morphism of complex analytic spaces. The
finite collection of sections of this induced map thus determines a family
of holomorphic functions as in Remark 1.2.1, (i). This yields the desired
contradiction.

Corollary 1.3 (A criterion for the algebricity of certain set-theoretic

automorphisms). In the notation of Theorem 1.2, write X &f Pl [i.e., the
projective line over K]. Let Y — X be a finite [possibly] ramified Galois cov-
ering of smooth, proper, connected curves over K. Write X(K) (respectively,
Y (K)) for the set of K-valued points of X (respectively, Y ); Autx (Y (K))
for the group of bijections Y (K) = Y (K) which preserve the fibers of the
natural map Y (K) — X(K); K(Y) for the rational function field of Y. For
T € Autx ) (Y(K)), f € Fn(Y(K), K U{occ}), write

Y for e Fa(Y(K), K U {oo}).
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We shall regard K(Y') as a subset of Fn(Y (K), K U{oo}) by evaluating rational
Junctions at closed points of Y and Gal(Y/X) as a subgroup of Autx g (Y (K))
by means of the natural action of Gal(Y/X) on Y (K). Let k C K be a subfield
such that the covering Y — X descends to a Galois covering Y, — Xy defined
over k, and
(Aut(K) D) Aut(K/k) € Fr” (C Aut(K)).

Let 0 € Autx k(Y (K)) that satisfies the following property: for each f €
K(Y)*, there exist

o5 € Fn(Y(K), k™) (S Fn(Y(K), KU{oc})), g5 K(Y)"
such that f7 = ¢y - g5. Then o € Gal(Y/X).

Proof. Write n for the degree of the covering ¥ — X; o1,...,0, for the n
distinct elements of Gal(Y/X). Let o € Aut(K/k) \ Fr”. Write

ar.x : X(K) = X(K) x X(K),

ary :Y(K) = Y(K)xY(K)
for the respective graphs of «, i.e., the maps X(K) 3 z — (z,2%) € X(K) x
X(K)and Y(K) >y — (y,y*) € Y(K) x Y(K). Then it follows immediately
from Theorem 1.2 that the subset Im(ar x) € X (K) x X(K) is Zariski-dense
in X(K) x X(K). Next, we observe that

e the covering Y — X, hence also the morphism ¥ x ¥ — X x X [i.e., the
product over K of two copies of the covering Y — X] is finite;

e the map Im(ar y) — Im(ar x) induced by the finite morphism ¥ x Y —
X x X is surjective.

Thus, since the Zariski closure of Im(ar y) is an algebraic set in Y (K) x Y (K), it
follows immediately from the above observations that Im(ar y) is Zariski-dense
in Y(K) x Y(K).

Next, we observe that the existence of the Galois covering Y, — Xy [i.e.,
whose base-change over k to K is the covering Y — X] implies that the natural
action of Aut(K/k) on K induces a natural action of Aut(K/k) on Y (K) that
commutes with the natural action of Gal(Y/X) on Y (K). If, moreover, 5 €
Aut(K/k), h € Fn(Y(K), K U {co}), then we shall write

B Bl ohoB e Fu(Y(K), K U{oc}).
For each pair of integers (7, j) such that 1 <4,j < n, write
Vi (o) € YU x Y(K) | 97" =1, 8° 7 =95 ).
Since o € Autx (k) (Y (K)), it follows immediately that

Y(K)xY(K)= ] Vi,

1<i,j<n
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Write
Zi

for the Zariski closure of Im(ary) NY;; in Y(K) x Y(K). Since the subset
Im(ar,y) C Y(K) x Y(K) is Zariski-dense, there exists a pair of integers (4, j)
such that

Fix such a pair of integers (3, j).
Next, we observe that, for each f € K(Y)*, we have equalities

(o3 a ! o\ __ oo, —1\o; oya ! o; —1ya ! o
@F, (6F )7 = (77 - (g )7 A7) 37 - {lgrH™ 37
—1\o; a o, —1ya~ ! o;
:(f'(gfl) . (f )J'{(gfl) 1)
[of ordered pairs of elements of Fn(Y (K), K U{oco})] on some subset Y;*; CY; ;
[i.e., so that all of the values of functions that appear are finite] such that
Yij \ Y% is contained in an algebraic set C Y(K) x Y(K) of dimension 1

— which implies that the Zariski closure Z7; of Im(ary) NY;; is equal to
Y(K) x Y(K). Now consider the morphism

o E (R Y xg Y - P xx P

1

determined by the rational functions h} efr. (g;l)"i and h? ef (fo )i -

{(g;l)ail}‘”. Write A for the diagonal divisor of P, x g PL-. Then it follows
immediately from the above observation [i.e., the observation discussed at the
beginning of the present paragraph], together with the fact that the natural
actions of a and o; on Y (K) commute, that

¢(Im(ar,y) NY) € A(k) € A(K) (C Pi(K) x Pi(K)).

Since Y (K) x Y(K) = Z};, we conclude that Im(¢)) C A(K), hence, in partic-
ular, that the morphism v is not dominant. On the other hand, if both h} and
hfc are nonconstant rational functions, then the morphism 1) is easily verified to
be dominant. Thus, we conclude that either h} or h;} is constant, and hence,
since Im(¢)) C A(K), that both h} and hfc are constant. Write ¢y € K for the

unique constant value of h} Thus,

— ot
fo-:(ﬁf'gfchl'(bf'fl ,

for every f € K(Y)*. In particular, if we write 7 def ooj, ¢} def ¢%', then

fr=cit b f

for every f € K(Y)*. Foreachy € Y(K), let f, € K(Y)* be arational function
on Y such that f, has a pole at y and no pole on Y (K)\ {y}. [The existence of
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such rational functions follows immediately from the Riemann-Roch theorem.]
Thus, since f; = c;yl . gb}u - fy, we conclude that y™ = y for each y € Y (K),
hence that 7 is the identity automorphism, i.e., 0 = o; ' € Gal(Y/X). This
completes the proof of Corollary 1.3. O

Remark 1.3.1.

(i) Corollary 1.3 was in some sense motivated by the following complex ana-

lytic analogue of Corollary 1.3. Write S* e {z€C||z| =1} CC*. In the
notation of Corollary 1.3 in the case where K C C, let ¢ € Auty ) (Y (K))
that satisfies the following property: for each f € K(Y)*, there exist

wy € Fn(Y(K),SY, ¢ e K(Y)*
such that f¢ = wys - qr. Then
¢ € Gal(Y/X).

Indeed, write u for the Lebesgue measure on C; py for the measure on
Y (C) induced by a [nowhere-vanishing] volume form on the Riemann sur-
face associated to Y X C; n for the degree of the covering ¥ — X;
C1y- .-, Cp for the n distinet elements of Gal(Y/X). For each j =1,...,n,

write et
E; S {yeY(K)|y“ =y} CY(C);

F; CY(C)
for the closure of E; C Y(C) in the complex topology [i.e., the topology
induced by the topology of the topological field C]. Thus, F; C Y(C)

is measurable [i.e., with respect to the measure py]. Note that, since
¢ € Autx (s (Y (K)),
U B =v(x).
1<j<n

Since the subset Y (K) C Y (C) is easily verified to be dense in the complex
topology, it follows immediately that

U F=Y(©).
1<j<n
Thus, we conclude that
0<py(Y(C) < > py(F) <o

1<j<n

In particular, there exists an element j € {1,...,n} such that py (F;) > 0.
Fix such an element j. Next, for each f € K(Y)*, it follows immediately
that

W =9 gp) T =1 )
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on some subset E7 C Ej [i.e.,, so that all of the values of functions that
appear are finite] such that E; \EJ* is a finite set — which implies that
py (FF) > 0, where F denotes the closure of E; C Y/(C) in the complex
topology. Thus, we conclude that, for y € F} (C Y(C)),

(F- (@)™ =1 (<= (f - (¢7) )y) € SYH.

In particular, since u(S') = 0 and py (F}) > 0, the meromorphicity of
[the function Y(C) — C U {oo} determined by] f - (qfﬂ)*l implies that

f- (qfcj )~1is in fact a constant function. Thus, we conclude as in the final
portion of the proof of Corollary 1.3 that ¢ € Gal(Y/X).

Finally, we observe that Corollary 1.3 in the case where

« K=0Q k=0" < Qu@®) (CTCO);
e for each f € K(Y)*,

¢r € Fu(Y(Q), p(Q™)) (€ Fu(Y (Q), (Q™))),

follows immediately [since p(Q?*?) C S'] from the fact verified in Remark
1.3.1, (i).

Preliminaries on combinatorial anabelian ge-
ometry

In this section, we give some preliminaries on combinatorial anabelian ge-
ometry which will be of use in the theory developed in the present paper.

Theorem 2.1 (Outer automorphisms of configuration space groups
induced by open immersions). Let n be an integer such that n > 2; k an
algebraically closed field of characteristic 0; X a hyperbolic curve over k of type
(g,7x); U an open subscheme of X which is a hyperbolic curve over k of type
(9,7v), where ry > rx [which implies that (g,7v) ¢ {(0,3),(1,1)}; ru > 0].
Write &,, for the symmetric group on n letters; X,, (respectively, U, ) for the
n-th configuration space associated to X (respectively, U). Let

o€ Out(HUn).

Recall that there exists a unique permutation o € &, C Out(Ily, ) of the factors

of Uy,

[cf. [CbTpII], Theorem B] such that
oo € Out' (I, ) [¢f. [CbTpll], Theorem B, (i)];
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e the outer automorphism ay € Out(Ily) induced by aoo [which does not de-
pend on the choice of projection morphisms of co-length 1 — cf. [CbTpl],
Theorem A, (i)] preserves the set of cuspidal inertia subgroups of ly [cf.
[CbTpI], Theorem A, (ii)].

Suppose that

(a) if n = 2, then either rxy > 0 or a oo € OwtFC(Illy, ) [¢f. [CmbCsp],
Definition 1.1, (ii)];

(b) ay stabilizes the set of conjugacy classes of cuspidal inertia subgroups of
Iy associated to the cusps of U that arise from the cusps of X;

Then o determines an outer automorphism of llx, via the natural outer sur-
jection Iy, — 1lx, induced by the natural open immersion U, — X,,.

Proof. First, since G,, acts compatibly on U,, and X,,, by replacing a oo by a,
we may assume without loss of generality that

a € Out’(Ily,).

Next, observe that it follows immediately from condition (b) that, by replacing
o by the composite of o with a suitable element € Out™(IIy;, ) that

e arises, via various specialization and generization isomorphisms, from [log]
scheme theory, and, moreover,

e determines an outer automorphism of IIx, via the natural outer surjection
HUn - HXn

[cf. the proof of [CmbCsp|, Lemma 2.4], we may also assume without loss of
generality that

(¢) a1 induces the identity automorphism on the set of conjugacy classes of
cuspidal inertia subgroups of II;.

Let V' C U be an open subscheme which is a hyperbolic curve over k of type
(9,70 +1); & € Aut™ (Iy,) a lifting of a € Out” (ITy;, ). Write

(Yo\v, X,¥x\{z}CX

Then, for suitable choices of basepoints, we obtain a commutative diagram of
homomorphisms of profinite groups

1 — an—l HUn Iy —— 1

! gl l

1] —— H(Xm HX HX o 1,

)n—l n

where V;,_1 (respectively, (X,),—1) denotes the (n — 1)-th configuration space
of V' (respectively, X,); the horizontal sequences denote the homotopy exact
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sequences induced by the first projections U, — U and X,, — X; the vertical

arrows denote the homomorphisms induced by the natural open immersions

V-1 <= (Xg)n—1, Uy = X, and U — X [cf. [MT], Proposition 2.4, (i)].
Next, we verify the following assertion:

Claim 2.1.A: Suppose that n = 2. Then the automorphism &|r,, €
Aut(IIy) [induced by & € Aut® (I, ) via the injection ITy < Iy, in
the above commutative diagram| preserves and fixes the conjugacy
classes of cuspidal inertia subgroups of Il that are not associated
to x.

In the case where o € Out"(Ily, ), it follows immediately from condition (c)
that &|rr,, preserves and fixes the conjugacy classes of cuspidal inertia subgroups
of Iy [cf. [CmbCsp]|, Proposition 1.2, (iii); [CbTpll], Lemma 3.2, (iv)]. Thus,
by condition (a), we may assume without loss of generality that rx > 0. Then
it follows from our assumption that ry > rx that rpy > 2. Write

Cusp(U) for the set of cusps of U;

pu : Hy — Out(Ily) for the outer representation determined by the exact
sequence in the above commutative diagram

1 — Iy — Iy, — Iy — 1;

Y98 for the [uniquely determined, up to unique isomorphism] smooth log
curve over Spec k such that Uy = U;

Y21°g for the second log configuration space associated to Y'1°8;

for each y € Cusp(U), y'5 % y xy Y'°¢ [where the fiber product is

determined by the natural morphism Y'°8 — Y obtained by forgetting
the log structurel;

Y, 8 def Y,%% Xy10s 4'°% [where the fiber product is determined by the first
projection Y,% — Y'°% and the natural projection y'° — Y°g];

G, for the semi-graph of anabelioids of pro-Brimes PSC-type determined
by the stable log curve Yylog over 4'°¢ [cf. [CmbGC], Definition 1.1, (i)];

v,V (respectively, v,) for the vertex of G, associated to the irreducible

component that contains (respectively, does not contain) the cusp that
arises from the diagonal divisor of Y,°%;

g, for the PSC-fundamental group of G, [cf. [CmbGC], Definition 1.1,
(ii)].

Thus, for each y € Cusp(U), we have a natural Im(py) (C Out(Ily))-torsor
of outer isomorphisms

Iy 5 g,
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that induces a bijection between the respective sets of cuspidal inertia subgroups.
For each y € Cusp(U), let us fix an outer isomorphism

Iy = Ig,

that belongs to this collection. Then, by conjugating by this fixed outer iso-
morphism, we conclude that &, determines an outer automorphism «, €
Out(Ilg,) for each y € Cusp(U).

Let y, z € Cusp(U) such that y # z. [Recall that 7y > 2.] Then observe [by
varying y, z € Cusp(U)] that it suffices to prove that o, preserves and fizes the
conjugacy class of cuspidal inertia subgroups of g, associated to z [where we
identify naturally the set of cusps of V' with the set of cusps of G,].

Next, we recall that «; € Out(Ily) preserves and fixes the conjugacy class
of cuspidal inertia subgroups of Il associated to y [cf. condition (c)]. Thus,
it follows from [CbTpll], Theorem 1.9, (ii), that, by replacing & by the com-
posite of & with an inner automorphism of Il;;,, we may assume without loss
of generality that «, preserves the set of verticial subgroups of Ilg . Since
(g,7v) ¢ {(0,3),(1,1)}, it follows [cf. [MT], Remark 1.2.2] that o, preserves
and fives the conjugacy classes of verticial subgroups of Ilg, . Let 11, C Ilg, be
a verticial subgroup associated to v,; &, € Aut(Ilg,) a lifting of o, such that
@, (I1,,) = 1I,,. On the other hand, observe that the composite

Hvy - Hgy (:HV L>1_IU2 — Iy

— where the final arrow denotes the natural outer surjection induced by the
second projection Uy — U — determines an outer isomorphism II,, 5 Iy that
induces a bijection between the respective sets of cuspidal inertia subgroups
and is compatible with the respective outer automorphisms «, and o;. Here,
we recall that the cusp z abuts to the vertex v,. Thus, by condition (c), we
conclude that «, preserves and fixes the conjugacy class of cuspidal inertia
subgroups of Ilg, associated to z. This completes the proof of Claim 2.1.A.

In the remainder of the proof of Theorem 2.1, we proceed by induction on
n > 2. Next, we verify the following assertion:

Claim 2.1.B: Suppose that n = 2. Then Theorem 2.1 holds.

Indeed, let us note that, by condition (c), a preserves the kernel of the natural
surjection II;; — IIx. On the other hand, it follows immediately from Claim
2.1.A that &|m, € Aut(Ily) preserves the kernel of the surjection Iy — Ix, .

Thus, since Iy, is center-free, we conclude that & induces an automorphism of
out

IIx, =1IIx, x IIx. This completes the proof of Claim 2.1.B.
Next, we verify the following assertion [by a similar argument to the argu-
ment used to prove Claim 2.1.BJ:

Claim 2.1.C: Let m be an integer such that m > 2. Suppose that
Theorem 2.1 holds in the case where n = m. Then Theorem 2.1
holds in the case where n = m + 1.
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Indeed, let us note that, by condition (c), a; preserves the kernel of the natural
surjection IT;; — IIx. Moreover, since m > 2, it follows from [CbTpl], Theorem
A, (ii) [cf. also condition (c); [CbTpI], Theorem A, (i); [CbTpll], Lemma 3.2,
(iv)], that the automorphism a|m,, € Aut(Ily,,) [induced by & € Aut® Iy, )
via the injection Ily,, < Ily, ., in the above commutative diagram| induces
an automorphism of Il that induces the identity automorphism on the set of
conjugacy classes of cuspidal inertia subgroups of IIy,. On the other hand, since
X, is an affine hyperbolic curve, it follows from the induction hypothesis that
the automorphism aly,, € Aut(Ily,,) preserves the kernel of the surjection
Iy, — Hx,),,- Thus, since II(x,), . is center-free [cf. [MT], Proposition 2.2,

out
(ii)], we conclude that & induces an automorphism of Ily, ., = II(x,),, x Ix.

This completes the proof of Claim 2.1.C, hence of Theorem 2.1. O

Corollary 2.2 (Group-theoreticity of cuspidal inertia subgroups in
configuration space groups of genus 0). In the notation of Theorem 2.1,
suppose that g =0 [so ry > 4]. Then

Out’™® (HUn) = Out” (HUn)

[cf. [CmbCsp], Definition 1.1, (ii); [CbTplIl], Theorem A, (i), in the case where
n > 3/. In particular,

Out(HUn) OutgF(HUn) X G,
Outf (Il ) x &,

out™(11y ) x &,

[ef. [CbGT], Corollary BJ.

Proof. Write
P1,...n—1 1y, =y, _,

for the surjection induced by the projection U,, — U, _1 obtained by forgetting
the n-th factor. Let Z be a hyperbolic curve over k of genus 0 that arises as a
fiber of the projection U, _; — U, _2 obtained by forgetting the (n—1)-th factor.
Write Z5 for the second configuration space associated to Z; pz : Iz, — 1z
for the surjection induced by the first projection Zo — Z. Then, for suitable
choices of basepoints, we obtain a commutative diagram of homomorphisms of
profinite groups

] —— Ker(pz) H22 bz I — 1
| | |
p1,..., n—1
1 — KeI‘(me)n,1> HU” HUn—l —_ 1.

Thus, by replacing U by Z and applying [CbTpl], Theorem A, (ii), we may
assume without loss of generality that n = 2.
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Let 3 € Out"(Ily,). Write 81 € Out(Ilyy) for the outer automorphism
induced by S [cf. [CbTpl], Theorem A, (i)]. Observe that, by replacing (3
by the composite of 8 with a suitable element € Out"“(Ily,) [cf. [CmbCsp],
Lemma 2.4], we may also assume without loss of generality that 8; induces
the identity automorphism on the set of conjugacy classes of cuspidal inertia
subgroups of II.

In the remainder of the proof, we use the notation in the proof of Claim

2.1.A in the proof of Theorem 2.1 in the case where (g,7x) = (0,3) and « o B.

Observe that it follows from Claim 2.1.A that a € Out™(Ily,) [cf. [CbTpII],
Definition 2.1, (ii)].

Suppose that y, 2 € Cusp(U), where y # z, arise from cusps of X. Then it
suffices to prove that the outer automorphism «,, € Out(Ilg,) [which preserves
and fixes the conjugacy classes of verticial subgroups of Ilg, ] preserves and fixes
the conjugacy class of cuspidal inertia subgroups of Ilg, associated to z, i.e.,
the cusp associated to the diagonal divisor of Y,°%. Let Mynew C Ilg, be a
verticial subgroup associated to v;*V; a;¢V € Aut(llg, ) a lifting of o, such that

Y
dgew(HUEeW) = HU:Jxew . Write

ax € AutFWC (HX2 )

for the automorphism induced by & € Aut™“(IIy,) and the natural surjection
¢9 : Iy, — IIx, [cf. Theorem 2.1]. Write T' O X, for the tripod over k obtained
by eliminating the cusp z of X,. Then it follows immediately from the various
definitions involved that the composite

vaew - Hgy <: HV - HXI - HT

— where IIy — Iy, (respectively, IIx, — IIp) denotes the natural outer
surjection induced by the natural open immersion V' < X, (respectively, X, —
T) — determines an outer isomorphism Hynew 5 IIy that induces a bijection
between the respective sets of cuspidal inertia subgroups and is compatible
with the outer automorphisms [of H%xew, Iy, respectively] induced by Qv
and the restriction ax|my, of ax to IIx, [cf. Claim 2.1.A]. On the other
hand, since ax € Aut™C(Ilx,) = Aut"(Ilx,) [cf. [CbTpII], Theorem A,
(ii)], it follows that @y preserves and fixes the conjugacy classes of the cuspidal
inertia subgroups of IIx, [cf. condition (c¢); [CmbCsp|, Proposition 1.2, (iii);
[CbTplI], Lemma 3.2, (iv)], hence of II7. Thus, we conclude that &;°" preserves
and fixes the conjugacy classes of cuspidal inertia subgroups of Il new, hence
Y
that a,, € Out(Ilg,) preserves and fixes the conjugacy class of cuspidal inertia
subgroups of llg, associated to x. This completes the proof of Corollary 2.2. [J

Remark 2.2.1. One verifies immediately that Theorem 2.1 and Corollary 2.2,
as well as their proofs, go through without change when the various “II’s” are
replaced by their respective mazimal pro-l quotients, for some prime number [.
We leave the routine details to the reader. On the other hand, in the present
paper, we shall not need these pro-l versions of Theorem 2.1 and Corollary 2.2.
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3 Various properties of closed subgroups of the
Grothendieck-Teichmiiller group

In this section, we apply the technique developed in [Tsjm], §1, i.e., com-
binatorial Belyi cuspidalization, to give a purely combinatorial/group-theoretic
definition of certain classes of closed subgroups of GT [cf. Definition 3.3]. More-
over, we prove a certain relationship between two of these classes [cf. Corollary
3.7] by applying Theorem 2.1.

Write X %' IP’}@\{O, 1,00}; X, for the n-th configuration space associated to

X, where n > 2 denotes a positive integer; GT C Out(Ilx) for the Grothendieck-
Teichmdiiller group [cf. [CmbCsp], Definition 1.11, (i); [CmbCsp|, Remark 1.11.1].
Then recall from the first display of [CbGT], Corollary C, that we have a natural
inclusion GT — Out(Ilx, ). We shall write GT,, C Out(Ilx, ) for the image of
this inclusion.

Corollary 3.1 (Purely combinatorial/group-theoretic reconstruction
of the symmetric group). For each positive integer m, write &, for the
symmetric group on m letters; U, (C S,,) for the alternating group on m
letters. Let us regard U3 C S,p3 as subgroups of Out(Ilx, ) via the natural
injection &,.43 — Out(Ilx, ) induced by the natural action of &, y3 on X, [cf.
[CbGT], Remark 2.1.1]. Let

P Out(Ilx, ) = Spys

be a representative of the outer surjection &, induced by the natural action of
Out(Ilx, ) on the set of generalized fiber subgroups of length 1 [cf. [COGT],
Theorem A, (i), (ii)]. Then the following hold:

(i) Write
FClly,
for the generalized fiber subgroup of co-length 1 associated to the subset

{5,....,n+3} C{1,...,n+ 3} of labels of cardinality n — 1 [cf. [COGT],
Theorem A, (i), (ii); [CoGT], Definition 2.1, (ii)]. Let

a € Out(Ily,)

be an outer automorphism of Ilx, such that ,(a) =
a induces the identity outer automorphism of llx, /F (
natural surjection llx, — lx /F. Then

2)(3 4), and

(1
5 M) via the

o = (1 2)(3 4) S Q[n+3 g 6n+3 g Out(HXn)

[ef. [CmbCsp], Corollary 4.2, (ii); the first display of [CbGT], Corollary
C; [CbGT], Definition 2.7], and the subgroup A, 3 C Out(Ilx,) may be
reconstructed, in a purely combinatorial/group-theoretic way, from Ix
as the subgroup of Out(Ilx ) generated by the Out(Ilx, )-conjugacy class
of a [which depends only on the outer surjection &,].
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(i) Suppose that n > 3. Write
F Clly,

for the generalized fiber subgroup of length 2 associated to the subset {1,2} C
{1,...,n+ 3} of labels of cardinality 2 [cf. [COGT], Theorem A, (i), (ii);
[CbGT], Definition 2.1, (ii)]. Let

a € Out(Ily,)

be an outer automorphism of Ix, such that ¢y () = (1 2), and o induces
the identity outer automorphism of Ilx, /F (= Ilx, ,) via the natural
surjection lx, — Ilx, /F. Then

a=(12) € &,43 COut(lly,)

[ef. [CmbCsp], Corollary 4.2, (ii); the first display of [CbGT], Corollary
C; [CbGT], Definition 2.7], and the subgroup &,1+3 C Out(Ilx, ) may be
reconstructed, in a purely combinatorial/group-theoretic way, from x
as the subgroup of Out(Ilx ) generated by the Out(Ilx, )-conjugacy class
of a [which depends only on the outer surjection &,].

Proof. Write 20 C Out(IIx,) (respectively, & C Out(Ilx,)) for the subgroup
constructed by the algorithm of assertion (i) (respectively, assertion (ii)). Then
it follows immediately from the well-known structure of &,,13 [where we recall
that n 4+ 3 > 5] that 2,43 C 2A (respectively, &,43 C &). [Here, we recall that
the kernel of the unique outer surjection &4 — &3 [through which the natural
outer action of &4 on IIx factors] is normally generated by (1 2)(3 4).] On the
other hand, by applying the first display of [CbGT], Corollary C, we conclude
that 2,5 = A (respectively, &,,+3 = &). This completes the proof of Corollary
3.1. O

Remark 3.1.1. In the second display of [CbGT], Corollary C, the subgroup
&,.43 C Out(Ily, ) is reconstructed by forming the local center Z'°¢(Out(Ily, ))
of Out(Ilx, ). This local center is calculated by applying the Grothendieck
Congecture for hyperbolic curves over number fields [cf. [LocAn], Theorem A;
[Tama], Theorem 0.4]. On the other hand, if n > 3, then, by applying the
algorithm given in Corollary 3.1, (ii), the subgroup &,,+3 C Out(Ilx, ) may be
reconstructed, in a purely combinatorial /group-theoretic way, from ITx, without
applying the Grothendieck Conjecture for hyperbolic curves over number fields.
In fact, moreover, by regarding IIx, [cf. Corollary 3.1, (ii); [CbGT], Theorem
A, (i), (ii); the first display of [CbGT], Corollary C] as an object reconstructed
from ITy, in a purely combinatorial/group-theoretic way, one concludes that
this assumption that n > 3 is unnecessary [cf. the discussion of Remark 4.5.1,
(i), below]. Finally, we recall from the theory of [CbGT] that [unlike the second
display of [CbGT], Corollary C!] the first display of [CbGT], Corollary C, is
proved in [CbGT] without applying the Grothendieck Conjecture for hyperbolic
curves over number fields.
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Definition 3.2. Let n be an integer such that n > 2; k an algebraically closed
field of characteristic 0; U a hyperbolic curve over k. Write U,, for the n-th
configuration space associated to U. Recall the subgroup

OutgF(HUn) C Out(Iy;,)
[cf. [CbGT], Definition 2.1, (iv)]. Then we shall write
Outg (I, )P C Ot (Ily,)

for the subgroup of elements that induce outer automorphisms of II;; that pre-
serve and fix the conjugacy classes of cuspidal inertia subgroups of I [cf.
[CbTpI], Theorem A, (i), (ii)].

Definition 3.3. Let J C GT be a closed subgroup of GT; N (respectively, NT)
a normal open subgroup of J;

out

out
IIy x N —— Ilx x N

|

out

Hx><1N

(respectively,
out out

Oyt x NI ——— Iy x NT

!

out
HX bal NT)

an arithmetic Belyi diagram [cf. [Tsjm], Definition 1.4, where we take “M” to be
N (respectively, NT), and we note that the “N” of loc. cit. does not necessarily
coincide with the N of the present discussion; Remark 3.3.2 below], which we de-
note by B* (respectively, TB*). Here, we recall that the notion of an arithmetic
Belyi diagram may be understood as an abstract group-theoretic/combinatorial
version of the notion of a scheme-theoretic diagram consisting of an open immer-
sion [i.e., the horizontal arrow| of a finite étale covering of X [i.e., the vertical
arrow] into X itself [where we think of the base field Q as a direct limit of finite
extensions of QJ.

(i) Write Uz (respectively, U;r ) for the second configuration space associated
to U (respectively, UT); p : Iy, — Iy (respectively, p' : I+ — Hyt)
for the outer surjection induced by the first projection. Note that it fol-
lows from Remark 3.3.4 below that there exists a(n) [unique — cf. the
final portion of Remark 3.3.4] outer action N — Out®"(Ily,) (respec-
tively, NT — OutgF(HU;)) which induces the given outer action of N

(respectively, NT) on IIy; (respectively, II;;+) via the outer surjection p
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(respectively, pT). Then we shall say that TB* dominates B> if there exist
a normal open subgroup
M C NNt

of J and a IIy-outer surjection

out

out
¢:HUT X M*»HU x M

such that the following purely combinatorial/group-theoretic [cf. Corollary
2.2; the first display of [CbGT], Corollary C| conditions (a), (b) hold:

(a) There exists a [necessarily unique — cf. Proposition 3.4 below; the
argument given in the proof of Claims 3.7.A, 3.7.B, 3.7.C in the proof
of Corollary 3.7 below; [MT], Theorem 1.5, applied to the images via
@9 of fiber subgroups of length 1; [MT], Proposition 2.4, (v), and its
proof [applied in the case of HU;}; [CmbCsp], Proposition 1.7, (d)
[applied in the case of IIy,]; [CmbCsp], Propositions 1.2, (iii), and
1.3, (v) [applied in the case of IIy,, HUZT]; [CmbCsp|, Theorem A, (i)

[applied in the case of Iy, ]] Iy,-outer surjection

out

out
¢o 1 Ip 0 M — Iy, x M
2

such that

e the diagram of II_j-outer homomorphisms

out o out
HUQ XM —— Iy, x M
out out
p—r X id ps p X idas

out o out
HUT XM —— Iy x M
commutes;
e ¢ maps the fiber subgroups of HUQT to the fiber subgroups of I, ;
e the kernel of ¢9 is topologically generated by [certain of the]
cuspidal inertia subgroups of fiber subgroups of HUJ of length 1
[which implies, in particular, that the kernel of ¢ is topologically
generated by [certain of the] cuspidal inertia subgroups of II;+];
e the image via ¢ of any cuspidal inertia subgroup of a fiber sub-
group of HU§ of length 1 is either trivial or a cuspidal inertia
subgroup of a fiber subgroup of Iy, of length 1 [which implies, in
particular, that the image via ¢ of any cuspidal inertia subgroup
of I+ is either trivial or a cuspidal inertia subgroup of II].

t
(b) The composite of ¢ with the restriction to ITy %4 M of the ILx-outer

surjection
out out

HUNN—»H)(NN
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[i.e., the horizontal arrow in B*] coincides with the restriction to
out
I+ x M of the IIx-outer surjection

out out

Il > NTA»HX x Nt

[i.e., the horizontal arrow in TB*].
out out
In this situation, we shall refer to ¢ : Ilys x M — Ily x M as an
arithmetic domination [of B* by "B*] and to the Ily-outer surjection
¢ : Iy — Iy obtained by restricting ¢ to I+ [a restriction whose
image lies in IT;, by either condition (a) or (b)] as a geometric domination
[of B* by B*]. [Here, we observe in passing that it follows immediately

t

from the definition of “x ” that [up to possibly replacing M by an open
subgroup of M that is normal in J] ¢ is uniquely determined by ¢r, TB*,
and B*.]

(i) We shall say that the pair (B, TB*) satisfies the COF-property [i.e., “cofil-
tered property”] if the pair (B, B*) satisfies the following condition:

e there exist a normal open subgroup Nt of J and an arithmetic Belyi

diagram B
out out

HUIXNI—>Hx>4Ni

|

out

Iy x Nt
such that *B* dominates B* and TB*.

(iii) We shall say that the pair (B, TB*) satisfies the RG C-property [i.e., “Relative
Grothendieck Conjecture property”] if the pair (B>, TB*) satisfies the fol-
lowing condition:

e the cardinality of the set of geometric dominations [cf. (i)] of B* by
B> is < 1.

(iv) Write Cusp(Ily) (respectively, Cusp(Ilx)) for the set of cusps of Il (re-
spectively, IIx) [cf. [Tsjm], Theorem 1.3, (i)]. Note that the horizon-
tal arrow in B* induces a natural injection Cusp(Ilx) = {0,1,00} —
Cusp(Ilyy); we shall regard Cusp(Ilx) as a subset of Cusp(Ily) via this
injection. Let T" C Cusp(Ily) \ Cusp(Ilx). Write I(IIy) for the set of
cuspidal inertia subgroups of Iy [cf. [Tsjm], Theorem 1.3, (i)]. Thus,
Cusp(Ilyy) may be identified with I(ITyy)/IIy. Write Iy — Ip for the
quotient by the normal closed subgroup topologically generated by the

t
cuspidal inertia subgroups of II;; associated to the cusps € T Il NN

t
1Ip ¢ N for the natural quotient induced by the quotient 1I;; — Ilp. For

I. € I(Ily), write D, def NH outN(IC); Dr . for the image of D, via the
U X
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t t
quotient Il M N - 117 % N. Then we shall say that the arithmetic
Belyi diagram B* satisfies the CS-property [i.e.,“cuspidal separatedness
property”] if, for any T as above, B* satisfies the following condition:

o for I.,I, € I(Ily), Dy, is commensurable to Dy . if and only if

there exists o € Ker(Ilyy — II7) such that (I.)7 def ol.o~ ' =1,.

out
One verifies immediately that this condition implies that Dy . C IIp x N
is commensurably terminal, hence normally terminal.

(v) We shall say that J satisfies the COF-property (respectively, the RGC-
property) if every pair of arithmetic Belyi diagrams satisfies the COF-
property (respectively, the RGC-property). We shall say that J satisfies
the CS-property if every arithmetic Belyi diagram satisfies the C'S-property.
We shall say that J satisfies the BC-property [i.e., “Belyi compatibility
property”] if J satisfies the COF- and the RGC-properties. By a slight
abuse of notation, we shall use the notation BGT to denote a closed sub-
group of GT that satisfies the BC-property. [We refer to Remark 4.4.1
below for some concrete examples.|

(vi) We shall refer to a field K of characteristic 0 as a conducting field for J
if the image of [any representative of] the natural outer homomorphism
Gg — Gg in Gg, where we think of Gg as a subgroup of GT via the
natural inclusion

Go ™ Gal(@/Q) — GT C Out(Ily)

[cf. the discussion at the beginning of [Tsjm]|, Introduction], is contained
in some GT-conjugate of J. We shall say that a field K of characteristic 0
satisfies the ISC-property if, for any two distinct points y1,y2 € Y(L) of a
hyperbolic curve Y over a finite field extension L of K, the IIy-conjugacy
classes of the corresponding decomposition groups D, ,D,, C Ily are
distinct. We shall say that a field K of characteristic 0 satisfies the ZISC-
property if, for any two distinct points y1,y2 € Y (L) of a hyperbolic curve
Y of genus 0 over a finite field extension L of K, the Iy -conjugacy classes
of the corresponding decomposition groups D, , D,, C Ily are distinct.

Remark 3.3.1. Note that it follows immediately from the various definitions
involved that:

(a) each notion defined in Definition 3.3, (i), (ii), (iii) (respectively, Definition
3.3, (iv)), concerning B>, TB* (respectively, concerning B*) is equivalent
to the corresponding notion concerning the restrictions of B*, TB* (re-
spectively, the restriction of B*) to arbitrary open subgroups of N, NT
(respectively, N) that are normal in J;
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(b) each notion defined in Definition 3.3, (v), concerning J is equivalent to
the corresponding notion concerning an arbitrary open subgroup of J.

Remark 3.3.2. Let us recall that there are precisely two situations in [Tsjm] in
which the Grothendieck Conjecture for hyperbolic curves over number fields [cf.
[LocAn], Theorem A; [Tama], Theorem 0.4] is applied, namely:

a) Claim 1.3.A in the proof of [Tsjm], Theorem 1.3, (ii) [which is applied in
Claim 1.3.A in th f of [Tsj Th 1.3, (ii hich i lied i
[Tsjm], Definition 1.4, to define the notion of an arithmetic Belyi diagram];

(b) the proof of [Tsjm], Theorem 1.3, (iii) [which must be applied in order
to give a purely combinatorial/group-theoretic construction of the outer
isomorphism that is used to identify the two copies of Ilx that appear in
a Belyi diagram].

On the other hand, in Remark 3.3.3 below,

we shall give a purely combinatorial/group-theoretic algorithm for
constructing, via the algorithm of Corollary 3.1, (ii), the identifying
outer isomorphism between the two copies of Ilx that appear in a
Belyi diagram.

In particular, in the context of the theory of the present paper, instead of apply-
ing [Tsjm|, Theorem 1.3, (iii), one may apply the purely combinatorial/group-
theoretic algorithm of Remark 3.3.3, which does not require any use of the
Grothendieck Conjecture for hyperbolic curves over number fields [cf. Remark
3.1.1]. In addition, [Tsjm], Theorem 1.3, (ii) [i.e., the compatibility of the iden-
tifying outer isomorphism between the two copies of Ilx with the respective
outer actions on the two copies| follows immediately from the functoriality of
the purely combinatorial/group-theoretic algorithm given in Remark 3.3.3 below.
Thus, in summary, in the theory of the present paper,

one may in fact avoid any use of the Grothendieck Conjecture for hy-
perbolic curves over number fields when applying the theory /results
of [Tsjm] in the present paper.

Remark 3.3.3. In the following discussion, we use the notation that appears in
the statement and proof of [Tsjm], Theorem 1.3.

(i) In the remainder of the present Remark 3.3.3, we shall reconstruct the
identifying outer isomorphism between the copies of llx that appear in
a given Belyi diagram B [cf. Remark 3.3.2] — by means of a purely
combinatorial /group-theoretic algorithm — from [the underlying purely
combinatorial/group-theoretic structure of] the collection of data

(a) the profinite group Ix,;
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(i)

(b) the outer surjections pr, ; : llx, — Ilx,, where (4, j) € {(1,2),(1,3),
(2,3)}, determined by the natural projection X3 — X, to the i-
th and j-th factors, i.e., to be precise, the normal closed subgroups
Ker(pr; ;) C Ilx,, together with the composite outer isomorphisms

Iy, /Ker(pr, ;) &y, 5 Iy, /Ker(pry ;/),

where (4,7), (¢',7") € {(1,2),(1,3),(2,3) };

(c) the outer surjections p; : IIx, — IIx (i € {1,2}) determined by the
natural projection Xo — X to the i-th factor, i.e., to be precise, the
normal closed subgroups Ker(py), Ker(ps) C Ilx,, together with the
composite outer isomorphism lx, /Ker(py) < x = x, /Ker(ps);

(d) the profinite groups ITx, and IIx, i.e., to be precise, the quotients of
IIx, discussed in (b) and (c);

(e) surjections
pry :HX:s A»HX7 Pro IHX3 %HX’ pr3 :HX3 *»HX’

that represent the respective outer surjections p; o pry3, P19 DPrys,
P2 0PIy 3.
(f) the open subgroup Iy C I x;

(g) the subset of labeled elements {0, 1,00} C Cusp(Ily) [cf, [Tsjm], The-
orem 1.3, ()];

(h) the subset of labeled elements {0, 1,00} C Cusp(Ilx) [cf, [Tsjm], The-
orem 1.3, (i)]

— i.e., without applying the Grothendieck Conjecture for hyperbolic curves
over number fields. Here, the data (f), (g), (h) correspond to the given
Belyi diagram B [cf. the data “C(Ilx)” of [Tsjm], Theorem 1.3, (iii)].
Also, we note that any two collections of choices of surjections as in (e) are
related to one another by composition with a single inner automorphism
of Ilx,. Moreover, by applying Corollary 3.1, (ii); [CbGT], Theorem A,
(ii), one may regard the data of (b), (¢), (d), (e) as data reconstructed
[i.e., by using the action of the symmetric group &g C Out(Ilx,)], up to
unique isomorphism, from the data of (a).

Next, observe that the identifying outer isomorphism between the copies
of Ilx in B coincides with the composite

My & 1ed 3 et 5 Pt 3y,

where the first and the final arrows denote the outer isomorphisms arising
from the [scheme-theoretic!] isomorphisms of tripods determined by the
data of (i), (e), (h) [which may be used to rigidify the correspondences
between cusps|; the second and the third arrows denote the natural isomor-
phisms induced, respectively, by the natural outer surjections Ily, — I,
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(iii)

(iv)

and Iy, — Ilx,. Recall that the open subgroup Ily, C Ilx, is defined to
be the inverse image of the open subgroup H§3 C H;f [determined by the
open subgroup Iy C IIx] via the surjection Ix, — I'I)X(3 determined by
the surjection pr; : IIx, — Ilx, where ¢ = 1,2, 3. Thus, to reconstruct the
above composite in a purely combinatorial/group-theoretic way, it suffices
to reconstruct the following data:

(a) the 3-central tripods C I, [i.e., such as IT°*Pd];

(b) the kernel of the natural outer surjection Ily, — Iy, [which allows us
to characterize I1°P4 [cf. Claim 1.3.C in the proof of [Tsjm], Theorem

1.3, (ii)] and reconstruct TI¢9);
(c) the outer isomorphism Ilx < IT1¢%Pd;
(d) the kernel of the natural outer surjection Iy, — Ilx, [which allows

tpd
us to reconstruct IT5P7);

(e) the outer isomorphism H;pd 5 Ilx, where we regard both “Hg;pd”

and “IIx” as subquotients of

15 4 11y, /Ker(Ily, — Ix,) (5 Ix,).

The data of (ii), (a), may be reconstructed by applying the algorithm
implicit in the proof of [CbTpll], Theorem 3.16, (v) [cf. also [CbGT],
Corollary B], where we allow the central tripod “I” of [CbTpll], Theo-
rem 3.16, (v), to vary among all 3-central tripods. [Indeed, the proof of
Claim 3.16.B in the proof of [CbTpll], Theorem 3.16, (v), consists pre-
cisely of a reconstruction algorithm for the 3-central tripods.] Once the
data of (ii), (b) (respectively, (d)), has been reconstructed, the data of
(ii), (c¢) (respectively, (e)), may be reconstructed by using the action of
the symmetric group &g C Out(Ily,) (respectively, Sg C Out(Il3)) [cf.
Corollary 3.1, (ii); the construction of the geometric outer isomorphism
“ynew — IL,” in the proof of [CbTpll], Lemma 3.13, (iii)]. Thus, it
suffices to reconstruct the data of (ii), (b), (d) [cf. (v), (vi), below].

Recall the set Ix, of inertia subgroups C Ilx, of the discussion imme-
diately following Claim 1.3.B in the proof of [Tsjm|, Theorem 1.3, (ii).
Write

I§(3 C IXS
for the subset consisting of inertia subgroups C Ker(pr; ;) for some (i, j) €
{(1,2),(1,3),(2,3)}. Let (z,7) € {(1,2),(1,3),(2,3)}. Recall from [CbGT],
Theorem A, (ii); the first display of [CbGT], Corollary C, that

(a) the image GT3 C Out(Ilx,)

of the natural inclusion GT < Out(Ilx,) may be reconstructed from the
data of (i), (a). Next, observe that the natural outer action of GT5 =
Outt¥(Ilx,) on Ilx, stabilizes Ker(pr; ;) C lx,, as well as the set of
cuspidal inertia subgroups of Ker(pr; ;) [cf. [CbTplI], Theorem A, (ii)],
hence determines
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(b) an outer representation ITx, x GT3 — Out® (Ker(pr; ;)) [cf. [CbTpI],
Definition 6.1],

which is I-cyclotomically full [cf. [CmbGC], Definition 2.3, (ii), where we
regard Ker(pr; ;) as the étale fundamental group of a geometric fiber of
pr; ;, i.e., a smooth affine curve over an algebraically closed field of char-
acteristic 0, which implies formally, from the definitions of the notation
involved, that “Outc(Ker(pri’j))” in the present discussion corresponds
precisely to the notation “Aut(G)” in [CmbGC], Definition 2.3] for any
prime number ! [where we apply the fact that Gg C GT]. In particular,
by applying the algorithm implicit in the proof of [CmbGC], Corollary 2.7,
(i), we conclude that the cuspidal inertia subgroups of Ker(pr; ;) may be
reconstructed group-theoretically from the data of (b). Thus, by varying
(1,7) € {(1,2),(1,3),(2,3)}, we conclude that

(c) the inertia subgroups € I,

may be reconstructed group-theoretically from the data of (i), (a), (b),
(), (d).

Next, we reconstruct the data of (ii), (b). Let I € I}“}S be such that, for
each h = 1,2,3, pr,(I) = {1}. Then there exists a unique pair (i,j) €
{(1,2),(1,3),(2,3)} such that pr; ;(I) # {1}. Write

e Il C IIx for the maximal normal open subgroup such that Ily, C
My

o 11, of Ix, X 1y xrix x11x) (I x Hyy x ) € Ilx,, ie., the inverse
image via the surjection IIx, — IIx X IIx x IIx induced by pi, pa,
and ps of the open subgroup Iy x Iy x Iy C Iy x Iy x x
[determined by the inclusion Iy, C IIx];

Note that I C I, C IIy, C llx,. Then it follows from a similar argument
to the argument applied in the proof of [CmbCsp], Proposition 1.2, (iii),
that pr; and pr; induce natural isomorphisms

gi.r : Ny, (1)/1 - (Ker(pr; ;) N Nu,, (I)) = T,

95,1+ Niiy, (/I - (Ker(prm») N N, (I)) Sy,

and that the outer automorphism of Ily, determined by g; rog; } coincides
with the outer automorphism determined by a(n) [unique] element g €
IIx /M. [That is to say, at a more conceptual level, one may think
of the various groups that appear in the above display as decomposition
groups of various Galois [i.e., I x /Ty -] conjugates of the (i, j)-diagonal of
W x W x W.] Next, for each (4,7) € {(1,2),(1,3),(2,3)} and g € IIx /Ty,
we shall write
Lijig € IX,

for the subset consisting of the elements I € I§(3 such that
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e for each h = 1,2,3, pr,(I) = {1};
° pri,j(l) 71'é {1}
® gj1°g; coincides with the outer automorphism of Ily, determined

by g € Hx/HW

Then we may reconstruct the kernel of the natural surjection Ily, — Il
as the normal closed subgroup of Ily;, topologically normally generated by
the elements of the subset

F
U Lijig € Iy,
i,5; 9¢Ily /Tlw

(vi) Finally, we reconstruct the data of (ii), (d). Write

def
o Iy, = {I N Iy, (Clx,) | T €Iy}
o ] 53 for the set of images of elements of I ‘F/S via the natural surjection
HV3 — I_IU3 [Cf (V)]

On the other hand, for each ¢ = 1,2, 3, pr; naturally induces an outer sur-
jection g; : Iy, — Ilyy. Thus, we may reconstruct the kernel of the natural
outer surjection I, — Ilx, as the normal closed subgroup topologically
generated by the elements I € I, 53 satisfying the following condition:

there exists i € {1,2,3} such that ¢;(I) C Iy is a cuspidal
inertia subgroup that is not associated to 0, 1, oo [cf. (i), (g)]-

Remark 3.3.4. We maintain the notation of Remark 3.3.3. Let J C GT be a
closed subgroup; N a normal open subgroup of J;

out

out
IIy x N — IIx x N

|

out
HX x N

an arithmetic Belyi diagram, which we denote by B* [i.e., whose underlying
Belyi diagram is the Belyi diagram B of Remark 3.3.3, (i)]. Recall the nota-
tion Uy (respectively, Xo) for the second configuration space associated to U
(respectively, X); write py : Iy, — Iy (respectively, px : Hx, — Ilx) for
the outer surjection induced by the first projection. Let us recall from [Tsjm],
Lemma 1.2, (b) [cf. also [Tsjm], Theorem 1.3, (ii); [Tsjm], Definition 1.4], that
the outer action of N on IIy extends uniquely [cf. the slimness of IIx] to a
[y -outer action on Il x that is compatible, relative to the vertical arrow of the
Belyi diagram B, with the outer action of J (2 N) on IIx. Then observe that
this Iy -outer action of N on Ilx allows one to construct

e a natural outer action of N on Ilx, that determines an injection N —»
Out"“(Ilx,),
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together with
e a compatible natural IIy,-outer action of N on Ilx, that stabilizes Ily,

[cf. the discussion preceding Claim 1.3.B in the proof of [Tsjm], Theorem 1.3,
(ii)]. Next, recall from Remark 3.3.3, (ii), (b), (d) [cf. also Remark 3.3.3, (v),
(vi)], that the resulting outer action of N on Ily, determines injections

N < Out™(11y,), N — Out"™C(Ily,)

compatible with the outer surjections Iy, — Il;, — IIx,. The F-admissibility
of these outer actions implies that these natural outer actions of N on Ily;, and
IIx, determine injections

N < Out®" (I, )™ € Out™ (1Iy,),

N < Out®® (I, )P C Out™™ (Ilx,)

[cf. Corollary 2.2; Definition 3.2; [CbTplI], Theorem A, (ii)] and a commutative
diagram

out out
IIU2 XN —— IIX2 x N
out out
pU Nile pPx Nile

out out
Iy x N — Ilx x N,
where the lower horizontal arrow is the horizontal arrow of B*. Note that the
outer action of N on IIy, (respectively, IIx,) just constructed is uniquely de-
termined by the following two conditions [cf. Corollary 2.2; [CbTplI], Theorem
A, (ii); [CmbCsp|, Theorem A, (i)]:

e the outer action of N on ITy, (respectively, IIx,) determines an injection

N < Out®F (Iy,)"P  (respectively, N < Outs" (ILy, )°"P);

e the outer action of N on Iy, (respectively, IIy,) induces the given outer
action of N on Iy (respectively, ITx) via the outer surjection py (respec-

tively, px).

Proposition 3.4 (Functorial behavior of cuspidal inertia subgroups
with respect to geometric dominations). In the situation of Definition
3.8, (i), every conjugacy class of cuspidal inertia subgroups of Iy arises as the
image via ¢ of a unique conjugacy class of cuspidal inertia subgroups of I+ .

Proof. We regard U, UT as open subschemes of X via the respective natural open
immersions U < X, UT < X. Write Cusp(UT) for the set of cusps of UT; S C
Cusp(UT) for the subset of cusps s € Cusp(UT) such that some [or equivalently,
every| cuspidal inertia subgroup of I+ associated to s is contained in Ker(¢);
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Ut C UJf (C X) for the partial compactification of Ut such that UT = UJr \ S.
Thus, the natural outer surjection Il;;+ — HUT induces a bijection between the

set of conjugacy classes of cuspidal inertia subgroups of I+ associated to cusps

€ Cusp(UT) \ S and the set of conjugacy classes of cuspidal inertia subgroups

of IT;+. Next, observe that it follows immediately from Definition 3.3, (i), (a),
S

(b), that ¢ induces an outer isomorphism
(bs : HUg — Iy
such that

(i) ¢s maps every cuspidal inertia subgroup of HUg to a cuspidal inertia
subgroup of Il;

(ii) ¢g maps every cuspidal inertia subgroup of HU; associated to 0, 1, oo to
a cuspidal inertia subgroup of Il associated to 0, 1, co, respectively.

Thus, to complete the proof of Proposition 3.4, it suffices to verify that ¢g
induces [cf. (i)] a bijection between the set of conjugacy classes of cuspidal inertia
subgroups of 1, and the set of conjugacy classes of cuspidal inertia subgroups
of ITyy. To this end, let us first observe that injectivity follows immediately from
the fact that ¢g is an outer isomorphism. On the other hand, since ¢g is an
outer isomorphism, surjectivity follows immediately, in light of (ii), from the
fact that [since the hyperbolic curves UT and U are of genus 0] [T+ and Iy are
topologically freely generated by their respective collections of cugpidal inertia

subgroups associated to cusps # oo. This completes the proof of Proposition
3.4. O

Proposition 3.5 (Natural action of GT on the set of geometric dom-
inations). In the notation of Definition 3.3, (i), one may construct a natural
action of Car(J) (C Out(Ilx)) on the set of geometric dominations between
arbitrary arithmetic Belyi diagrams.

Proof. Let us consider the data of Remark 3.3.3, (i), (a), (b), (¢), (d), (e), (),
(g), (h), associated to B* and TB*. Then the data of

out out .
o “IIy, x M”, “HU; x M?”, together with

e the respective fiber subgroups of length 1 and cuspidal inertia subgroups
of such fiber subgroups

[cf. Definition 3.3, (i)] may be reconstructed from the data of Remark 3.3.3, (i),
(a), (b); Remark 3.3.3, (i), (b); Remark 3.3.3, (vi) [i.e., “If;,”]. Thus, Propo-
sition 3.5 follows immediately, in light of the various definitions involved, from
the functoriality of the purely combinatorial/group-theoretic algorithm given in
Remark 3.3.3. O

37



Theorem 3.6 (Faithfulness via the CS-property for certain outer ac-
tions on configuration space groups induced by open immersions). Let
J C GT be a closed subgroup; N a normal open subgroup of J;

out out
IIy x N —— IIlx x N

|

out

HX>4N

an arithmetic Belyi diagram, which we denote by B*. Write Uy (respec-
tively, Xs) for the second configuration space associated to U (respectively, X );
pu : Uy, — My (respectively, px : llx, — IIx ) for the outer surjection induced
by the first projection. Thus, we have a commutative diagram

out out
HU2 XN —— sz x N
out out
pu X ile px X idwl

out out

IIy x N — Ilx x N

as in Remark 3.3.4. We regard U as an open subscheme of X wvia the natural
open immersion U — X. For each sequence

UCVCWCX

of open subschemes of X, write Vo, Wa for the second configuration spaces
associated to the hyperbolic curves V., W, respectively;

hV,W : Outs” (HVZ)C“SP — Outs” (HWZ)CHSP

for the homomorphism induced by the upper horizontal arrow of the above com-
mutative diagram [cf. Theorem 2.1; [CbGT], Corollary B; the well-known ele-
mentary structure of the natural inclusion Gz < &5J; Ny, C Outs" (Ily, )°usP
for the image via the composite

N < Outs* (I, ) "4 Outs" (ITy, )

[cf. Remark 3.3.4]. Suppose that B* satisfies the CS-property [cf. Definition
3.8, (w)]. Then, for any V,W as above, the composite

h
Do 11y, s (V1) € Oute™ (I, )05 "5 Outs® (ITyy, joos»
18 1njective.

Proof. Write h <ef hy.w; Cusp(V), Cusp(W) for the set of cusps of V., W, re-
spectively. First, let us note that we may assume without loss of generality [i.e.,
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by forming the composite of the hy s for suitable V, W] that the cardinality
of the set Cusp(V) \ Cusp(W) is 1. Let

B € ZoutgF(HV2)Cusp (NVQ) (g OutgF(HVQ)Cusp)

be such that h(S) = 1. Then it suffices to verify that

B=1.

Note that the natural composites

N 5 Ny, € Out®" (Ily, )™, N 5 Ny, C Out®" (I, )P

determine natural outer actions of N on IIy,, Iy, hence also on Iy, Iy [by
applying the natural outer surjections Ily, — Iy, Iy, — Il determined by
the respective first projections].

Next, let us write

y for the unique element € Cusp(V') \ Cusp(W);

n; + Outs® (Iy, ) — Outs" (Ily) for the natural homomorphism induced by
the j-th projection, where j € {1,2} [where we note that in fact, n; = 72
— cf. Corollary 2.2; [CmbCsp], Proposition 1.2, (iii)];

Y°g for the [uni@ely determined, up to unique isomorphism| smooth log
curve over Spec Q such that Uy = V;

Y21°g for the second log configuration space associated to Y1°¢;

ylog def y Xy Y198 [where the fiber product is determined by the natural
map Y'°¢ — Y obtained by forgetting the log structure];

Y, 8 def Y% Xy10x 4'°% [where the fiber product is determined by the first
projection Y;% — Y!°% and the natural map y'°8 — Y'°8];

G, for the semi-graph of anabelioids of pro-*Brimes PSC-type determined
by the stable log curve Y,°¢ [cf. [CmbGC], Definition 1.1, (i)];

¢y, ca for the cusps of G, that arise from y, the diagonal divisor of Y;Og,
respectively;

vy for the vertex of G, associated to the irreducible component that does
not contain ca;

g, for the PSC-fundamental group of G, [cf. [CmbGC], Definition 1.1,
(ii)].
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Then we have a commutative diagram of profinite groups

out out
1 Hgy HVQXJN—>H\/><1N—>1

"] I |

out

ut
1 Iy My, ¥ N — Ty 9« N —— 1,

where the middle and right-hand vertical arrows denote surjections that rep-
resent the outer surjection induced by the natural open immersion V' — W;

out out out out
IIy, x N = IIy x N, Iy, x N — Iy x N denote surjections that repre-
sent the outer surjections induced by the respective first projections; g, denotes
the induced surjection. [Note that Ker(g,) coincides with the normal closed
subgroup topologically generated by the cuspidal inertia subgroups of Ilg, as-
sociated to ¢,.]

Since B € Zoyer (1my, yeuse (Nv3) (€ Out¥ (ITy, )°*P), and Ily, is center-free

[cf. [MT], Proposition 2.2, (ii)], 8 determines a IIy,-outer automorphism 7y of
11y, Oit N that lies over the identity automorphism of N. Let I, be a cuspidal
inertia subgroup of Ily associated to y; 7y € Aut(Ily, O;t N) a lifting of ~y.
Write (v )1 for the automorphism of ITy O;t N induced by 7y via the surjec-

out out
tion IIy, » N — IIy x N in the above commutative diagram. Then since

B € Outs"(Ily,)°™P, by replacing 3 by a suitable composite with an inner

t
automorphism of Ily; % N [determined by an element of IIy,] if necessary, we
may assume without loss of generality that

(Wh(ly) =1

Let II,, C Ilg, be a verticial subgroup associated to v,. Note that since V. C W,
vy is not of type (0, 3). Thus, it follows immediately from [CbTpII], Theorem 1.9,
(i), that the restriction Jv|n,, of v to Illg, preserves and fixes the conjugacy
class of II,,,. Moreover, by replacing 7y by a suitable composite with an inner

t
automorphism of IIy, %N [determined by an element of Ilg, | if necessary, we
may assume without loss of generality that

ﬁv‘ngy (H”y) = Hvy :

out
Write 4w € Aut(Ily, x N) for the automorphism [that lies over N| induced

t t
by v [cf. Theorem 2.1] via the surjection IIy, %N - Iy, % N in the above
commutative diagram.

Next, we verify the following assertion:

Claim 3.6.A: The outer automorphism v € Out(IIy) determined by

ut
the restriction Jw |, of yw to Iy (— Iy, % N) coincides with
12(B) € Out(Ily ).
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Recall that §V|ngy preserves the cuspidal inertia subgroups of Ilg, [cf. Corol-
lary 2.2]. Write ga : Ilg, — Ily for the natural outer surjection induced by the
second projection Vo — V. Note that Ker(ga) coincides with the normal closed
subgroup topologically generated by the cuspidal inertia subgroups of Ilg, as-
sociated to ca. On the other hand, it follows immediately from the various
definitions involved that

e 7 (respectively, 72(/3)) coincides with the outer automorphism induced by
§V|ng via the surjection g, (respectively, ga);

e g, and ga determine the same outer isomorphism (Ilg, 2) I, 5 Iy

Thus, since §V|Hgy (Hvy) = II,,, we obtain the desired conclusion. This com-
pletes the proof of Claim 3.6.A.
Next, observe that since h(8) = 1, we have

~ out out
Aw € Inn(Ilyy, x N) C Aut(Ily, x N),
where the inner automorphism ~y is determined by an element € Ilyy,. Write

t
e (Jw )1 for the inner automorphism of ITy, NN [determined by an element

ut ut
€ Iy] induced by Fw via the surjection Iy, % N — Iy O><1 N in the
above commutative diagram;
e D, (= N) [cf. [CmbGC], Proposition 1.2, (ii)] for the image of Nn OMN(Iy)
v X

out out
via the surjection IIyy x N — Il x N in the above commutative diagram.

Then it follows from our assumption that (v )1(Iy) = I, that (Yw)1(D,) =
D,. Recall that since B* satisfies the CS-property, D, is normally terminal in

out
IIy x N [cf. the final sentence of Definition 3.3, (iv); [CmbGC], Proposition 1.2,

(ii)]. Thus, we conclude that the inner automorphism ()1 € Inn(Ily NN ) is
determined by a(n) [unique] element € D, NIy = {1}, hence, in particular, that
the inner automorphism 7y is determined by an element € Iy C Ilyy,, i.e., that
~v = 1. Finally, it follows immediately from the injectivity of 7y [cf. Corollary
2.2; [CmbCsp], Theorem A, (i)], together with Claim 3.6.A, that 8 = 1. This
completes the proof of Theorem 3.6. O

Corollary 3.7 (The CS-property implies the RGC-property). Let J C
GT be a closed subgroup satisfying the CS-property [cf. Definition 3.3, (v)].
Then J satisfies the RGC-property [cf. Definition 3.3, (v)].

Proof. In the notation of Definition 3.3, (i), let ¢, ¢’ be arithmetic dominations
of B* by 'B*, defined over a normal open subgroup M C .J. Then it suffices
to prove that ¢ = ¢’. Since Ker(¢) and Ker(¢') are topologically generated by
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[certain of the] cuspidal inertia subgroups of IIj;+ [cf. Definition 3.3, (i), (a)], it
follows immediately from the CS-property [where we take the “T"” of Definition
3.3, (iv), to be “Cusp(Ily+) \ Cusp(Ilx)”, “Cusp(Ily) \ Cusp(llyx)”], together
with Definition 3.3, (i), (b) [cf. also Proposition 3.4], that

Ker(¢) = Ker(¢').
Fix IIy,-outer surjections

out out

out out
(ZSQ:HU;' X M — 1y, x M, QS/Q:HU; x M — 1y, x M

[that lie over ¢, ¢'] as in Definition 3.3, (i), (a), respectively.
Next, we make the following observation:

Claim 3.7.A: ¢ and ¢3 map the inertia subgroups of I+ associ-

ated to the diagonal divisor of UQT isomorphically onto the inertia
subgroups of Il;, associated to the diagonal divisor of Us.

Indeed, Claim 3.7.A follows immediately from the discussion of Definition 3.3,
(i), (a). That is to say, it suffices to show that the inertia subgroups of I

associated to the diagonal divisor of U;r do not lie in the kernel of ¢ or ¢,. On
the other hand, the assumption that any such inertia group lies in the kernel of
@2 or ¢ leads immediately to a contradiction [cf. [MT], Theorem 1.5, applied
to the images via ¢o and ¢} of fiber subgroups of length 1; [MT], Proposition,
2.4, (v), and its proof [applied in the case of HUJ}; [CmbCsp]|, Proposition 1.7,
(d) [applied in the case of I, ]].

Next, we verify the following assertion:

Claim 3.7.B: Ker(¢s) = Ker(¢5).

Indeed, write

out out

out , out
G Alygy X M — Uy x M, ¢, : Uyt x M — 1y x M
for the Ig-outer surjections determined by ¢, ¢}, respectively, via the outer
surjections I+ — Iy, Iy, — Il induced by the respective second projections
2
[cf. the portion of Definition 3.3, (i), (a) concerning fiber subgroups|. Then it
follows immediately from Claim 3.7.A; together with a similar argument to

the argument applied in the proof of [CmbCsp|, Proposition 1.2, (iii), that the
following assertion holds:

Claim 3.7.C: ¢ = ¢y, ¢ = ¢. In particular, Ker(¢,) = Ker(¢) =
Ker(d) = Ker(d).

Thus, since Ker(¢y) and Ker(¢}) are topologically generated by [certain of the]
cuspidal inertia subgroups of fiber subgroups of HUg of length 1 [cf. Definition
3.3, (i), (a)], we conclude, again from Claim 3.7.A [cf. also [CbTpII], Lemma
3.6, (i), (i)], that Ker(¢2) = Ker(¢h). This completes the proof of Claim 3.7.B.

42



It follows immediately from Claim 3.7.B that there exists a unique I, -outer
out ~

automorphism « : Iy, x M — Iy, 0>lilt M such that ¢3 = a0 ¢). On the other
hand, it follows from the CS-property, together with Definition 3.3, (i), (b),
that we may apply Theorem 3.6 to conclude that « is the identity, hence that
P2 = @b, ¢ = ¢'. This completes the proof of Corollary 3.7. O

4 Combinatorial construction of the field Qpar

In §3, we defined a certain class of closed subgroups BGT of GT [cf. Defi-
nition 3.3, (v)]. In this section, for each such closed subgroup BGT, we give a
purely combinatorial /group-theoretic construction of a set Qg associated to
BGT equipped with “field-like operations”, together with a natural action by
Cer(BGT) that is compatible with these operations [cf. Theorem 4.4, (i)]. In

particular, when these operations determine a structure of field isomorphic to Q,

we construct a natural outer homomorphism Cqr(BGT) — Gg & Gal(Q/Q)

[cf. Theorem 4.4, (ii), (iii)].
def

Write X = IP%\{O7 1,00}.
Definition 4.1. Let BGT C GT be a closed subgroup satisfying the BC-
property [cf. Definition 3.3, (v)]. For any arithmetic Belyi diagram B>

ou out

t
IIy *x N — IIx x N

|

out

HX x N
[where N is a normal open subgroup of BGT], write IIgx def Iy;
Cusp(B™)

for the set of conjugacy classes of cuspidal inertia subgroups [cf. [Tsjm], Theo-
rem 1.3, (i)] of IIgx. Write
Iscr

for the set of the arithmetic Belyi diagrams over normal open subgroups of
BGT. We shall regard Izgr as a preordered set [i.e., a set equipped with a
reflexive and transitive binary relation] by means of the relation determined
by domination, i.e., the existence of an arithmetic domination [cf. Definition
3.3, (i); Proposition 3.4]. It follows immediately from the functorial nature of
the algorithm of Remark 3.3.3 [cf. also Remark 3.3.2; Proposition 3.5; [Tsjm],
Definition 1.4] that there is a natural action of Cor(BGT) on the preordered set
Ipgr. Since BGT satisfies the COF-property [cf. Definition 3.3, (ii)], it follows
formally that the preordered set Iggr is directed, i.e., any pair of elements of
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the set admits a(n) [not necessarily minimal!] wupper bound. Since BGT also
satisfies the RGC-property [cf. Definition 3.3, (iii)], if *B* € Ipar dominates
B> € Iggr, then the unique geometric domination

Hin — HTIB%”
of TB* by *B* determines [cf. Proposition 3.4] a natural injection
w4 : Cusp(TB™) < Cusp(*B*)

[which we shall often use to regard Cusp(TB*) as a subset of Cusp(*B*)]. Thus,
we obtain a direct system (Cusp(*B), s+ +). We shall write

= def ..

Tnor I Cusp(B)\ {oo},

BXelpgT

def = def =

—X —h
Qper = Qpar \ {0}, Qpgr = Qar \ {0, 1},
where 0,1,00 € Cusp(B”™) denote the elements determined by the ITx-outer

t b
surjection IIy % N - Iy %N [i.e., the horizontal arrow in B*] and the
conjugacy classes of cuspidal inertia subgroups of Ily associated to 0,1, 00,
respectively. We shall refer to Qpgr as the BGT-realization of Q.

Remark 4.1.1. In the notation of Definition 4.1, it follows immediately from the
various definitions involved that the kernel of the unique geometric domination

H.’;Bx — Ht[ﬂ;x

of TB* by ¥B* is the normal closed subgroup of Il;gx topologically generated
by the cuspidal inertia subgroups associated to Cusp(*B*)\ Cusp("B*).

Proposition 4.2 (Countability of Ipgr). In the notation of Definition 4.1,
IgaT s countable.

Proof. Let us observe that since IIx is topologically finitely generated,
e the set of open subgroups of IIx is countable;
e there exists a countable open basis of BGT C Out(Ilx).

Thus, since Cusp(B™) is finite, it follows from the various definitions involved
that IzgT is countable. This completes the proof of Proposition 4.2. O

Proposition 4.3 (Natural action of Cqr(BGT) on the set Qpgr). There
is a natural continuous action of Car(BGT) on the discrete set Qpgr [cf- Def-
inition 4.1].
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Proof. In the notation of Definition 4.1, let 0 € Cqr(BGT); 2 € Qpgr; B* €
IgaT an arithmetic Belyi diagram

out out

IIy *x N — Ilx x N

|

out

HX x N
[where N is a normal open subgroup of BGT] such that N e N1 C BGT
and z € Cusp(B™). Recall that  is the conjugacy class of some cuspidal inertia
subgroup I, of II.

Next, let us recall the right-hand square in the diagram of the final display
of the proof of [Tsjm], Corollary 1.6, (i), in the case where we take “J” to
be GT [cf. also Remark 3.3.2]. In the notation of the present discussion, this
right-hand square determines a commutative diagram of profinite groups

out out

IIly x N —— 1Ilx x N

i i

out out

Mye x N — Ty x N°,

where the horizontal arrows are the Il x-outer surjections induced by the natural
open immersions U < X, U? < X of hyperbolic curves; the left- (respectively,
the right-) hand vertical arrow is a IIyy--outer (respectively, Il x-outer) isomor-
phism of profinite groups. Write 27 € Qg for the element determined by
o(I,). Thus, to obtain a well-defined action of Cqr(BGT) on Qpgr, it suffices
to show that 27 does not depend on the choice of B*. But this follows for-
mally from the COF-property of BGT, together with Proposition 3.5 and the
construction of z?. To verify that the resulting action is continuous, it suffices
to observe that there exists an open subgroup H C Cgr(BGT) [which may be
obtained, for instance, by forming the intersection of Cor(BGT) with the open
subgroup “N C GT” of [Tsjm], Definition 1.4] such that 2 = z for 0 € H.
This completes the proof of Proposition 4.3. O

Theorem 4.4 (Natural “field-like” operations on Qpgr). The set Qpar,
equipped with its natural action by Cor(BGT) [cf. Proposition 4.3], satisfies
the following properties:

(i) The set Qpar is equipped with natural operations
Bear : Qser X Qear — Qpars

Xeat : Qpar X Qsar — Qpar,
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as well as natural involutions [i.e., self-bijections which are their own in-
verses/

Oger : Qsar U {00} = Qpar U {oo},
(1 - D)per : Qpar U{oo} = Qpar U {0},
all of which are equivariant with respect to the natural action of Car(BGT)
on Qg U {oc}. These operations and involutions satisfy the following
properties:

def def def
Bear(0,y) = v, ®per(0,y) =0, Npar(l,y) =y,

def def def

Dﬁcl;T(O) = 00, Dﬁcl;T(l) =1, D];(l}T(OO) =0,
(1-Dper(0) €1, (1-DO)per() @0, (1-D0O)par(cc) X oo

(ii) If the operations Bpgt and Mpar determine, on Qpar, the addition and
multiplication operations of a structure, on Qpar, of field isomorphic to
Q, then we shall say that BGT satisfies the ArBC-property [i.e., “arith-
metic Belyi compatibility property”]. If BGT satisfies the ArBC-property,
then there exists a field isomorphism Q = Qpgr, as well as a natural
outer homomorphism Car(BGT) — Gg.

(iii) Suppose that BGT admits a conducting field K that satisfies the ZISC-
property [cf. Definition 3.3, (vi)]. Then BGT satisfies the ArBC-

property.

Proof. First, we construct natural “field-like” operations on the set Qpgr, as
described in assertion (i). Write 0,1 € Qpggr for the elements determined,
respectively, by the conjugacy classes of cuspidal inertia subgroups of ITx asso-
ciated to the cusps “0”, “1” of X. Let

y € Qpgr U {0}

(respectively, B
y € Qpar U {oo};
—h _
z € Qpar, ¥ € Qpar);
B> an arithmetic Belyi diagram

out f out

IIy x N —— Ilx x N

|

out

HX><1N

[where N is a normal open subgroup of BGT] such that z,y € Cusp(B*). Write
t: U — X for the open immersion that gives rise to the horizontal arrow f
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of B* [cf. [Tsjm], Definition 1.1, (i); [Tsjm], Definition 1.4]; ¢ for the standard

coordinate on X P}@\{O, 1,00};

tfl
U —= X
(respectively,
MU X
MU s X)

for the open immersion obtained from ¢ : U < X by composing with the
automorphism ¢ — ¢~ of X [i.e., the automorphism of X that switches the cusps
“0” and “o0”] (respectively, composing with the automorphism ¢ — 1 —¢ of X
[i.e., the automorphism of X that switches the cusps “0” and “1”]; compactifying
at the cusps other than “07, “a”, “c0” [i.e., instead of at the cusps other than
“0”, “17, “c0”] and then dividing by ). Then it follows immediately from
[Tsjm], Theorem 1.3, (i) [cf. Remark 3.3.2], that the open immersion /! :
U — X (respectively, .!=* : U < X; i//* : U < X) determines a IIy-outer

surjection
out out

FUy XN STy ) N

(respectively,
out out

7y x N =Ty x N;
t/z . out out
f Iy x N — 1y ><1N).

Thus, by considering y relative to ft ' (respectively, f1=t; ft/) [cf. Definition
4.1], we obtain a new element ! € QpgrU{oo} (respectively, y! =t € Qpgp U
{o0}; y'/* € Qpgr). In particular, by applying the COF-property of BGT, one
verifies immediately that we obtain natural bijections

e {t7'}: Qpgr U{o0} = Qpgr U{c};
o {1—1t}:Qpgr U{oc} = Qpgr U {o0};
o {t/z}: Qpar = Qpar

such that {t~'}(y) = y' , {1 —t}(y) = y**, and {t/z}(y) = y*/*. Here, we
observe that {t'} and {1 —t} are involutions, while {t/z} and {t/z~'}, where

we write 1 {t/x}(1) € Qggr, are inverse to one another. Write
1 def (,— def
Oper = {71 (1-DO)sar = {11}
Then it follows immediately from the various definitions involved that

_ def _ def _
DB&?T(O) = 09, DBé}T(l) =1 DBéT(OO) =0,

(1-Dper(0) €1, 1-Dper() X0, (1-0)per(co) X .
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—h J— .
For each (z,y) € Qpar X Qpgr, write

Rper(e,y) € {t/{t" 1)} ),

Mpar(0,y) o, Mpar(l,y) ey

Thus, we obtain a multiplication map

Mpar : Qear X Qear — Qe
Write
B,
for the arithmetic Belyi diagram [over a suitable normal open subgroup of BGT
— cf. the subgroup “M” of [Tsjm], Definition 1.4] determined by the unique
[up to isomorphism] connected finite étale covering of X of degree 2 ramified
over 0 and oo; -
—lper € Qpar

for the element of Qpgyp determined by the unique element of Cusp(B*;) \
{0,1,00}. Then we obtain an addition map

Bear : Qpar X Qpar — Qpar

by taking

Boar(z,y) © Bper(r, {1 — t}(@ser(—1ser, Bear({t 1), 1)),

def
Bear(0,y) = v,

where (z,y) € Q];GT X Qpar- -

Next, we verify that the natural action of Cqr(BGT) on the set Qpgr [cf.
Proposition 4.3] is compatible with the “field-like” operations constructed above.
Let 0 € Cqr(BGT). Recall that the maps Kpgr and Hpgr are completely

determined by Dby = {71}, (1 — D)par = {1 — t}, {t/z} (for 2 € Ther),
and —lggr. Thus, since 02 = 0 and 17 = 1, it suffices to verify the following
assertion:

Claim 4.4.A: Let = € Qpar, ¥ € Qngr. Then
o {t7}(w7) = {t7 My,
o {1-1}y7) =({1—-t}w),
o {t/27}(y7) = ({t/x}(v))°,
e (—lpaT)? = —1lBaT-

First, it follows from the uniqueness of the connected finite étale covering of X of
degree 2 ramified over 0 and oo that o induces an automorphism of B*;. Then
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since 07 = 0 and 19 = 1, the equality (—1pgT)? = —1pgT follows immediately
from the definition of —1ggT. Next, let B* be an arithmetic Belyi diagram

out out

My 3 N —L 5 Iy % N

|

out

HX><N

[where N is a normal open subgroup of BGT] such that N e N1 C BGT,
and x,y € Cusp(B*). Then, by considering the [right-hand square in the final
display of the] proof of [Tsjm], Corollary 1.6, (i) [cf. also Remark 3.3.2; the
functorial algorithm of Remark 3.3.3], in the case where J = GT, we obtain a
commutative diagram

out out

HUNNTH)(XIN

i i

out out

Oys x N° — IIx x N7,

where the horizontal arrows are the Il y-outer surjections induced by the natural
open immersions U < X, U? < X of hyperbolic curves; the left- (respectively,
the right-) hand vertical arrow is a IIy--outer (respectively, I x-outer) isomor-
phism of profinite groups.
Note that {t71}(y?) (respectively, {1 — t}(y°); {t/x°}(y”)) is completely
determined by y? and the IIx-outer surjection
11 out out
(f7) :Iye x N7 = 1Ix x N°
(respectively,
o1t out o out -
(f7) 7" :1ye x N7 = 1Ix x N7
t/a° out out
(f)* :Mye x N7 = Tx x N°),
which sends (oo, 1,0) (respectively, (1,0,00); (0,27,00)) to (0,1, 00).

On the other hand, ({t~1}(y))° (respectively, ({1 —t}(y))7; ({t/z}(y))?) is
completely determined by y? and the Ilx-outer surjection

-1 1 out - out o
ocof' oo " :Ilye x N7 - 1Ilx x N

(respectively,
out

1—-t —1 out o o
cgof oo " i Ilye x N7 —1Ilx x N7
t/x 1 out - out -
cgof’%oo™ :Tye x N7 =TIy x N7),

which sends (oo, 1,0) (respectively, (1,0, 00); (0,27,00)) to (0,1, 00).
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Note that the Il x-outer surjections of the displays of the last two paragraphs
exhibit analogous behavior on the cusps [i.e., more precisely, on the conjugacy
classes of cuspidal inertia subgroups]. Thus, we conclude from the above com-
mutative diagram [cf. also Remark 3.3.2; the functorial algorithm of Remark
3.3.3] that

e« (f7) " =aoft oo,

« )t =gof oo,

° (fa)t/m“ —go ft/ac oo~ L.
This completes the proof of Claim 4.4.A, hence of assertion (i). Assertion (ii)
follows immediately from the various definitions involved.

Next, we verify assertion (iii). In the following discussion, we shall identify
X(Q) with @m. We begin by observing that, for any pair consisting of

e an arithmetic Belyi diagram B”

out out

IIy x N —— 1lx x N

|

out

HXxN

[where N is a normal open subgroup of BGT] and

. —h
e a finite subset F CQ ,
there exist

e an open immersion UT < U (< X) over Q such that

— — —
FCX@\U'QcXx@=0
[where we regard UT(Q) as a subset of X (Q) by means of the composite

of the open immersion U' < U with the open immersion U < X that
gives rise to the horizontal arrow of the given arithmetic Belyi diagram],

e a normal open subgroup Mt C N of BGT, and
e an arithmetic Belyi diagram TB*

out out

Oy x Mt ——— TIx x MT

!

out

1_[)(><1]\/[]L

[where the restriction I+ — IIx of the horizontal arrow to I+ is the
IIx-outer surjection that arises from the above open immersion Ut —

U (< X) over Q]
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such that the outer action of M on Il is compatible, relative to the outer
surjection I+ — Iy [induced by the open immersion UT < U], with the
restriction to Mt C N of the outer action of N on I . Indeed, write g : U — X
for the connected finite étale covering that gives rise to the vertical arrow of the
given arithmetic Belyi diagram. Let *B* be an arithmetic Belyi diagram

out out

My x M* —— Ty % M*

!

out

IIx x M*
[where M* is a normal open subgroup of BGT] such that

—

U@ cX@\gU@nNF)CX@Q=Q

[cf., e.g., [NCBel], Corollary 1.1}, where we regard U*(Q) as a subset of X(Q)
by means of the open immersion U* < X that gives rise to the horizontal arrow

of *B*. Write Ut % g 1(U*). Thus, we conclude that there exist a normal
open subgroup Mt C M* C N of BGT and a diagram

out

out out
Iyt x M —— Ty x Nyt —— Hx x Ny

| |

out out
HU* X M*|MT —_— HX X N|MT

l

out

Ty »x M*|p

— where the upper right-hand portion of the diagram is the diagram obtained
by restricting B* to MT; the lower left-hand portion of the diagram is the
diagram obtained by restricting *B* to MT; the upper left-hand square of the
diagram is cartesian — such that the composite of the upper horizontal arrows
and the composite of the left-hand vertical arrows determine an arithmetic Belyi
diagram B>

out out

Oyt x Mt ——— TIx x MT

|

out
II)( A ]VfT
satisfying the desired property. This completes the proof of the above observa-
tion.
Next, let us fix an element B € Iggr. Then by applying the above obser-
vation in a recursive fashion [i.e., by applying the observation to B* and some
finite subset F to obtain TB*, then applying the observation to TB* and some
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other finite subset fF to obtain *B*, etc.], we conclude [cf. the definition of
Qpgr] that one may construct a family of injections

X FU 0 1 Q

{¢1Ba F {0, }%QBGT}{Fg@m}
[indexed by the finite subsets F' C @m] such that the following conditions are
satisfied:

o Cusp(B*)\ {oo} C Qm Im(¢px F).
FCQ

—
o If 1 CF, CQ , then (dpx p,)|F = dBx -

. e . . —h
Thus, the various injections ¢p» r, indexed by the finite subsets F' C Q , de-
termine an injection

¢px : Q = Qpgr

associated to B € Iggt such that Cusp(B*) \ {co} C Im(gppx ).

Next, let K be a conducting field for BGT that satisfies the ZISC-property.
Then one verifies immediately that, to verify assertion (iii), by replacing K and
BGT, respectively, by K N Q [where we think of K as being embedded in some
algebraic closure K of K that contains Q] and a suitable GT-conjugate of BGT,
we may assume without loss of generality that

Gk CBGT (C GT).
Then, to verify assertion (iii), it suffices to verify the following assertion:

Claim 4.4.B: The injection ¢p~x is, in fact, a bijection. Moreover, the
“field-like” operations HpgT and Mgt on Qpgr induce the usual
operations of addition and multiplication on Q via ¢gx .

Indeed, let © € Qpgr; TB* an arithmetic Belyi diagram

out out

Oy x NI ——— IIx x Nt

|

out

1_1)(>4]\7'r

[where NT is a normal open subgroup of BGT] such that x € Cusp("B*). Then
observe that, by restricting "B* to NT N G, we obtain an element Ty € Q
associated to # € Cusp(fB*) that, in light of the ZISC-property of K and
the COF-property of BGT, is independent of the choice of TB*. Therefore, it
follows immediately from the definition of ¢px , together with the ZISC-property
of K and the COF-property of BGT, that d)th(I@) = z. In particular, we
conclude that ¢gx is bijective. Next, we recall that {¢t =1}, {1—t}, and {t/z} (for
t’17 1t

—h
x € Qpgr) are defined by using the scheme-theoretic morphisms ¢ and
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/* . In particular, by restricting via G C BGT [cf. the functorial algorithm
of Remark 3.3.3] and applying the ZISC-property of K, we conclude that the
operations {t '}, {1 —t}, and {t/x} (for z € @EGT) induce, via ¢px, the usual
involutions and operation of multiplication by z=! on Q. In a similar vein,
it follows immediately from the definition of —1ggT, together with the ZISC-
property of K, that ¢gx(—1) = —1pgr. Thus, it follows immediately from the
various definitions involved [cf. also the bijectivity of ¢p=] that the “field-like”
operations Hpgr and Mpgr on Qg induce the usual operations of addition
and multiplication on Q via ¢px. This completes the proof of Claim 4.4.B, hence
of assertion (iii) [and indeed of Theorem 4.4]. O

Remark 4.4.1. Let p be a prime number, F' a field which is a finite extension
of the field of rational numbers Q or the field of p-adic numbers Q. Thus, we
have a natural inclusion Q C F. Let F' be an algebraic closure of F. By abuse

of notation, we shall identify @ with the algebraic closure of Q in F. Write

Gp ¥ Gal(F/F). Thus, we obtain natural injections

GF — GQ — GT C Out(Hx)

[cf. the discussion at the beginning of [Tsjm], Introduction], which we use to
identify G with its image in GT. Then it follows immediately from the fact
that F is Kummer-faithful [cf. [AbsToplII], Definition 1.5; [AbsTopIII], Remark
1.5.4, (i)], together with a similar argument to the argument applied in the proof
of [Tsjm], Corollary 3.2, that F' satisfies the ISC-property, and that G satisfies
the CS-property. Thus, we conclude from Corollary 3.7 that G satisfies the
RGC-property. Since, in this situation, the COF-property is immediate, we thus
conclude [cf. Theorem 4.4, (iii)] that G satisfies the ArBC-property, i.e., that
we may take “BGT” to be G, and, moreover, that the additional condition of
Theorem 4.4, (ii), holds. Finally, we observe that the evident scheme-theoretic
interpretation of the various arithmetic Belyi diagrams that appear determines
a natural isomorphism of fields @Gp 5 Q that is compatible, relative to the
natural injection G — Ggq, with the respective natural actions, i.e., we obtain
a diagram as follows:

GF — GQ

N

! o~
Q, = Q

Remark 4.4.2. Tt is not clear to the authors at the time of writing whether or
not GT satisfies the BC-property, i.e., whether or not “GT = BGT”.

Corollary 4.5 (Group-theoretic nature of BGT). Let n be an integer such
that n > 2. Write X,, for the n-th configuration space of X = P}@\{O, 1,00};

def

GT, = Outt"(Ilx,) C Out(Ilx,). Recall that we have a natural isomorphism
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GT,

5 GT [ef. the first display of [CbGT], Corollary C]. Then one may

reconstruct from Ilx , in a purely combinatorial/group-theoretic way, i.e., in
a way that only involves the structure of llx, as a topological group [cf. also
Remark 4.5.1 below],

the subgroups GT,, C Out(Ilx, ), GT C Out(Ilx), where we regard Ux as
the quotient of Ilx, by a generalized fiber subgroup, and we recall [cf. the
first display of [CbGT], Corollary C] that Out(Ilx, ) normalizes GT,, and
acts, by conjugation, on GT,, via inner automorphisms of GT,,;

the natural isomorphism GT,, = GT;

the collection of closed subgroups J C GT,, such that J satisfies [i.e., the
image of J, via the natural isomorphism, in GT satisfies] the BC-property
[cf. Definition 3.3, (v)];

the collection of closed subgroups J C GT, such that J satisfies [i.e.,
the image of J, via the natural isomorphism, in GT satisfies] the ArBC-

property [cf. Theorem 4.4, (ii)].

If, moreover, a closed subgroup J = BGT C GT C Out(Ilx) satisfies the BC-
property, then the construction from Ilx, [cf. also Remark 4.5.1 below] of

the preordered set of arithmetic Belyi diagrams Iggt [cf. Definition 4.1],

the natural action of Cor(BGT) on the preordered set Ingt [cf. Definition
4.1],

the set Cusp(—) associated to any element of Ipgr [cf. Definition 4.1],
the direct limit Qgar [cf. Definition 4.1],

the natural continuous action of Car(BGT) on Qpgr [cf. Proposition
4.3], and

the field structure on Qggr, whenever J satisfies the ArBC-property [cf.
Theorem 4.4, (ii)],

may be phrased in purely combinatorial /group-theoretic terms, i.e., in terms that
only involve the structure of Ilx, as a topological group.

Proof. The various assertions of Corollary 4.5 follow immediately from Defini-
tions 3.3, 4.1; Remarks 3.3.2, 3.3.3 [cf. also Remark 4.5.1 below]; Proposition
4.3 Jand its proof]; Theorem 4.4 [and its proof]; [CbGT], Theorem A, (ii); the
first display of [CbGT], Corollary C; [Tsjm], Theorem 1.3, (i); [Tsjm], Definition

1.4.

O

Remark 4.5.1.
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(i)

(iii)

Here, in the context of Remark 3.3.3; (i), we observe that the natural
isomorphism GT,, = GT [cf. the first display of [CbGT], Corollary C],
together with the algorithm of Corollary 3.1, (ii), implies that there is in
fact no substantive difference between

e constructions starting from Ilx, [where we recall that n > 2] and

e constructions starting from 1l x,.

In the situation discussed in (i) [cf. also Remark 3.3.3, (i)], suppose that
we apply the constructions discussed in Corollary 4.5 to IIx,, regarded as
an abstract topological group. Then the algorithm of Corollary 3.1, (ii),
determines a subgroup

S3 C Out(Hx),

[i.e., where, by a slight abuse of notation, we use the notation “S3” to
denote this subgroup which is isomorphic to the symmetric group on 3
letters| of the group of outer automorphisms Out(Ilx ) of the quotient ITx
of the given abstract topological group Ilx, discussed in Remark 3.3.3,

(1), (d).

We maintain the notation of (ii). Then observe that since the quotient ITx
of the given abstract topological group Ilx, is not equipped with a natural
bijection between its set of cusps and the set of symbols {0, 1, 0o}, it follows
that this quotient ITx is only related to any of the “IIx’s” that appear in
the arithmetic Belyi diagrams discussed in the statement of Corollary 4.5
[not by a single outer isomorphism, but rather] by an &3-torsor of outer
isomorphisms.

Combinatorial construction of the conjugacy
class of subgroups of GT determined by Gg

def

Write X = ]P’}@\{O7 1,00}; X, for the n-th configuration space associated

to X, where n > 2. In this section, we reconstruct from the topological group
Ix, , in a purely combinatorial/group-theoretic way, the conjugacy class of sub-
groups of the Grothendieck-Teichmiiller group GT C Out(Ilx) determined by
the absolute Galois group of Q as the set of maximal closed subgroups BGT of
GT satisfying a certain purely combinatorial/group-theoretic condition that we
refer to as the AA-property [cf. Definition 5.12; Theorem 5.17, (ii)].

Write IIx,_ for the quotient of IIx by the normal closed subgroup topologi-
cally generated by the cuspidal inertia subgroups associated to the cusp “1” [so

HXooo

is isomorphic to Z as an abstract topological group]. Let J be a closed

subgroup of GT C Out(Ilx). Then we shall write [by a slight abuse of notation]|

out

IIx XJ—»HXOOOXIJ
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for the quotient by the normal closed subgroup topologically generated by the
cuspidal inertia subgroups associated to the cusp “1”.

Definition 5.1. In the notation of Definition 4.1:

(i)

(i)

Write

Hdéf I&H H[B;x,

BXelpaT
where the transition morphisms are the unique geometric dominations

Hin - HT]BX] .

Here, we observe that even though these transition morphisms are, strictly
speaking, outer [surjective] homomorphisms, it follows immediately from
Proposition 4.2 that one may choose a coherent system of homomorphism
representatives of the given system of outer homomorphisms; in partic-
ular, II is well-defined as a profinite group, up to inner automorphisms.
It follows immediately from Proposition 3.5, together with the various
definitions involved, that the natural action of Cqr(BGT) on Ipgr [cf.
Definition 4.1] induces a natural outer action of Cor(BGT) on the group
1.

In the context of the inverse limit of Definition 5.1, (i), we shall refer to
an inverse limit of cuspidal inertia subgroups of some cofinal collection
of TIg»’s [where the induced transition morphisms are necessarily isomor-
phisms] as a cuspidal inertia subgroup of II. For each open subgroup IT* of
II, we shall refer to the intersection of II* with a cuspidal inertia subgroup
of II as a cuspidal inertia subgroup of IT* and write

Cusp(IT*)

for the set of IT*-conjugacy classes of cuspidal inertia subgroups of II*.
Thus, it follows immediately from the definitions that we obtain a natural

surjection
Cusp(IT*) — Cusp(II)

with finite fibers. For each finite subset E* C Cusp(II*), write
T — II%.

for the topologically finitely generated [cf. Remark 5.1.1 below]| quotient
profinite group of II* obtained by forming the quotient of II* by the nor-
mal closed subgroup topologically generated by the cuspidal inertia sub-
groups associated to Cusp(IT*)\ E*. Observe that the natural outer action
of Car(BGT) on II [cf. Definition 5.1, (i)] induces a natural action of
Ce1(BGT) on Cusp(Il). Finally, we observe that it follows immediately
from the various definitions involved [cf., especially, Definition 4.1] that
we have a natural Cqr(BGT)-equivariant bijection

Cusp(ll) = Qpgr U {oo}.
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(iii) Write
Cear

for the set of finite subsets of Cusp(II) that contain {0,1,00}. Observe
that the natural action of Cqr(BGT) on Cusp(II) [cf. Definition 5.1, (ii)]
induces a natural action of Caqr(BGT) on Cggr. We shall write

Ciar € Ciar

for the subset of Cgp(BGT)-stable elements, i.e., elements fixed by the
action of Cqr(BGT). Finally, we observe that the assignment Izgt 3
B* — Cusp(B™) € Cpar induces a natural Cor(BGT)-equivariant map

Iper — Cgar-

Remark 5.1.1. In the notation of Definition 5.1, it follows immediately from
Remark 4.1.1 that the kernel of the natural outer surjection

H*»H]Bm

is the normal closed subgroup of II topologically generated by the cuspidal
inertia subgroups associated to Cusp(II)\ Cusp(B™). In particular, the quotient
IT — Il may be naturally identified with the quotient

II — HCusp(]B*‘)

of the third display of Definition 5.1, (ii) [i.e., where we take “II*” to be IT and
“E*” to be Cusp(B™)].

Remark 5.1.2. Let E € Cfp [cf. Definition 5.1, (iii)]. Then it follows im-
mediately from the various definitions involved that the natural outer action of
Co1(BGT) on II [cf. Definition 5.1, (i)] induces, via the natural outer surjection
II — Mg, a natural continuous outer action of Cqr(BGT) on the topologically
finitely generated profinite group Ilg [cf. the discussion entitled “Topological
groups” in Notations and Conventions; Definition 5.1, (ii); [Tsjm], Lemma 1.2,
(b); [Tsjm], Theorem 1.3, (ii); [Tsjm]|, Definition 1.4].

Remark 5.1.3. Observe that it follows immediately from the continuity [cf.
Proposition 4.3] of the natural action of Cgr(BGT) on QggrU{cc} (= Cusp(I))
[cf. Definition 5.1, (ii)], together with the COF-property of BGT, that

for any F' € Cpgr, there exists an element E5' € Cfip (respectively,
B* € Iggr) such that E C E5 (respectively, E C Cusp(B™)).
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In particular, we conclude [cf. Remarks 5.1.1, 5.1.2; Proposition 5.2, (ii), below]
that we may write

= Jm I = lJim I,
EeCrar EsteCiar

out out
> BGT = lim  Tlge x BGT
B eCior

— where, in the inverse limits, we regard Cpgr and Cf, as directed preordered
sets by means of the relation of inclusion of subsets of Cusp(II).

Proposition 5.2 (Basic properties of II). In the notation of Definition 5.1,
the following hold:

(i) For each E € Cpgr of cardinality r, there exists an isomorphism of profi-
nite groups between Il g, on the one hand, and the étale fundamental group
of an open subscheme of X obtained by removing r— 3 distinct points from
X, on the other, that induces a bijection between the respective sets of cus-
pidal inertia subgroups.

(i) For each E € Cggr, llg is slim. In particular, 11 is slim.

t
(iii) The group 11 < BGT admits a natural structure of profinite group.

(iv) Let II* be a normal open subgroup of II. Then, for any sufficiently small
normal open subgroup M C BGT, there exist an outer action of M on IT*

b t
and an open injection 1T* M s T % BGT such that

(a) the outer action of M on II* preserves the set of cuspidal inertia
subgroups of 11*;

(b) the outer action of M on II* extends uniquely [cf. the slimness of 11]
to a IT*-outer action on II that is compatible with the outer action of

t 6

BGT (2 M) on1II; the injection I1* % M < I % BGT is the injection
determined by the inclusions II* C II and M C BGT, together with
the IT* -outer actions of M on IT* and II.

t
(v) In the notation of (iv), the homomorphism II* MM — Aut(I1*) deter-
mined by conjugation is injective.

Proof. Assertion (i) follows immediately from the various definitions involved.
Assertion (ii) follows immediately from [MT], Proposition 1.4. Assertion (iii)
follows immediately, in light of the second line of the final display of Remark
5.1.3, from Remark 5.1.2. Next, since, in the notation of Definition 5.1, (i), IT*
arises as the inverse image in II of some normal open subgroup of some Ilgx,
assertion (iv) follows immediately from a similar argument to the argument
applied in the proof of [Tsjm], Lemma 1.2.
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Finally, we verify assertion (v). First, we note that since II, hence also IT*, is

slim [cf. Proposition 5.2, (ii)], the restriction of the homomorphism IT* %M —
Aut(IT*) to II* is injective. Note also that since the natural surjection IT — ITx
is compatible with the respective outer actions of M, and M C GT C Out(Ilx),
the natural homomorphism M — Out(II) is injective. In particular, since II is
slim, it follows immediately from condition (b) of Proposition 5.2, (iv), that the
natural homomorphism M — Out(II*) is injective. Thus, we conclude that the

t
homomorphism IT* WM = Aut(IT*) is injective. This completes the proof of
assertion (v), hence of Proposition 5.2. O

Definition 5.3. In the following, we consider the analogues of [Tsjm], Definition
1.5, (i), (ii); [Tsjm], Corollary 1.6, (ii), obtained by replacing “IIx” by IIx,__.
Let J be a closed subgroup of GT C Out(ITx).

(i) Fix an arithmetic Belyi diagram B>

out out
Iy x M — IIx x M

|

out

HX x M
[cf. [Tsjm], Definition 1.4]. Write

Dooo (B, M, J)

for the set consisting of the images via the natural composite IIx, _-outer
out out out
homomorphism IIy; x M — IIx x M — IlIx x J — Ilx, _ x J of the
out
normalizers in II;; x M of the cuspidal inertia subgroups of II;; that are
not associated to 0 and oo;

Dooo (B*, J)

for the quotient set (Ut Dooo(B*|are, MT,J))/ ~, where M ranges
over the normal open subgroups of J contained in M, and we write
Dooo B> |art, MT,J) 3 Gppt ~ Gape € Dooo (B> | a1, M, J) if Gt NGyt is
open in both G+ and G:. Finally, we observe that IIx,  acts naturally
on Dyoo (B, M, J) and Dyee (B™, J).

(ii) Write

]DOOO(J)
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for the quotient set (LIBX ]D)OOO(IB%”,J))/ ~, where B” ranges over all
arithmetic Belyi diagrams, and we write Dooo (B*,J) 3 Gigx ~ Gigx €
Dooo (FB*, J) if G+ NGyt is open in both G+ and G+ for some repre-
sentative G i (respectively, Gr:) of Gigx (respectively, Gigx ). Observe
that IIx, . acts naturally on Do (J).

(iii) Write
Do (J)

for the quotient set Do (J) /M x,.. -

Remark 5.3.1. In the following, we consider certain slightly generalized ana-
logues of [Tsjm], Corollary 1.6, (ii), (iii), obtained by replacing “IIx” by IIx,__.
Let J be a closed subgroup of GT C Out(Ilx). Then it follows immediately
from a similar argument [cf. also Remarks 3.3.2, 3.3.3] to the argument ap-
plied in the proof of [Tsjm], Corollary 1.6, together with the various definitions
involved, that:

e Do (J) admits a natural action by Car(J), hence, in particular, by J.

e Let J; and Js be closed subgroups of GT. If J; C J, C GT, then the
inclusion J; C Jo induces, by considering the intersection of subgroups of
IIx,. xJo with IIx,  x Ji, a natural surjection

Do (J2) = Dooo(J1)

that is equivariant with respect to the natural actions of .J; (C J3) on the
domain and codomain.

Lemma 5.4 (Kummer classes of group-theoretic constant functions).
We maintain the notation of Definitions 4.1, 5.3. Then the following hold:

(i) There exists a natural injection

et : Do (BGT) = lim  H'(M, IIx,,),
MCBGT

where M ranges over the normal open subgroups of BGT.

(i) There exists a natural surjection
¥per - Qpar — Doso(BGT).

(i4i) The above maps tgaT and Ypar are compatible with the respective natural
actions of Car(BGT) [cf. Proposition 4.3, Remark 5.3.1].
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(iv) The composite

LBGT © ¥BGT 5@]§GT —  lim H' (M Ilx,.)
MCBGT

»

is compatible with the operations ‘Npart” and ‘DEéT on the domain
[cf. Theorem 4.4, (i)] and the corresponding operations arising from the
natural group structure on the codomain. In particular, the image of this
composite is a subgroup of the codomain.

Proof. First, we verify assertion (i). Let I; be a cuspidal inertia subgroup of
ITx associated to the cusp “1”. Then the image of the normalizer

out
N out I C H B T
BGT( ! ) =X G

Hx><1

t
via the natural surjection IIx % BGT — IIx,., » BGT determines a section s;
[cf. [CmbGC], Proposition 1.2, (ii)] of the second to last arrow of the natural
exact sequence

1 — x, . — x, xBGT — BGT — 1.

On the other hand, note that an element & € Dy, (B*, M,BGT), where B*
denotes an arithmetic Belyi diagram as in Definition 5.3, (i) [i.e., where we take
“J” to be BGT], determines a section s, [cf. [CmbGC], Proposition 1.2, (ii)]
of the restriction to M of the second to last arrow of the above exact sequence.
Thus, by forming the difference x, between s, and the restriction to M of sq,
one verifies immediately that the assignment s, — k, determines, by allowing
B* € Izgr [hence also “M”] to vary, a natural map
et Doso(BGT) = lim  H'(M,IIx,_ ),

—
MCBGT

N

where M ranges over the normal open subgroups of BGT. Finally, the injectivity
of tpgr follows immediately from the definitions of Doo(—) and H'(—, —). This
completes the proof of assertion (i). Assertion (ii) follows immediately from the

definitions of @EGT and Dooo (BGT). Assertion (iii) follows immediately from
the definitions of the natural actions of Cqr(BGT) [cf., especially, the proof of
Proposition 4.3]. Assertion (iv) follows immediately from the construction of the
multiplication operation on the field Qg [i-e., the construction of “Bpgr” in
the proof of Theorem 4.4, (i)] by means of the well-known natural group structure
on IP’}@\{O, oo}, e, “(Gy)g”. This completes the proof of Lemma 5.4. O

In the remainder of the present paper, we shall identify Dgo, (BGT) with
Im(tper) via the natural injection tpar.

Proposition 5.5 (Synchronizations of cuspidal inertia subgroups). We
maintain the notation of Definition 5.1. Then the following hold:
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(i) For each cuspidal inertia subgroup I, of I associated to x € Cusp(Il), the
natural scheme-theoretic isomorphism

I, S 1y,

may be reconstructed, in a purely combinatorial/group-theoretic way, from
the collection of data

(IL; Cusp(ID); {0,00} € Cusp(1D))
consisting of

e a profinite group I1;
e a set Cusp(Il) of conjugacy classes of subgroups of 11;

e q subset {0,00} C Cusp(Il) of cardinality 2 [equipped with labels 07,
“00”] of the set Cusp(II).

(i) Let TI* C II be an open subgroup; x € Cusp(IT*); I a cuspidal inertia
subgroup of II* associated to =. Then one may construct a natural iso-
morphism

I; — HXOoo

as follows: Write I, ef Nu(I%). Note that I, = Nu(I;) = Cn(I;) =

Cr(I}) is the unique cuspidal inertia subgroup of 11 containing I [cf.
Proposition 5.2, (i); [CmbGC], Proposition 1.2, (i), (i), and that the
subgroup I C I, is of finite index m. Then since cuspidal inertia sub-
groups are abstractly isomorphic to Z [ef. [CmbGC], Remark 1.1.3], divi-
sion by m determines an isomorphism I = I,. Thus, by composing with
the isomorphism of (i), we obtain a natural isomorphism I = Tlx,_ .

Proof. First, we verify assertion (i). Let Iy be a cuspidal inertia subgroup of II
associated to the cusp “0 € Cusp(II)”. Write

II — H{O,m}

for the quotient profinite group of II obtained by forming the quotient of II
by the normal closed subgroup topologically generated by the cuspidal inertia
subgroups associated to Cusp(IT) \ {0,z}. Then the surjection I — Iy )
induces isomorphisms

Qq Io :> H{OJ}, Oy Ix :> H{O,z}-

Write « : I, = I for the composite of agl o a, with the inversion map Iy = Io.
Thus, by composing « with the restriction to Iy of the natural surjection I —»
Iy, , we obtain an isomorphism I, = Ilx,_. The desired functoriality follows
immediately from the construction. This completes the proof of assertion (i).
Assertion (ii) follows immediately from the various definitions involved. This
completes the proof of Proposition 5.5. O
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Definition 5.6. In the notation of Definition 5.1, let II* C II be an open
subgroup. Fix

e a normal open subgroup M C BGT,

e an outer action of M on IT*, and

L . out out
e an open injection fpr : II* x M — II x BGT

such that

(a)

(b)

the outer action of M on II* preserves the set of cuspidal inertia subgroups
of IT*;

the outer action of M on II* extends uniquely [cf. the slimness of II]

to a IT*-outer action on II that is compatible with the outer action of
t t

BGT (D M) on II; the injection IT* % M < II % BGT is the injection

determined by the inclusions IT* C IT and M C BGT, together with the

IT*-outer actions of M on II* and II

[cf. Proposition 5.2, (iv)]. Write

I(IT*, 10)

for the set of open injections fr~ : II* — II satisfying the following properties:

(1)

(2)

For each cuspidal inertia subgroup I* of IT*, the commensurator Cry( i« (I*))
of fri+(I*) in II is a cuspidal inertia subgroup of II [which implies, by
Proposition 5.5, (ii), that Cr(f-(I*)) = N (fo= (I*))].

For each cuspidal inertia subgroup I of II, the inverse image fﬁ} (I) C1I*
is a cuspidal inertia subgroup of II*.

Let I* be a cuspidal inertia subgroup of IT*; I a cuspidal inertia subgroup
of IT such that I* = f;!(I). Then the composite

HXO(x) (: I* ‘—)I;HXOOC

— where the first and final arrows are the isomorphisms of Proposition 5.5,
(i), (ii) — coincides with the homomorphism determined by multiplication
by some positive integer.

For any sufficiently small normal open subgroup N* C M of BGT, there
exists a(n) [necessarily unigue — cf. Remark 5.6.1 below] open injection

out

out
II* x N* <1l x N*

that is compatible with the open injection between respective subgroups
fr» : II* < II and the surjections to N* (C BGT).
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t t
Remark 5.6.1. Note that any open injection I1* % N* < IT % N* as in Definition
t 6
5.6, (4), is unique. Indeed, let f : IT* S N* <5 1% N* be an open injection as
in Definition 5.6, (4); II** C II an open subgroup such that IT** C f7- (IT*), and
t
II** C I N* is a normal closed subgroup. Write Autr- (IT) € Aut(II) for the
subgroup of automorphisms that preserve the normal open subgroup II** C II.
Then we have a commutative diagram

out f out
I x N¥* —— 1II x N*

| l

Aut(H**) — Autn** (];_J:)7

where the vertical arrows denote the injections determined by the respective

actions by conjugation; the lower horizontal arrow denotes the natural injection
out

[cf. Proposition 5.2, (ii)]. Thus, we conclude that the open injection f : IT* x

out
N* — II x N* is uniquely determined by the open injection fr« and the
respective outer actions of N* on IT* and II, hence that any open injection as
in Definition 5.6, (4), is unique.

Remark 5.6.2. In the notation of Definition 5.6, let IT** C II be an open sub-
group contained in IT*. Then the inclusion IT** C IT* determines a natural map
I(IT*, 1) — I(I1**,1I) [cf. Propositions 5.2, (iv); 5.5, (ii)].

Proposition 5.7 (Kummer classes of group-theoretic nonconstant func-
tions). In the notation of Definition 5.6, let fr« € I(II*,1I). Then fr+ natu-
rally determines an element of

t
lim  H'(IT* % N*, Iy, ),
N*CBGT

where N* ranges over the normal open subgroups of BGT. In particular, we

obtain a natural map

out

ki s T(ITF, 1) — HYIT* % N* TIx,.).

t t
Proof. Let II* % N* <% N* be an open injection as in Definition 5.6, (4).
Write
out out
S (1T 0 N* =11 4 N* - IIx, X N*

t t
for the composite of this open injection I1I* % N* < I1 % N* with the natural

out
IIx,.-outer surjection II x N* — IIx, > N*. Let I; be a cuspidal inertia
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subgroup of ITx associated to the cusp “1”. Then I; determines a section sq|y~
of the surjection IIx,  »x N* — N* [cf. the proof of Lemma 5.4, (i)]. In

t

articular, by composing 1|y~ with the natural surjection IT* x N* — N*, we
p y DY p g S1|N ] )
obtain a homomorphism

out
81| ewe  II* x N* —1lx, ¥ N™.
II* x N*

Thus, by forming the difference between sy and 81|H out . We obtain an
OB A

out
element € H'(II* x N* Ilx,_), hence an element

t
fiie€ lim H'IT SNk,
N*CBGT

Finally, it follows immediately from the various definitions involved that f{}.

is independent of the choice of I; [within its II x-conjugacy class]. This completes
the proof of Proposition 5.7. O

Definition 5.8. We maintain the notation of Definition 5.6. Let fr« € I(II*,II);
2 € Cusp(IT*); I, a cuspidal inertia subgroup of II* associated to x. Then we
define the value

fr- () € Qpgr U {oo}

of fr1- at  to be the image of the element € Cusp(II) determined by the cusp-
idal inertia subgroup Nii(fr= (1)) C II via the natural Cor(BGT)-equivariant
bijection Cusp(Il) = Qpgr U {0} [cf. Definition 5.1, (ii)]. It follows immedi-
ately from the various definitions involved that fi«(z) € Qg U {00} does not
depend on the choice of I, within its II*-conjugacy class.

Definition 5.9. We maintain the notation of Definition 5.8.

(i) Write B
Frp« : I(IT*, 1) — Fn(Cusp(IT*), Qpgr U {oc})

(respectively,

B+ : Qggr — Fn(Cusp(IT*), Qpgr U {o0}))

for the natural map determined by considering the value (respectively, the
constant value) at each of the elements € Cusp(IT*). Then we shall write

Ly- ® Im Fy- | Im By C Fn(Cusp(IT*), Qpar U{oo})).
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(ii) For each finite subset S C Cusp(IT*), we shall write
Iy

for the quotient of IT* by the normal closed subgroup topologically gen-
erated by the cuspidal inertia subgroups associated to Cusp(IT*) \ S [cf.
Definition 5.1, (ii)]. Suppose that the open subgroup N C BGT [cf. Def-
inition 4.1] is contained in the open subgroup M C BGT [cf. Definition
5.6], and, moreover, that

N C BGT induces the identity automorphism on S.

Then we shall write

def out def out
I,y = IT* X N, i,y =I5 x N.

[cf. Proposition 5.2, (ii)]. Write
Is (117, 1)
for the inverse image of

Fn(Cusp(IT*) \ S, Qpar) (C Fu(Cusp(I1*) \ S, Qper U {o0}))
by the composite of Frp« with the restriction map
Fn(Cusp(Il), Qpgr U {o0}) = Fn(Cusp(Il*) \ S, Qpar U {o0});
Fiie s Is (117, IT) — Fn(Cusp(Il*) \ S, Qher)
for the natural map induced by Fip-;

Rrre,s - Is(I010) — L H (I v T, )
N*CN

— where N* ranges over the normal open subgroups of BGT contained
in N — for the restriction of k« to Is(IT*,II) [cf. Proposition 5.7]. Here,
we note that it follows immediately from the various definitions involved
[cf. the proof of Proposition 5.7] that k- g factors as the composite of a
natural map

ki Ig(I,I0) — lim H' (IT§, e I, )
N*CN

with the injection given by the inflation map

lim HY (5, n, x, ) < lim H(IT pe, T, )-
N*CN N*CN
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(iii) In the notation of (ii), let x € Cusp(II*) \ S; N, a normal open subgroup
of BGT contained in N that stabilizes x; I, C II* a cuspidal inertia
subgroup associated to x. Then the image of N, N (1) via the natural
surjection 115, \, - — 15, . determines a section N, < Ilg, , of the

natural surjection IIg, n — N [cf. the proof of Lemma 5.4, (i)]. Thus,
in particular, by allowing “N,” to vary, we obtain a natural map

Dr+ ¢ lim H'(IT§, n-,1x,.) — Fn(Cusp(Il*)\ S, H'(N,Ily,_)),

lim  HL(N* Tx,.,).
N*CN

Remark 5.9.1. In the remainder of the present paper, we shall use the injection

given by the inflation map in the final display of Definition 5.9, (ii), to regard

the group  lim H(IT%,, v+, IIx,..) as a subgroup of lim HY (I, e )
N*CN N*CN

Remark 5.9.2. We maintain the notation of Definition 5.9. Note that, for each
element fr+ € I(IT*,II), the set of II*-conjugacy classes of cuspidal inertia
subgroups I* of II* such that fi«(I*) is contained in a fized II-conjugacy class
of cuspidal inertia subgroups of II is finite. Indeed, this follows immediately
from the fact that fi« is an open injection that induces a bijection between the
cuspidal inertia subgroups of II* and IT — cf. Definition 5.6, (1), (2). Thus, it
follows immediately from the various definitions involved that

arm= - |J s,
SCCusp(IT*)

where S ranges over the finite subsets of Cusp(IT*).

Definition 5.10. We maintain the notation of Definition 5.9, (ii). Suppose
that S # (), and that, for each normal open subgroup N* of BGT contained in
N

)

Hl(Haa HXOOQ)N* = {0}
Then we shall construct a subgroup

Kify € lim H' (- Tx,..)

as follows: First, we observe that the natural exact sequence
1 — I — gy — N*— 1
determines an exact sequence

*

0 — HY(N* Ty, ) — H (I, n, Hx, ) — H'(IT%, x, )Y
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Thus, by allowing the normal open subgroup N* to vary, we obtain an exact
sequence

0— lim HY(N* Iy, ) — lim H'(Tg, - Mx,.) — lim HY (1T, Tx, )N
N*CN N*CN N*CN

Here, we observe that

*

HY(IT5, Ix,. ) = HY((I5)*, 1x, )N

Next, for each € S, let I, be a cuspidal inertia subgroup of II* associated to
2. Then we have an exact sequence of N*-modules

P . — @)™ — (1) — 0,
zeS
which determines an exact sequence of modules

0— Hl((Ha)aban()oo)N* — Hl((Hg>ab7HXo°o)N* - @ HI(IDHXUOO)'
€S

Thus, by applying our assumption that H((IL;)*", IIx, )V = {0}, we obtain
a natural injection

i HY(T5)™, Ty, )N @D H (I, Tx,..)-
€S

Write
1, € H'(I,;,1x,. ) = Hom(I,,x,..)

for the isomorphism I, = Ilx,_ of Proposition 5.5, (ii);

Z, C H'(I, x,.)
for the subgroup generated by 1,;

ig t N* = IIj ne

for the section of the natural surjection Ilj . — N* determined by the image
of N . (Iz) via the natural surjection IIg, n. — II5 n. [cf. the proof of
Lemma 5.4, (i)]. Next, we fix zg € S. Write

D, € H'(N*, (1I})")
for the element obtained by forming the difference between i,, and i,;

Ps C P Z. (€ P H'(L..1Ix,..))
z€S z€S

for the subgroup consisting of (n;).cs € P 7, such that

zeSs

> ng =0, > ne-Dy = 0(c H'(N*, (I1})*))

zesS zeS
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[where we note that one verifies immediately that these conditions on (ny)zes
are independent of the choice of xy € S;

Ps

for the image of (ior) ™! (Ps) via the natural homomorphism H* (1%, x, IIx,..)

— lim  H'(II%, -, x,.. ), where M* ranges over the normal open subgroups
M*CN

of BGT contained in N. Then we define

def _ * . *
K. < P () DL (Fn(Cusp(II\S, Dowe (BGT)) € limy H' (1T, -, Tx, )
M*CN
[cf. Lemma 5.4, (i); Definition 5.9, (iii)] and
k  def K . *
K. = U KH*T < h&’l Hl(HxM*7HXooo)7
T M*CN

where T' ranges over the finite subsets of Cusp(II*).

Remark 5.10.1. In the notation of Definition 5.10, suppose that BGT = Gg
[cf. Remark 4.4.1]. Then the above construction of K}j. may be understood
as a sort of reconstruction of the set of Kummer classes of rational functions
associated to IT*, i.e., in the spirit of [AbsTopIIl], Proposition 1.8.

Lemma 5.11 (Kummer classes of abstract functions). We maintain the
notation of Definitions 5.9, 5.10. Suppose that the restriction Drry |Kg* of Drr,
S

to Ky [¢f. Definition 5.9, (iii); Definition 5.10] is injective for arbitrary choices
of “S” and “N” as in Definition 5.10. Then there exists a unique map
Im(FH*7s) — Im(ﬁll‘[g)

[¢f. Definition 5.9, (ii)] whose composite with the natural surjection Ig(IT*,1I) —
Im(Fip-,5) determined by Fri- g coincides with the natural surjection Ig(I1*,1I) —
Im(nng) determined by Ky, and whose image lies in K”g. Moreover, by al-
lowing S to vary, one obtains a natural map

Ly~ \ {0} - h_H}l Hl(H;N*’HX[]oo)’
N*CN
[¢f. Remarks 5.9.1, 5.9.2] whose image lies in K. .

Proof. First, we observe that it follows from the various definitions involved
that there exists a commutative diagram

Fr= 5

(11, 10) Fn(Cusp(IT*) \ S, Qpar)

| !

liﬂ Hl(ngN*’HXOQc) — Fn(Cusp(H*)\S, hﬂ Hl(N*aHXch))v
N*CN D, N*CN
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where the right-hand vertical arrow is the natural map induced by the homo-
morphism
_x ) .
tat o ¥Bar : Qpgr — lim HY(N* 1Ix,.)
N*CN
[cf. Lemma 5.4, (iv)].
Next, we observe that i+ factors as the composite of a map

Is(I", I1) — K.

with the inclusion Kfj. Nlj_réqN HY (1%, v Ix,..) [cf. Definition 5.10]. In-
deed, since (II3)*® = {0} [hence, in particular, H'(N*, (II3)2*) = {0}], it
follows immediately from the various definitions involved that s, ., maps
id € I{g,00} (ILII) [cf. Proposition 5.5, (ii)] to an element of K., Thus,
since any element fr« € Ig(IT*,II) may be thought of as the pull-back “via
Ji=” of id € Ijg o0y (IL, 1), by applying the functoriality of the constructions
involved [cf. also Definition 5.6, (3)], we obtain the desired conclusion.

Next, we apply our assumption that Drrx K=, 1s injective. Thus, since the

}

above diagram is commutative, there exists a unique map Im(F- s) — Im(xm)
that is compatible with the maps Fii- s and sz in the desired sense. In par-
ticular, since all of the constructions involved are functorially compatible with
enlargement of the finite subset S C Cusp(I*), by allowing S C Cusp(IT*) to
vary, we obtain a natural map

Im(Fp-) = lim B (I -, Ix,.)
N*CN

[cf. Remarks 5.9.1, 5.9.2]. On the other hand, by considering the composite of
taT © YpaT with the inflation map

liﬂ }11(]\[*’1—13(000)(_> hﬂ HI(H;N*’HXOm)a
N*CN N*CN

we obtain a natural map

In(Br) \ {0} =l H'(IT, .. Tlx, ).
N*CN
Thus, since L+ = Im Fr« UIm By« [where we note that Im Fip- NIm B = 0)
— cf. Remark 5.9.2], we obtain the desired conclusion. This completes the
proof of Lemma 5.11. O

Definition 5.12. Let BGT C GT be a closed subgroup that satisfies the
ArBC-property [cf. Theorem 4.4, (ii)]. In the following discussion, we apply
the notation of Definitions 4.1, 5.1, 5.6, 5.8, 5.9. Write ¢ € Ly for the element
determined by id € I(II,II) [cf. Proposition 5.5, (ii)]. Then, if BGT satisfies the
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following purely combinatorial/group-theoretic [cf. Corollary 4.5, together with
the various definitions involved] conditions (i), (ii), (iii) (respectively, (i), (ii),
(iii), (iv)), then we shall say that BGT satisfies the QAA-property [i.e., “quasi-
algebraically ample property”] (respectively, AA-property [i.e., “algebraically
ample property”]):

(i)

(i)

(iii)

Write (Qgar)aiv € Qpar for the subfield generated over Q by Ker(tpgr o

Ypar) [cf. Lemma 5.4, (iv)]. Then (Qgar)daiv € Qpar is an infinite
extension of fields.

For

e each normal open subgroup IIT C II,

e cach nonempty finite subset S C Cusp(II'), and

e any sufficiently small normal open subgroup NT of BGT,
it holds that Hl(Hg), HXOOO)NT = {0} [cf. Definition 5.10], and the restric-
tion DHTS|KSTS of DHTS to KSTS [cf. Definition 5.9, (iii); Definition 5.10] is
injective [cf. Lemma 5.11].

Assume that condition (ii) holds. There exists a family of subsets

{Kui € Lt brrcn

— where IIf ranges over the normal open subgroups of IT — satisfying the
following conditions:

(a) Let IT* C IIT be normal open subgroups of II. Then the natural injec-
tion Lyt < L+ [determined by the natural surjection Cusp(IT*) —
Cusp(IIf) — cf. Proposition 5.5, (ii); Remarks 5.6.2, 5.9.2] induces
an injection

KHT — Kni .
In the remainder of the present paper, we regard K+ as a subset of
Kp: via this injection.

(b) For each normal open subgroup IIT C II, and each finite subset R C
Cusp(II"), the restriction to K+ of the natural restriction map

Fu(Cusp(I1'), Qpar U {oo}) — Fu(Cusp(IT) \ R, Qpar U {o0})
is injective.
(c) For each normal open subgroup IIf C II, K+ admits a [necessarily
unique — cf. (b)] field structure compatible with the ring structure
of Fn(Cusp(Il"), Qpgr) in the following sense: Let f,g € Ky, T C

Cusp(ITt) a finite subset such that f(x),g(z) € Qpgr for any z €
Cusp(II")\ T'. [For given elements f, g € K+, the existence of such a
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finite set T follows immediately from Remark 5.9.2.] Then the images
of f+ g and fg via the restriction map

Fn(Cusp(IT'), Qpgr U {o0}) = Fn(Cusp(IIf) \ T, Qpgr U {0})

coincide, respectively, with the functions
Cusp(IlN \ T 3 = — f(z) + g(z) € Tpar

Cusp(I)\ T > z = f(x)g(z) € Tpar-

Moreover, relative to these unique field structures, Ky € Kyt is a
finite Galois extension.

(d) Qpgr =Im By € Kyy, and ¢ € Kpi. Moreover, if we write Qpgr(t) €
Ky for the subfield generated by Qpgr and t, then Kiy = Qpgr(t).

(e) For each normal open subgroup IIf C II, the natural action of IT on
Lyt [cf. Proposition 5.2, (iv)] preserves K. Moreover, the natural

homomorphism
/11" — Gal(Ky: /Kn)

is an isomorphism.

(f) For each normal open subgroup IIT C II, the restriction to KéT (C
Lygt) of the natural map

Lo\ 0} > K (€t )
NTCBGT

[cf. condition (ii); Definition 5.10; Lemma 5.11] is surjective.

(iv) Assume that conditions (ii), (iii) hold. In the notation of condition (iii),
write Qpgrlt, 1, 75) € L for the Qggr-subalgebra generated by ¢, +

st
def — . . .
t_%; XGoor = Spec Qparlt %, t_%] [Thus, it follows immediately

from Lemma 5.13, (i), (ii), below that the natural outer surjection IT —»
IIx determines a natural outer isomorphism IT Xgper S x.] Then the

and

natural outer isomorphism Ilx 5 Iy is induced by a(n) [uniquely

determined, up to composition with an element of G5 C Out(Ilx,) that
fixes the element 5 € {1,2,3,4,5} — cf. Corollary 3.1, (ii); Remark 4.5.1;
[CbTpll], Theorem A, (i); the first display of [CbGT], Corollary C] outer
isomorphism

HX2 - H(X@BGT)Z
via the natural outer surjections Iy, — Ilx and II Xgpop)2 7 Mg, o

determined by the respective first projections [cf. Remark 5.12.2 below].
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Remark 5.12.1. In the notation of Remark 4.4.1, it follows immediately from
Remark 4.4.1, together with the various definitions involved and the fact that F
is Kummer-faithful [cf. [AbsToplll], Definition 1.5; [AbsToplIl]|, Remark 1.5.4,
()], that G satisfies the AA-property [cf. Theorem 6.8, (i) [and its proof, as
well as Remark 6.6.2], below, for more details].

Remark 5.12.2. In condition (iv), we regard Iy, as an abstract topological
group and IIx as a quotient of Ilx,, i.e., as in Corollary 4.5 [cf. also Remark
4.5.1].

Lemma 5.13 (Geometric interpretation of the set of cuspidal inertia
subgroups of IT). Suppose that BGT satisfies conditions (i), (iii) of Definition
5.12. Let

{Ku+ € Lt brrtcn

be a family of subsets as in Definition 5.12, (iii). Write

Kn = lim K,
It CII

where IIT ranges over the normal open subgroups of II. Then the following hold:

(i) Let IIT C 11 be a normal open subgroup. Write Yi+ — IP’}@ for the finite
BGT

ramified Galois covering of smooth, proper, connected curves over Qgar
corresponding to the extension of function fields Qpgr(t) = Kn C Kt

[¢f. Definition 5.12, (iii), (a), (c), (d), (e)]; Yut(Qpar) for the set of
Qpgr-valued points of Yri. Then the natural map

evypt : Cusp(ITT) — Yipt (Qpar)

induced by evaluating elements of Ky+ at elements of Cusp(IIT) is bijec-
tive.

(i) K is an algebraic closure of Qpar(t) = K. Moreover, the natural
action of Il on Ky determines an isomorphism

~ def ~ =
II=Gg, .. = Gal(Kn/Qper(t))

that induces a bijection between the respective sets of cuspidal inertia

subgroups of I1 and G@BGT(t)‘

Proof. Let Kﬁlg be an algebraic closure of Kyi. First, we verify assertion (i).
Note that it follows immediately from the various definitions involved [cf. espe-
cially, Definitions 5.1, (ii); 5.12, (iii), (d)] that evy is bijective. Note, moreover,
that the natural map evyr : Cusp(IIf) — Y+ (Qpgr) is compatible with the
isomorphism II/TIT 5 Gal(Kyi/Kn) [cf. Definition 5.12, (iii), (e)] and the

73



respective natural actions of ITI/II" and Gal(Kyy+/Kyr). Thus, it follows imme-
diately from the transitivity of the natural action of Gal(Ky: /K1) on the fibers
of the finite ramified Galois covering Y+ — ]P’}@ that evp: is surjective.

. BGT
Write

GESE)(H) o lgl CUSP(Hi)v ?(@BGT) o @ Yni(@BGT),
ECII CII

where IT* ranges over the normal open subgroups of II. Observe that the natural
maps {evyy: bz induce a natural map év : Cusp(Il) — Y (Qpgr) that, for each
normal open subgroup ITI* of 11, fits into a commutative diagram

Cusp(ll) —=— ¥ (Qper)

I |

Cusp(IT) — Vi1t (Qpar).

One verifies easily that this commutative diagram is compatible with the natural
isomorphism 11 = Gal(K1/Qpgr(t)) [cf. Definition 5.12, (iii), (e)] and the
respective natural actions of IT and Gal(K1/Qggr(t)).

Suppose that evii(ci) = evyi(c), where ¢, ¢ € Cusp(IIf). Let I; C IIf,
I, CIIf, J C Gal(IN(H/Km) be cuspidal inertia subgroups associated to cq,
o, evyyi(c1), respectively. Thus, since év is compatible with the isomorphism
mt = Gal(f?n/Km) and the respective natural actions, one verifies immediately
that by choosing suitable conjugates of I, I, and J, we may assume without
loss of generality that the natural isomorphism IIT = Gal(Ky/Kp+) induces
inclusions ¢ : Iy < J, 13 : I = J. Next, observe that any cuspidal inertia
subgroup of Gal(Kr/Kp+) is a quotient of some cuspidal inertia subgroup of
Gal(K{®/Ky+) via the natural surjection Gal(K3®/Kp) — Gal(KH/KHT)
and that every cuspidal inertia subgroup of Gal(K[; alg /Kt ) is isomorphic to Z.
Thus, we conclude that J is abelian, and hence, by applying the inclusions ¢y,
Lo, that Iy C Npi(I), I € Npi(I1), which [cf. Proposition 5.5, (ii)] implies
that I; = I, as desired. This completes the proof of the injectivity of evyr and
hence of assertion (i).

Next, we verify assertion (ii). For each E € Cpgr [cf. Definition 5.1, (iii)],
write

Gal(K® /Qpar(t)) — Gal(K{®/Qpgr(t) s

Gal(Kn/Qpgr(t)) — Gal(Ki/Qper(t)) s

for the respective quotients determined by the field extensions of Qg (t) that
are unramified outside of E. Recall from Proposition 5.2, (i), that there exists an
isomorphism &g : Iy = Gal(K3®/Qpgr(t)) e of profinite groups. In particular,
since the natural isomorphism II = Gal(Kp/Qpgr(t)) [cf. Definition 5.12, (iii),
(e)] induces a bijection between the respective sets of cuspidal inertia subgroups
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of IT and Gal(K11/Qpar(t)) [cf. Lemma 5.13, (i)], hence, in particular, a natural

isomorphism Iz = Gal(K/Qpgr(t))E, it follows that the composite morphism
Gal(Ky®/Qper(t)s — Gal(Kn/Qear(t)p ¢ Ik 4 Gal(Ki*/Qper(t) e
E

is a surjective endomorphism of a topologically finitely generated profinite group
[i.e., which, as is well-known, satisfies the “Hopfian property’], hence is an iso-
morphism. Thus, by allowing E € Cggt to vary, we conclude that Kﬁlg = I?H.
This completes the proof of assertion (ii), hence of Lemma 5.13. O

Theorem 5.14 (Uniqueness of function fields). Suppose that BGT satisfies
the QAA-property [cf. Definition 3.3, (v); Theorem 4.4, (ii); Definition 5.12].
Then any family

{Kn+ € Lyt britcn

of subsets as in Definition 5.12, (iii), is unique.

Proof. Let {Km+ C Lyt bt e, {* Kt € Lyt briten be families of subsets as in
Definition 5.12, (iii). Recall that, if II* C II" are normal open subgroups of II,
then K+ € Ky and * Ky € * Kyt [cf. Definition 5.12, (iii), (a)]. Write

Ku= lim Ky, *Kn= lim Ky,
ntCci ntCI

where IIT ranges over the normal open subgroups of II. Then since IN(H and
* K11 are algebraic closures of Ky [cf. Lemma 5.13, (ii)], there exists an abstract
field isomorphism £ : IN(H 5 'NIN(H over Kii, whic~h determines an isomorphism
of profinite groups a : Gal(*Ky/Kn) = Gal(Kn/Km). Fix a normal open
subgroup ITt C II.

Write

def

o °Ky: = B7(*Kmr) € K

oY — ]P’}@ (respectively, °Y — IE% , %V — IE% ) for the finite

BGT BGT BGT o
ramified Galois covering of smooth, proper, connected curves over Qpar

corresponding to the extension of function fields Qper(t) = Kn € Kt
(respectively, Qpar(t) = K C *Kipr, Qpar(t) = K C °Kypi) [cf. Defi-
nition 5.12, (iii), (a), (¢), (d), (e)];
o Pt (@gar) Y(Q@sar): *Y (Qpar), °Y (Qpar) for the respective sets of
B

GT

Qpgr-valued points of PL | Y, *Y, °Y.
Qpar
Observe that there exist natural bijections

Cusp(II) e% P}@BGT(@BGT% CUSP(HT) :*T Y(@BGT)a CUSP(HT) . :>T .Y(@BGT)
I evy evy
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[cf. Lemma 5.13, (i)] that fit into a commutative diagram

Gal(IN(H/KH) (l 1I :> Gal(.f?n/KH) S) Gal(f?n/KH)
4 { 4 {
Gal(Kyi /Kn) < /1t 5 Gal(*Kpi /Kn) %) Gal(°Kp+/Kn)
o~ ~ ~ ~
Y (Qpar) egf Cusp(IIT) ,e%f *Y (Qgar) ? Y (Qpar)
L T L 5
P}@BGT (Qsar) e<v—n Cusp(11) Jf—l ]%BGT (Qgar) = P}@BGT (Qsar)s

where the vertical arrows denote the natural surjections; the horizontal arrows
Gal(.KHT/KH) :> Gal(OKHT/KH) and .Y(QBGT) % OY(QBGT) denote the

bijections induced, respectively, by « and .
Note that it follows immediately from the above commutative diagram that
the sets C IE% (Qpg) of branch points of the finite ramified Galois coverings
B

GT
Y — }P’}@ and °Y — ]P% coincide. Write T C Cusp(II) for the image of
BGT BGT
the set of branch points of the finite ramified Galois covering ¥ — IP’}@ via
BGT

the bijection evﬁl. Then, by replacing the normal open subgroup IIT C II by
the pull-back of a suitable characteristic open subgroup of IIr [cf. Definition
5.1, (ii)] via the natural surjection II — IIr, we may assume without loss of
generality that K+ = ° K, Y = °Y.
Write

o :Y(Qgar) = °Y(@ser) = Y(Qser)
for the composite of the horizontal arrows in the third row of the above commu-
tative diagram. Recall that the images of K[;,*Ky}; (C Ly+) via the natural
map

Ly \ {0} = lim  H'(IT] ,TIx,.)

NTCBGT

coincide with K5, [cf. Definition 5.12, (iii), (f)]. In particular, for each f € K[,
there exist

¢ € Fn(Y (Qpar), (Qar)iy) (€ Fn(Y (@par) Qar U{x})), g5 € Kjj;

such that f7 < foo = ¢ - g5 [cf. Definitions 5.9; 5.10; 5.12, (i)]. Note that it
follows immediately from the above commutative diagram that o lies over the
identity automorphism of ]P%BGT (Qpar). Thus, we conclude from Corollary 1.3
[cf. also Definition 5.12, (i)] that, relative to the notational conventions of loc.
cit., o € Gal(Kti /Kn) and hence that Kyi = ®*Kpr. This completes the proof
of Theorem 5.14. O
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Theorem 5.15 (Injectivity of Cgr(BGT) — Aut(Qpgr)). Suppose that
BGT satisfies the QAA-property [cf. Definition 3.3, (v); Theorem 4.4, (ii);
Definition 5.12]. Write
{Kn+ € Lt brcn
for the unique family of subsets as in Definition 5.12, (iii) [cf. Theorem 5.14];
Kp = lim Ky,
It C1I

where IIT ranges over the normal open subgroups of I1;

G,y 2 Gal(Kn/Kn) (= Gal(Ku/Qpar(t))

[¢f. Definition 5.12, (i), (d)];

p: CGT (BGT) — GQBGT déf Aut(@BGT)

for the homomorphism induced by the natural action of Car(BGT) on the field
Qg [¢f. Theorem 4.4, (ii)]. Then the following hold:

out ~
(i) I x Cor(BGT) acts naturally on the algebraically closed field Ky [cf.
Lemma 5.13, (ii)]. Moreover, this action induces a commutative diagram

Cqr(BGT) —2— Goper

l l

Out(Il) —=— Out(Gg, . 1)

where the left-hand vertical arrow denotes the homomorphism induced by
the natural outer action of Cor(BGT) on II [c¢f. Definition 5.1, (i)];
the right-hand vertical arrow denotes the natural outer representation; the
lower horizontal arrow denotes the isomorphism induced by the isomor-
phism 11 = Gopup [¢f- Lemma 5.13, (ii)].

(i) The commutative diagram of (i) induces a commutative diagram

Caor(BGT) —2— Goper

| !

Out(ITy) —~— Out (HX@BGT ),

where the left-hand vertical arrow denotes the homomorphism induced by
the natural faithful outer action of Cqr(BGT) C GT on Ilx; the right-
hand vertical arrow denotes the natural outer representation; the lower
horizontal arrow denotes the isomorphism induced by the isomorphism
IIx QHX@BGT [cf. Lemma 5.13, (i), (ii)].
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(i) The homomorphism p is injective. In particular, the restriction p|ggr
of p to BGT is injective.

(iv) Suppose, moreover, that BGT satisfies the AA-property. Write GTggr C
OUt(H(X@BGT)Q) for the Grothendieck-Teichmiiller group associated [cf.

Corollary 4.5] to H(X@ )2+ Then the commutative diagram of (i) in-
M¥BGT
duces a commutative diagram

Car(BGT) —2— Goper

! !

GT ;> GTBGT,

where the vertical arrows denote the natural injections; the lower hori-
zontal arrow denotes the isomorphism induced by an outer isomorphism
My, = e, op)2 08 in Definition 5.12, (iv).

'BGT

2

Proof. First, we verify assertion (i). Note that it follows immediately from the

out
various definitions involved that II x Cgp(BGT) acts naturally on the family
of sets {Ly brprcrr, where IIT ranges over the normal open subgroups of II [cf.
Definition 5.8]. Thus, we conclude from the unigueness of the family of subsets

out
{Knt+ € Lyt tnicn [cf. Theorem 5.14] that IT x Cqr(BGT) acts naturally

on the algebraically closed field K. Moreover, it follows immediately from
the various definitions involved that this natural action induces the desired
commutative diagram. This completes the proof of assertion (i). Next, since
the natural surjection IT — Ilx is compatible with the respective outer actions
of Car(BGT) [cf. Definition 5.1, (i)], assertion (ii) follows immediately from
Theorem 5.15, (i). Assertion (iii) follows immediately from Theorem 5.15, (ii).
Assertion (iv) follows immediately from the various definitions involved. This
completes the proof of Theorem 5.15. OJ

Lemma 5.16 (Elementary property of profinite groups). Let G be a
profinite group, H C G a closed subgroup, g € G an element such that H C
H9:=¢g-H-g'. Then H= HY.

Proof. By considering quotients of G by normal open subgroups, one reduces
immediately to the case where G is finite. Then the equality H = HY follows
immediately from the fact that H and HY have the same cardinality. This
completes the proof of Lemma 5.16. OJ

Theorem 5.17 (Combinatorial construction of Gg).
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(i) Write Out!®!(ILx) C Out(Ilx) for the closed subgroup of outer automor-
phisms that induce the identity automorphism on the set of conjugacy
classes of cuspidal inertia subgroups of Illx. Then the conjugacy class of
subgroups of Out/®! (Ilx) determined by the absolute Galois group of Q
may be constructed from the abstract topological group x, [cf. Corollary
4.5, Remark 4.5.1], in a purely combinatorial/group-theoretic way, as the
set of maximal elements [relative to the relation of inclusion] in the set
of closed subgroups of Out!“!(I1y) that arise as Out!!(ILy)-conjugates of
closed subgroups of GT that satisfy the QA A-property [cf. Definition
3.3, (v); Theorem 4.4, (ii); Definition 5.12].

(ii) The conjugacy class of subgroups of GT determined by the absolute
Galois group of Q may be constructed from the abstract topological group
Ix, [cf. Corollary 4.5, Remark 4.5.1], in a purely combinatorial/group-
theoretic way, as the set of maximal elements [relative to the relation
of inclusion] in the set of closed subgroups of GT that arise as closed
subgroups of GT that satisfy the AA-property [cf. Definition 3.3, (v);
Theorem 4.4, (ii); Definition 5.12].

Proof. Recall from Remark 5.12.1 that Gg = Gal(Q/Q) may be regarded as a
closed subgroup of GT that satisfies the A A-property, hence may itself be taken
to be “BGT”. Thus, it follows formally from Theorem 5.15, (ii) [cf. also Lemma
5.13, (ii)] (respectively, Theorem 5.15, (iv)), that any Out/“/(Ilx)-conjugate
(respectively, GT-conjugate) of a closed subgroup of GT that satisfies the QAA-
property (respectively, AA-property) is contained in — hence equal to, whenever
it is maximal with respect to the relation of inclusion among such conjugates of
closed subgroups — some Out!®! (ITx )-conjugate (respectively, GT-conjugate) of
Gg. In particular, the maximality of any Out!®l(11 x )-conjugate (respectively,
GT-conjugate) of Gg follows formally from Lemma 5.16. This completes the
proof of Theorem 5.17. OJ

6 Application to semi-absolute anabelian geom-
etry over TKND-AVKF-fields

In this section, we introduce the notion of a TKND-AVKF-field [cf. Def-
inition 6.6, (iii)] and show that the absolute Galois group of a TKND-AVKF
subfield of Q satisfies the A A-property [cf. Theorem 6.8, (i)]. We then apply the
theory developed in the present paper to prove a semi-absolute version of the
Grothendieck Conjecture for higher dimensional configuration spaces [of dimen-
sion > 2] associated to hyperbolic curves of genus 0 over TKND-AVKF-fields
[cf. Theorem 6.10, (ii)].

Write Q*P (C Q) for the maximal abelian extension of Q.
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Definition 6.1. Let p € Primes; ¥ C Primes a nonempty subset.

(i)

(i)

(iii)

Let M be an abelian group. Then we shall say that M is p°-tor-finite if
the subgroup of p-power torsion elements of M is finite. We shall say that
M is X*°-tor-finite if, for each [ € 3, M is [*°-tor-finite.

Let G be a profinite group. Then we shall say that G is p-subfree if there
exists a closed subgroup of G isomorphic to Z,. We shall say that G is
Y-subfree if, for each [ € X, G is [-subfree. We shall say that G is p-sparse
if the maximal pro-p quotient of every open subgroup of G is finite. We
shall say that G is X-sparse if, for each [ € ¥, G is [-sparse.

Let K be a field. If K satisfies the following condition, then we shall say
that K is an AVKF-field [i.e., “abelian variety Kummer-faithful field”]:

Let A be an abelian variety over a finite extension L of K.
Write A(L)* for the group of divisible elements € A(L). Then
A(L)> =A{1}.

If K is an AVKF-field, then we shall also say that K is AVKF.

Let K be a field. If K satisfies the following condition, then we shall say
that K is p-AV-tor-indivisible (respectively, p®-AV-tor-finite):

Let A be an abelian variety over a finite extension L of K. Write
o A(L)P” for the group of p-divisible elements € A(L);
o A(L)o for the group of torsion elements € A(L);
o A(L)y~ for the group of p-power torsion elements € A(L).
Then A(L)?” C A(L)w (respectively, A(L),e is finite).

We shall say that K is X-AV-tor-indivisible (respectively, %°°-AV-tor-
finite) if, for each [ € X, K is [°°-AV-tor-indivisible (respectively, [>°-AV-
tor-finite).

Let K be a field. Then we shall say that K is stably ¥-x p-indivisible (re-
spectively, stably puse-finite) if, for each | € ¥, K is stably l-X p-indivisible
(respectively, stably pye-finite) [cf. the final portion of Remark 6.1.2;
[Tsjm], Definition 3.3, (v), (vii)].

Remark 6.1.1. If a profinite group G is X-subfree (respectively, X-sparse), then
so is any open subgroup of G.

Remark 6.1.2. Let [J be one of the following properties:

AVKF,
Y-AV-tor-indivisible,
3°-AV-tor-finite,
stably ¥-x p-indivisible,
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o stably pxe-finite.

Then one verifies immediately that if L is an extension field of a field K, then
the following implication holds:

Lisd = KisO.

Also, we observe that the second and third properties are the respective ana-
logues for abelian varieties of the fourth and fifth properties, which may be
regarded as properties concerning rational points of the “torus” Gy,.

Remark 6.1.3. In the notation of Definition 6.1, (iii), suppose further that K
is of characteristic 0. Then it follows immediately from [AbsTopllI], Definition
1.5, that the following implication concerning K holds:

< torally Kummer-faithful and AVKF> <= Kummer-faithful.

Lemma 6.2 (Stably p-xpu-indivisible and p-AV-tor-indivisible fields).
Let p € Primes, K a field of characteristic # p. Then:

(i) Let L be a [not necessarily finite!] Galois extension of K such that
Gal(L/K) is p-sparse. Let O be one of the following properties:

stably p-xpu-indivisible,
stably pipe--finite,
p-AV-tor-indivisible,
p>°-AV-tor-finite.

Then if K is O, then so is L.
(i) Let L be a [not necessarily finite!] Galois extension of K.
(i) Suppose that L is stably pp--finite. Then if K is stably p-xpu-
indivisible, then so is L.
(i) Suppose that L is p>-AV-tor-finite. Then if K is p-AV-tor-
indivisible, then so is L.

(iii) The following properties hold:

(111 ) Suppose that K is stably p-xp-indivisible, stably pipiimes~-finite,
and of characteristic 0. Then K is torally Kummer-faithful. If,
moreover, K is AVKF, then K is Kummer-faithful /[cf. Remark
6.1.5].

(iii*V ) Suppose that K is p-AV-tor-indivisible and ‘Primes™-AV-tor-
finite. Then K is AVKF.

(iv) The following properties hold:
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(w*) If K is torally Kummer-faithful, then K is stably pgeimeses-
finite.

(iv?V ) If K is AVKF, then K is Primes™-AV-tor-finite.

(v) Suppose that K is a sub-p-adic field [c¢f. [LocAn], Definition 15.4, (i)].
Then K is

stably p-xpu-indivisible,
stably pgimes~-finite,
p-AV-tor-indivisible,
Primes™-AV-tor-finite.

Proof. First, we consider assertion (i). We begin by observing that any finite
extension field LT of L arises as a Galois extension of some finite extension field
KT of K such that Gal(LT/KT) is p-sparse. Next, we observe that the Galois
group Gal(M/K) of any [not necessarily finite!] Galois extension M of K that
arises by

e adjoining compatible systems of p-power roots of elements of K or by
e adjoining infinitely many p-power roots of unity,

admits an open subgroup which is a pro-p group. Assertion (i) in the case where
[ is taken to be one of the first two properties then follows immediately from the
above observations, together with our assumption that Gal(L/K) is p-sparse.
Assertion (i) in the case where [J is taken to be one of the latter two properties
follows by a similar argument [cf. the final portion of Remark 6.1.2]. This
completes the proof of assertion (i).

Assertion (ii*) follows immediately from [Tsjm], Lemma D, (v). Next, we
verify assertion (ii4V). Let LT be a finite extension field of L; AT an abelian
variety over LT. To verify assertion (ii*V), it suffices to prove that AT(LT)P™ C
AT (LY. Let z € AT(LT)P™. By replacing K by a finite extension field of K,
we may assume without loss of generality that

o LT =1;
o AT = A xg L, where A is an abelian variety over K;
o 1 c A(K).

Thus, since K is p-AV-tor-indivisible, it suffices to verify the following assertion:
Claim 6.2.A: z € A(K)P™.

Indeed, let n be a positive integer. Since L is p™°-AV-tor-finite, A(L) o is finite.
Write p™ for the cardinality of A(L),~. Then since x € A(L)P", there exists

an element x,,,, € A(L) such that p™*" . x,,,, = . Write x, def A
Thus, since p" - x,, = x, it suffices to prove that z,, € A(K). Let 0 € Gal(L/K).
Observe that

pm+n ) (($m+n)a _ mern) =% — = 07
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hence, in particular, that (2,4n)7 — Zman € A(L)pe. Thus, we conclude that

Ty = 2n =0 ((Tman)” — Tmyn) =0,

hence that x,, € A(K). This completes the proof of Claim 6.2.A, hence of
assertion (ii4").

Assertions (iii*), (iii’"") follow immediately from the fact that, for any I €
Primes, the divisible group Q;/Z; has no nontrivial finite quotient.

Next, we verify assertion (iv). Recall that, for any [ € Brimes, the group of
[-torsion points of an abelian variety over an algebraically closed field is finite
[cf. e.g., [Mumf], p. 64]. Thus, assertion (iv) follows immediately from the fact
that, for any [ € Primes, every infinite subgroup of Q;/7Z; is divisible.

Finally, we consider assertion (v). One verifies immediately that we may
assume without loss of generality that K is a finitely generated field extension
of Q,. Moreover, by applying the “relative Mordell-Weil Theorem” [cf. [Lang],
Chapter 6, Theorem 2], together with well-known elementary facts concerning
the multiplicative group of a function field, one concludes that we may assume
without loss of generality that K is a finite field extension of Q,. Then assertion
(v) follows immediately from a similar argument to the argument applied in
[AbsToplII], Remark 1.5.4, (i). This completes the proof of Lemma 6.2. O

Remark 6.2.1. The argument applied in the proof of Claim 6.2.A [in the proof
of Lemma 6.2, (ii*V)] is similar to the argument applied in the proof of [Moon],
Proposition 7.

Proposition 6.3 (Examples of AVKF-fields). Let FF C Q be a number field.

(i) Let L be a [not necessarily finite!] Galois extension of F - Q* C Q such
that Gal(L/F - Q) is Primes-sparse. Then L is

e stably Primes-x u-indivisible,
o ‘Primes-AV-tor-indivisible,
e Primes™-AV-tor-finite.

In particular, L is a stably xp-indivisible AVKF-field [c¢f. Lemma
6.2, (iiiV ); [Tsjm], Lemma D, (i)].

(ii) Let {vi,va,...} be an infinite set of non-archimedean primes of F. [Here,

[ »”

we assume, for simplicity, that the indices of the “v;” are chosen in such
a way that v; # vy for j # j'.] Let {¥; C Primes},;>1 be a family of
subsets such that, for any positive integer j,

U >, = Primes,

2]

where i ranges over the positive integers > j; M C Q a [not necessarily
finite!] Galois extension of F; L a [not necessarily finite!] Galois
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extension of M C Q such that Gal(L/M) is rimes-sparse. Suppose
that for each positive integer j, the absolute Galois group of the residue
field of the ring of integers of M at [every prime that divides] vj is 3;-
subfree. Then L is

e stably Primes-x u-indivisible,
o stably ppiimes=-finite,

e Primes-AV-tor-indivisible,

e Primes™-AV-tor-finite.

In particular, L is a Kummer-faithful field [cf. Lemma 6.2, (iii™),

(i )].
Proof. First, we verify assertion (i). Note that it follows immediately from
Lemma 6.2, (i), that we may assume without loss of generality that L = F-Q?".
Then since L is an abelian extension of a number field, it follows immediately
from [Tsjm], Lemma D, (iii), (iv), that L is stably Primes-x p-indivisible. On
the other hand, it follows immediately from [KLR], Appendix, Theorem 1, that
L is Primes™ -AV-tor-finite. Next, observe that F is Brimes-AV-tor-indivisible
[cf. Lemma 6.2, (v)]. Thus, since L is a Primes™ -AV-tor-finite Galois extension
of F, we conclude from Lemma 6.2, (ii4V), that L is Primes-AV-tor-indivisible.
This completes the proof of assertion (i).

Next, we verify assertion (ii). Note that it follows immediately from Lemma
6.2, (i), that we may assume without loss of generality that L = M. For each
positive integer j, write p; for the residue characteristic of v;. Then it follows
immediately from our assumption on various unions of the subsets ¥; C Brimes
that, for any positive integer j,

U (2\ {pi}) = Primes,

i>j

where i ranges over the positive integers > j. Let p € Primes; LT a finite
extension of L; A" an abelian variety over Lf; j a positive integer such that
p € %;\ {p;}, and AT has good reduction at some prime ¥; of L' that divides
v; [cf. the above display!]. Write

° (’);j C LT for the ring of integers at ¥;;
° k;j for the residue field of (9;]_;

° A}L- for the abelian scheme over O:f}j whose generic fiber is A';

def
o AL Al xgr KL
J

Then since the morphism A; — A} given by multiplication by a power of p is
finite étale, it follows immediately that there exists a natural injection

AN(L ) o > AL (K]).

Thus, it follows immediately from
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e our assumption [cf. Remark 6.1.1] that the absolute Galois group of k;j is
> j-subfree,

e the well-known fact that the absolute Galois group of a finite field is iso-
morphic to Z, and

e the well-known fact that, for any positive integer n, GL,(Z,) contains an
open subgroup which is a pro-p-group

that AT(LT),~ is finite. Thus, by allowing p to vary, we conclude that L
is Primes™-AV-tor-finite. A similar argument applied to the multiplicative
group G, implies that L is stably pigpcimese-finite. Next, observe that L is a
Primes™-AV-tor-finite Galois extension of the Primes-AV-tor-indivisible field
F [cf. Lemma 6.2, (v)]. Thus, we conclude from Lemma 6.2, (ii?V), that L is
Primes-AV-tor-indivisible. A similar argument implies that L is stably Primes-
x p-indivisible. This completes the proof of assertion (ii), hence of Proposition
6.3. O

Remark 6.3.1. The following example was suggested to the authors of the
present paper by A. Tamagawa. Let {G;};cr be a family of nonabelian finite
stmple groups [i.e., such as the alternating group on n letters 2,,, where n > 5].
Then the direct product group

¢ €] G

iel

endowed with the product topology is Primes-sparse. Indeed, this follows imme-
diately from the definition of the product topology, together with the elementary
fact that, for each p € Primes, ¢ € I, the maximal pro-p quotient of G, is triv-
ial. If I is countable, and we assume that there exists a positive integer n > 5
such that G; is isomorphic to 2, for all i € I, then it follows immediately from
well-known facts concerning the Hilbertian nature of number fields and the reg-
ularity of A, [cf. [FJ], §6.2; [FJ], Theorem 13.4.2; [FJ], Proposition 16.2.8, (b);
[FJ], Proposition 16.7.6] that G may be realized as the Galois group of a Galois
extension F of a number field F'. Here, we note that such a Galois extension F
of F is necessarily linearly disjoint from any abelian field extension of F.

Remark 6.3.2. Later [cf. Remark 6.6.3 below], we shall see that the fields “L”
of Proposition 6.3, (i), (ii), are in fact “TKND-AVKF-fields”.

Remark 6.3.3. Let F C Q be a number field such that v/—1 € F; {v1,vs,...}
an infinite set of non-archimedean primes of F'. [Here, we assume, for simplicity,
that the indices of the “v;” are chosen in such a way that v; # vy for j # j']
Let {3; C Primes};>1 be a family of finite subsets such that, for any positive
integer j,

U 3, = Primes,

127
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where ¢ ranges over the positive integers > j. For each positive integer j, write
Primes \ X = {pjm}m>1; Fy; for the completion of F' at v;. For each pair
of positive integers i,j such that j < 7, write FJJ_ [i] for the finite unramified
[abelian] extension of F,, of degree

H p;,m

1<m<i

For each positive integer j, let Fvij be an abelian totally wildly ramified infinite
extension of F,.. For each pair of positive integers 4,j such that j < i, let
ng [i] C Fjj be a finite subextension of F,, such that

FLE CFLli+1), |J FLiml=F},

vj vj
jsm

where m ranges over the positive integers > j. [Here, we observe that the
existence of such extensions of F,; follows immediately from [NSW], Theorem
7.2.11.] Next, let i be a positive integer; M, an abelian extension of F such
that, for each pair of positive integers 7, j such that j < 7, the local extensions
of M;/F at v; coincide with the extension FJJ_ [q] - Fjj [i]/ F,,. [Here, we observe
that, in light of our assumption that v/—1 € F, the ezistence of such an abelian
extension M; of F follows immediately from [NSW], Definitions 9.1.5, 9.1.7;
[NSW], Theorem 9.2.8.] Write
McQ

for the field generated by {M;};>1 over F'. Then we make the following obser-
vations, each of which follows immediately from the construction of M:

(a) M is an abelian extension of F;

(b) for each positive integer j, the absolute Galois group of the residue field of
the ring of integers of M at [every prime that divides] v; is ¥;-subfree;

(c) for each positive integer j, the ramification index of the extension M/F at
vj is infinite [so if {v1, v, ... } coincides with the set of all non-archimedean
primes of F, then M is not a generalized sub-p-adic field for any prime
number p — cf. [AnabTop], Definition 4.11];

(d) for each positive integer j, the residue field of the ring of integers of M at
[every prime that divides] v; is infinite.

Thus, in particular, any Galois extension L of M whose Galois group is Primes-

. . def . .
sparse — such as, for instance, a composite field L = M - E, where F is as in

Remark 6.3.1 — satisfies the assumptions of Proposition 6.3, (ii), as well as the
properties discussed in (c), (d).
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Remark 6.3.4. Note that it follows immediately from the various definitions
involved that the field “L” of Proposition 6.3, (i), satisfies properties analogous
to the properties (c), (d) of Remark 6.3.3. That is to say, in the notation of
Proposition 6.3, (i),

e the ramification index of the extension L/F at every non-archimedean
prime of L is infinite [so L is not a generalized sub-p-adic field for any
prime number p — cf. [AnabTop], Definition 4.11];

e the residue field of the ring of integers of L at every non-archimedean
prime of L is algebraically closed, hence infinite.

Remark 6.3.5. The properties (c), (d) of Remark 6.3.3 [cf. also Remark 6.3.4]
are of interest in that they show that

anabelian geometry over fields such as the fields L of Proposition
6.3, (i), (ii) [cf. Theorem 6.10 below] cannot be treated by means
of well-known techniques of anabelian geometry that require the
use of p-adic Hodge theory or Frobenius elements of absolute Galois
groups of finite fields [cf. [Tamal, Theorem 0.4; [LocAn], Theorem
A; [AnabTop], Theorem 4.12].

Proposition 6.4 (AVKF-fields satisfy the ISC-, CS-properties). Let
K C Q be an AVKF-field [cf. Definition 6.1, (iii)]. Write G e Gal(Q/K) C

Go et Gal(Q/Q). Thus, we obtain natural injections
Gk CGg — GT C Out(ITy)

[cf. the discussion at the beginning of [Tsjm/, Introduction], which we use to
identify Gg with its image in GT. Then K satisfies the ISC-property, and
the closed subgroup G C GT satisfies the CS-property.

Proof. Indeed, it follows immediately from a similar argument to the argument
applied in the proof of [Tsjm], Theorem 3.1, and [Tsjm], Corollary 3.2, that K
satisfies the ISC-property. The CS-property for the closed subgroup Gx C GT
then follows formally. This completes the proof of Proposition 6.4. [

Corollary 6.5 (AVKF-fields satisfy the ArBC-property). In the notation
of Proposition 6.4, the closed subgroup G C GT satisfies the ArBC-property
[ef. Theorem 4.4, (i), (iii)]. Moreover, if one takes “BGT” to be Gk [cf.
Definition 3.3, (v); Theorem 4.4, (ii)], then the following hold:
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(i) In the notation of Theorem 4.4, (ii), there exists a natural isomorphism
of fields

Qg ~Q
that is compatible, relative to the respective natural actions, with the in-

clusion G C Gq. In the remainder of the present §6, we shall use this
natural isomorphism to identify Qg . with Q.

(i) In the notation of Definition 5.1, there exists a natural outer isomor-
phism
5 G,

between the profinite group 11 and the absolute Galois group Gx, of

the function field Ky of X &

phism is compatible with the respective natural outer actions of BGT = G
on Il and Gk .

IE%\{O7 1,00}. This natural outer isomor-

(iii) There ezists a natural homomorphism
CGT (GK) — GQ

[cf. Theorem 4.4, (ii)] whose restriction to Cg,(Gk) is the natural inclu-
sion Cag,(Gk) C Gg.

Proof. First, we observe that it follows immediately — from the evident scheme-
theoretic interpretation of the various arithmetic Belyi diagrams that arise —
that the closed subgroup G C GT satisfies the COF-property. Thus, it follows
immediately from Corollary 3.7; Theorem 4.4, (iii); Proposition 6.4, together
with the various definitions involved, that the closed subgroup Gx C GT sat-
isfies the ArBC-property. Next, we observe that it follows immediately — from
the evident scheme-theoretic interpretation of the various arithmetic Belyi dia-
grams that arise — that these arithmetic Belyi diagrams determine

e a natural isomorphism of fields @GK 5 Q that is compatible with the
inclusion G C Gg, and

e a natural outer isomorphism 11 = G, that is compatible with the re-
spective natural outer actions of BGT = Gk on Il and Gk

[cf. the proof of Theorem 4.4, (ii), (iii)]. Thus, we conclude [cf. the proof of
Theorem 4.4, (ii), (iii)] that there exists a natural homomorphism

CGT(GK) — GQ

whose restriction to Cg,(Gx) is the natural inclusion Cg,(Gk) € Gg. This
completes the proof of Corollary 6.5. O

Definition 6.6. Let K be a field, K an algebraic closure of K. Write Kym €K
for the prime field of K.
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(i) Write
Kdiv déf U ono c ?7

L/K
where L (C K) ranges over the finite extensions of K, and we write

Lyoo & Kpem(L*®) C L

[cf. the discussion entitled “Fields” in Notations and Conventions].

(i) If Kg;y € K is an infinite field extension, then we shall say that K is a
TKND-field [i.e., “torally Kummer-nondegenerate field”]. If K is a TKND-
field, then we shall say that K is TKND.

(iii) If K C K is both TKND and AVKF, then we shall say that K is a
TKND-AVKF-field. If K is a TKND-AVKF-field, then we shall say that
K is TKND-AVKF.

Remark 6.6.1. One verifies immediately that if L is an algebraic extension of a
field K [which implies that K and L admit a common algebraic closure], then
the following implication holds:

Lis TKND = K is TKND.

Remark 6.6.2. In the notation of Definition 6.6, suppose further that K is
of characteristic 0. Then the following implications concerning K hold [cf.
Definition 6.1, (iii); [AbsTopIII], Definition 1.5; [Tsjm], Definition 3.3, (v); the

well-known fact that Q*® C Q is an infinite field extension [cf., e.g., [Tsjm],
Lemma D, (iii), (iv)]]:

torally Kummer-faithful = stably x p-indivisible = TKND;

Kummer-faithful = stably x p-indivisible and AVKF = TKND-AVKF.

Remark 6.6.3. It follows immediately from Remark 6.6.2 that the fields “L” of
Proposition 6.3, (i), (ii), are TKND-AVKF-fields.

Remark 6.6.4. Recall that

e the TKND-field “L” of Proposition 6.3, (i) [cf. Remark 6.6.3], contains

the entire subset p1(Q), while

e the TKND-field “L” of Proposition 6.3, (ii) [cf. Remark 6.6.3], is stably
Hp3times™ -finite.
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That is to say, the TKND-fields of Proposition 6.3, (i), (ii), may be thought of
as two “extremal cases”, i.e., with regard to the property of containing roots
of unity. On the other hand, a detailed analysis of the various “intermediate
cases” that, in some sense, lie in between these two “extremal cases” is beyond
the scope of the present paper.

Lemma 6.7LGeneralities on rational functions). Let K be a field of char-
acteristic 0; K an algebraic closure of K; Y a smooth curve over K. For each
algebraic extension M (C K) of K, write Gy def Gal(K/M); Y def yr X M;
Y (M) for the set of M-rational points of Y; OéM for the group of invertible
reqular functions on Yas;

Ky : O;? = lim O}X,KT — 1 Hl(HyKT,uZ(?))

=
KCKt KCKT

for the Kummer map, where ji(K) def Hom(Q/Z, un(K)); Kt (C K) ranges

over the finite extensions of K. Lety € Y(KT), where K (C K) is a finite
extension of K. Thus, y € Y (K1) determines a section Gy — Iy, . fie.,

strictly speaking, an outer homomorphism/ of the natural surjection Uy , —

Gyt. In particular, by allowing Kt and y € Y (K1) to vary, we obtain a natural
homomorphism

Dy: lim H'(Iy,,,p5(K)) — Fu(Y(K), lim H'(Gyr,pz(K))).
KCK* KCKt

Then the following hold:

(i) Suppose that K is AVKF, and Y is proper over K. Then
H ([, 15 () = {0},

(ii) Suppose that

e K CK=Q, and K is AVKF;

e Y is affine, and the function field of Yy is equipped with the structure
of a finite Galois extension of Kx [cf. Corollary 6.5, (ii)].

We apply the notation of Definition 5.9, (i), where we take “BGT” to
be G [cf. Corollary 6.5], “II* C II” to be the normal open subgroup
determined by Yg [cf. Corollary 6.5, (ii)], and “S C Cusp(Il*)” to be the
subset corresponding to the set of cusps of the hyperbolic curve Y@, Then
the natural outer isomorphism 1% — Hy@ [which is compatible with the
respective outer actions of N (C BGT = Gk) — ¢f. Corollary 6.5, (ii)]
and the natural scheme-theoretic isomorphism Ilx,  — pz(K) induce an
isomorphism Im(ry ) — Kii., [ef. (i); Definition 5.10].
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(iii) Suppose that K is TKND-AVKF. Then the restriction Dy |mm(xy) of Dy
to Im(ky) is injective.

Proof. First, we verify assertion (i). Recall that since Y is a smooth, proper
curve over K, H‘;,; is naturally isomorphic to the Tate module of the Jacobian

J of Y. In particular, if (H%,;)GK # {1}, then there exists a nontrivial divisible
element of J(K). Thus, since K is AVKF, we conclude that (H%}%)G" = {1}.

On the other hand, Poincaré duality yields a Gg-equivariant isomorphism of
topological modules

H'(Ily,, p3(K)) = Hom(I2 , pi5(K)) = 2.

Thus, we conclude that H'(Ily._, yi(K))“* = {0}. This completes the proof of
assertion (i). Assertion (ii) follows immediately from the various definitions in-
volved [cf. Remark 5.10.1; the argument applied in the proof of [Tsjm], Theorem
3.1].

Finally, we verify assertion (iii). First, we observe that it follows from the
various definitions involved that there exists a commutative diagram

05 R Fa(y(K), K)

.|

. —. D — —
lim H'(Ily, ., pz(K)) —— Fo(Y(K), lim HY(Gg:,pz(K))),
KCKT KCKT

— 7

where evy denotes the homomorphism induced by evaluating elements of O;?
at elements of Y (K); the right-hand vertical arrow denotes the natural homo-
morphism induced by the Kummer map

K' = lim (K" — lim H'(Ggr,p3(K)).
KCK1 KCKT
Let f € Ker(Dy o ky). Then the commutativity of the above diagram implies
that Im(evy (f)) € Kj, € K™. On the other hand, we note that, for any
nonconstant rational function g € O)X,?7 the complement K\ Im(evy (g)) is a
finite set. In particular, it follows immediately from our assumption that K is
TKND [i.e., the fact that Kg;y C K is an infinite field extension| that f is a
constant function such that sy (f) = 0. Thus, we conclude that Dy |y (., ) is
injective. This completes the proof of assertion (iii), hence of Lemma 6.7. [

Theorem 6.8 (TKND-AVKF-fields satisfy the AA-property). Let K C
Q be a TKND-AVKF-field. Then the following hold:

(i) The closed subgroup G C GT satisfies the AA-property [cf. Definition
5.12].
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(i) The natural homomorphism
CGT (G K) — GQ

[ef. Corollary 6.5, (iii)] is injective and compatible with the respective
natural injections Car(Gr) — GT and Gg — GT into GT [cf. Corollary
5.15, (iv)].

Proof. First, we verify assertion (i). Since K is AVKF, it follows from Corollary
6.5 that the closed subgroup G C GT satisfies the ArBC-property. Next,
since K is TKND, it follows immediately from the various definitions involved
that the closed subgroup Gx C GT satisfies condition (i) of Definition 5.12.
Moreover, since K is TKND-AVKF, it follows immediately from Lemma 6.7,
(i), (ii), (iii), together with the various definitions involved, that the closed
subgroup Gx C GT satisfies condition (ii) of Definition 5.12. On the other
hand, since K is AVKF, it follows immediately from Lemma 6.7, (ii), together
with the various definitions involved, that the function fields of finite ramified
Galois coverings of IP’}@ i.e., the projective line over Q] determine a family

{Kn+ € Lyt brcn

of subsets as in Definition 5.12, (iii). Finally, it follows immediately from the
various definitions involved that condition (iv) of Definition 5.12 holds. Thus,
we conclude that the closed subgroup G C GT satisfies the AA-property. This
completes the proof of assertion (i). Assertion (ii) follows immediately from
assertion (i), together with Theorem 5.15, (iii), (iv). This completes the proof
of Theorem 6.8. O

Remark 6.8.1. Theorem 6.8, (i), may be regarded as a generalization of Remark
5.12.1 [cf. Remark 6.6.2]. In this context, we observe that the proof of Theorem
6.8, (i), (ii), can be simplified considerably in the case where K is assumed to be
Kummer-faithful, in which case one may combine the techniques of [AbsTopIII],
Theorem 1.11, or [Hsh1], Theorem A, with the combinatorial approach to Belyi
cuspidalizations developed in §3 of the present paper.

Corollary 6.9 (Semi-absolute Grothendieck Conjecture-type result over

TKND-AVKF-fields for tripods). Let n be an integer > 2; K, L C Q

TKND-AVKF-fields. Write Xx < PL\{0,1,00}; X1 % P1\{0,1,00}; (Xk)n

(respectively, (X1,)n) for the n-th configuration space associated to Xy (respec-
tiely, Xr1); Gk def Gal(Q/K) (respectively, Gy, et Gal(Q/L));

OUt(H(XK)"/GK,H(XL),L/GL)

for the set of outer isomorphisms I x ). = I x,), that induce outer isomor-
phisms G = Gr. Then the natural map

Isom((Xx)n, (X1)n) — Out(Il(xy), /Gr: L (x,),/GL)

1s bijective.

92



Proof. Write X def IP}@\{O, 1,00}; X, for the n-th configuration space associated
to X. Let 0 € OUt(H(XK),L/GKy H(XL)"/GL);

5- : H(XK)H :> H(XL)n

an isomorphism that lifts 0. Write o € Out(lLy,, ) for the outer automorphism

determined by the restriction of & to Ilx ; Ggal : G — G, for the isomorphism
induced by the isomorphism 6. Thus, it follows immediately from the various
definitions involved that there exists a commutative diagram

Gx — Out(Ily,)

&GMJ/Z L”@l?
G, —— Out(Hxn),

where the horizontal arrows denote the natural outer representations; the right-
hand vertical arrow denotes the automorphism log obtained by conjugating by
og- Next, we verify the following assertion:

Claim 6.9.A: The isomorphism dga arises from an isomorphism Q=
Q@ that maps K C Q onto L C Q.

Indeed, [cf. the above commutative diagram| since the closed subgroups G C
GT and G, C GT satisfy the ArBC-property [cf. Corollary 6.5], the functorial
constructions of Corollary 4.5, together with the isomorphism of Corollary 6.5,
(i) [applied to Gk and Gp], determine a commutative diagram

J0Gal

~

GK = GK — GL = GL
m m m %

~

@&@GK;@GL_)@y

where the lower horizontal arrows are isomorphisms of fields. Thus, we obtain
the desired conclusion. This completes the proof of Claim 6.9.A.

Now it follows from Claim 6.9.A that we may assume without loss of gener-
ality that K = L C Q. Next, it follows from Theorem 6.8, (ii), together with
the various definitions involved, that

Ner(Gr) € Car(Gk) C Go.

In particular, we conclude that Ngr(Gk)/Grx = Ngo,(Gk)/Gk. Note that
since Iy, is center-free [cf. [MT], Proposition 2.2, (ii)], there exists [cf. the
above commutative diagram involving Lg@} a natural isomorphism

OUt(H(XK)n/GK) = NOut(Hxn)(GK)/GK;

where Out(Il(x,),/Gk) denotes the set of outer automorphisms of IT(x,,
that induce outer automorphisms of G . In particular, o € Out(Il(x,), /Gk)
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determines an element of

Nounix, ) (Gk)/Gr = Notxs,,s(Gr)/GK
= (Ner(Gk)/GKk) X Sn+s

[cf. the first display of [CbGT], Corollary C]. Thus, in light of the natural
isomorphism
Aut(K) = Ng,(Gk)/Gx = Nar(Gk) /G,

we conclude that the natural group homomorphism
Aut((XK)n) — OU-t(H(XK)n/GK)

is surjective, and [by considering the various fiber subgroups of Ilx, and cusp-
idal inertia subgroups of IIx] that any element o € Aut((Xg),) in the kernel
of this group homomorphism is K -linear and compatible with the identity auto-
morphism of Xy relative to any of the n + 3 generalized projection morphisms
(XK)n — Xk [cf. [CbGT], Definition 2.1, (i)]. But this implies that any such
a is equal to the identity automorphism of (X ),. This completes the proof of
Corollary 6.9. O

Remark 6.9.1. Note that Corollary 6.9 [cf. the final portion of the proof of
Corollary 6.9], together with the well-known commensurable terminality of Gg,
in Gg [cf., e.g., [AbsAnab], Theorem 1.1.1, (i)] gives a new proof of the equalities

Car(Go) = Gg, Car(Gg,) = G,

hence also, by applying the well-known slimness of Gg [cf., e.g., [AbsAnab],
Theorem 1.1.1, (ii)], the equality

Z°°(GT) = {1}.

In particular, Corollary 6.9 yields a purely combinatorial/group-theoretic proof
of the portion of [CbGT], Corollary C, concerning “Z'°¢(Out(IL,))” [in the no-
tation of loc. cit., where we take“¥” to be Primes] that does not depend on
the proofs of the Grothendieck Conjecture for hyperbolic curves over number
fields given in [LocAn], Theorem A; [Tama], Theorem 0.4 [cf. the discussion of
Remark 3.1.1].

Theorem 6.10 (Semi-absolute Grothendieck Conjecture-type result
over TKND-AVKF-fields for arbitrary hyperbolic curves). Let (m,n)
be a pair of positive integers; K,L C Q TKND-AVKF-fields; X (respectively,
Y1) a hyperbolic curve over K (respectively, L). Write (gx,rx) (respectively,
(gy,ry)) for the type [i.e., genus and degree of the divisor of marked points] of
Xk (respectively, Y1, ); (XK)m (respectively, (Y1,)n) for the m-th (respectively,
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n-th) configuration space associated to X (respectively, Yr,); Gx def Gal(Q/K)
(respectively, G, f Gal(Q/L));

Out(H(XK)m/GK’ H(YL)n/GL)

or the set of outer isomorphisms Il x S Iy, that induce outer isomor-
( K)m ( L)

n

phisms between G and Gr. Then the following hold:
(i) Suppose that

em>4orn>4ifrx =0 orry =0;
em>3o0rn>3ifrx #0 orry #0.

Then the outer isomorphism
Gk = Gy
induced by any outer isomorphism € Out(Il x ), /G, Uy,),/GL) arises
from a field isomorphism K = L.
(ii) Suppose that

e m>2o0rn>2;

e gx =0 orgy =0.
Then the natural map

Isom((X s )m, (Y£)n) — Out(Iix,),. /Gx, v,y /GL)
is bijective.
Proof. Write

def

LIPLA{0,1,00}; Z1 2 PLV{0,1,00);

.ZK:

e X X xx QY YV, %, Q 2% Zk xx Q=27 x1, @

For each positive integer ¢, write

e X; (respectively, Y;, Z;) for the i-th configuration space associated to X
(respectively, YV, Z).

Note that, to verify assertions (i), (ii), it follows immediately from the various
definitions involved that we may assume without loss of generality that

Out(H(XK)m/GK7 H(YL)H/GL) # @
Thus, we conclude from [CbGT], Theorem A, (i), that

m:nZZ, gx = 9v, rx =Ty.
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Let 0 € OUt(H(XK)n/GK;H(YL)n/GL)§
a’ : H(XK)n :) H(Yb)n

an isomorphism that lifts o. Write o : IIx,, 5 Ily, for the outer isomorphism

determined by the restriction of & to Ilx ; Ggal : G — G, for the isomorphism
induced by the isomorphism &.

Next, we verify assertion (i). Note that m = n > 3. Let H‘;pd C Iy,
(respectively, Hg,tpd C Ily,) be a S-central {1, 2, 8}-tripod of Iy, (respectively,
Ily,) [cf. [CbTpII], Definition 3.7, (ii)]. Then since m = n, gx = gy, and
rx = ry, it follows immediately from [CbGT], Corollary B; [CbTpII], The-
orem A, (ii); [CbTplII], Theorem C, (ii); the discussion of [CbTpll], Remark
4.14.1, that, after possibly replacing o by the composite of o with an element
€ Out(Il(x,, /Gk,(xy),/GK) that arises from an element of the symmetric
group “S,-" of [CbGT], Corollary B, we may assume without loss of generality
that

* 0y induces bijections between the respective sets of fiber subgroups and
inertia subgroups;

e the outer isomorphism Ily, — Iy, induced by og determines an outer

is0morphism cipd : H‘;pd 5 Hg’,tpd;
e there exists a commutative diagram of profinite groups

Out™“(IIx, ) — Out(IT5%PY)

K g

Out¥“(Ily, ) — Out (IT5PY),

where the vertical arrows denote the isomorphisms induced by the outer
isomorphisms g and ocipa, and T'x and Ty denote the respective tripod
homomorphisms.

. . . tpd tpd . . . ~ tpd
Here, we identify I1; with ISP, TIYPC, via outer isomorphisms 11z — II5PC,

In; = Hg}pd that arise from the respective &3-torsors of scheme-theoretic iso-

morphisms of tripods over Q in such a way that

~

e the outer automorphism oz : Iz = ngd =5 H(;,tpd & 11y obtained by
conjugating ocipq by these identifying outer isomorphisms determines an
element € GT C Out(Ily)

[cf. [CbTplII], Theorem C, (iv), together with our assumptions on m = n].
Moreover, it follows immediately [again from [CbTpll], Theorem C, (iv), to-
gether with our assumptions on m = n| that

e the images of T'x and Ty are contained in GT C Out(Ilz).
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In particular, the above commutative diagram, together with the natural outer
representations G — Out"“(Ilx, ), G — Out"“(Ily, ), determines a commu-
tative diagram of profinite groups

Gxg —— GT

&Galll UZJ/Z

G, —— GT,

where the right-hand vertical arrow denotes the inner automorphism obtained
by conjugating by oz; the horizontal arrows denote the natural injections. Ob-
serve that since Iz, is center-free [cf. [MT], Proposition 2.2, (ii)], this last
commutative diagram determines an outer isomorphism IIz,), = II(z,), that
lies over G, between the second configuration spaces (Zx )2, (Z1,)2 associated
to Zi, Zr, respectively. Thus, we conclude from Corollary 6.9 that the outer
isomorphism determined by Gga : Gk — G, arises from a field isomorphism
K = L. This completes the proof of assertion (i).

Next, we verify assertion (ii). First, it follows from a similar argument to the
argument applied in the final portion of the proof of Corollary 6.9 [after possibly
passing to suitable finite Galois extensions of K and L and, if rx = ry > 4,
applying Corollary 2.2] that the natural map

Isom((X s )n, (Y£)n) — Out(l(x,), /Gx, 1y, /GL)

is injective. Thus, it suffices to prove that this map is surjective. We begin by
observing that, by applying the injectivity that has already been verified, we may
pass to suitable finite Galois extensions of K and L and apply Galois descent.
In particular, we may assume without loss of generality that every cusp of X
(respectively, Y') is K-rational (respectively, L-rational). On the other hand,
since gx = gy = 0, it suffices to consider the case where rxy = ry > 4 [cf.
Corollary 6.9].
Next, we verify the following assertion:

Claim 6.10.A: There exists an isomorphism of schemes X ~ Y.

Indeed, observe that it follows from Theorem 2.1 [cf. our assumption that
rx = ry > 4] that there exist open immersions Xy < Zg, Yy, < Zj, over
K, L, respectively, which, together with &, determine a Iz -outer isomorphism
oz, Uiz, = Il z,), that lies over the isomorphism Gga1 and fizes the cusps
of Z. Thus, by applying Corollary 6.9 [cf. also the final portion of the proof of
Corollary 6.9], we may assume without loss of generality that

e K =1;
® J@a is the identity automorphism;

® 0z, Is the identity IIz, -outer automorphism.
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In particular, since g induces a bijection between the respective sets of fiber
subgroups and inertia subgroups [cf. Corollary 2.2; the discussion of [CbTpll],
Remark 4.14.1], ¢ determines a Ily-outer isomorphism oy : x, — Iy, [cf.
[CbTpI], Theorem A, (i)] such that

e 0 lies over G;

e o induces a bijection between the respective sets of cuspidal inertia sub-
groups.

Thus, we conclude from the fact that K satisfies the ISC-property [cf. Proposi-
tion 6.4], applied to Zg [cf. the proof of Lemma 5.4, (i)], that there exists an
isomorphism X = Y over K. This completes the proof of Claim 6.10.A.

In summary, it follows formally from Claim 6.10.A, together with the above
discussion, that we may assume without loss of generality that

.K:L,XKZYK,

e 7 is an automorphism of Il x ), that lies over the identity automorphism
of GK;

e the Iz, -outer automorphism oz, : Il 7, = I(z,), [induced by & and
the open immersion Xy <« Zi over K| is the identity 11y, -outer auto-
morphism;

e the outer automorphism o : Ilx, = Iy, [determined by &] induces the
identity automorphism on the set of fiber subgroups;

e the IIy-outer automorphism o : Ilx, — Ilx, [determined by &] induces
the identity automorphism on the set of conjugacy classes of cuspidal iner-
tia subgroups of Ilx [cf. the discussion above of the ISC-property applied
to ZK]

Thus, if we regard G as a subgroup of OutgF(l_[Xn)C“Sp via the natural in-
jection G < Outs¥ (Ilx, )"P [cf. [CbTpI], Theorem A, (i), (ii)], then og €
ZoutgF(HXn)cusp (GK) Write

B € Zouwer 11y, ) (GK)

for the element determined by oz via the natural injection Out®" (Il x, )ousP <
Outs¥ (Il x, )P [cf. [CbTpII], Theorem A, (i)];

h s Out®F (I, )°"P — OuteF (I1,, )P

for the natural homomorphism induced by the natural open immersion Xo < Z5
[cf. Theorem 2.1]. Then it follows immediately from our assumption that oz :
2,y — Iz, is the identity I1z, -outer automorphism that h(3) = 1. Thus,
we conclude from Theorem 3.6 [where we apply [NCBel], Corollary 1.1, and we
take “V C W” to be the open immersion X < Z in the above discussion],

98



together with Proposition 6.4, that 8 = 1, hence that og = 1. Finally, since
Iy, is center-free [cf. [MT], Proposition 2.2, (ii)], it holds that & is an inner
automorphism, hence that ¢ = 1. Thus, we obtain the desired surjectivity. This
completes the proof of assertion (ii), hence of Theorem 6.10. O

Remark 6.10.1. In the notation of Theorem 6.10, write
Out(H(XK)‘m ? H(YL)n)

for the set of outer isomorphisms Iy, = Iy, ), Suppose that Gk and G
are very elastic [cf. [AbsTopl|, Definition 1.1, (ii)]. Then since IIx, and Ily,
are topologically finitely generated [cf. [MT], Proposition 2.2, (ii)], it follows
formally that

Out(I(x,y,, yy),) = Ot x ), /Gr, Uiy, /GL),

i.e., that the “absolute version” of Theorem 6.10 holds.

Remark 6.10.2. In the notation of Theorem 6.10, suppose that K and L arise
as fields “L” of the sort discussed in Proposition 6.3, (i), (ii) [cf. Remark 6.6.3].
Suppose, further, that K and L are abelian extensions of number fields [cf., e.g.,
the field “F - Q" of Proposition 6.3, (i); the field “M” of Remark 6.3.3]. Then
K and L are very elastic [cf. [FJ], §6.2; [FJ], Theorem 13.4.2; [FJ], Theorem
16.11.3; [Mi], Theorem 2.1]. In particular, it follows immediately from Remark
6.10.1 that the absolute version of Theorem 6.10 holds.

References

[Belyi] G. V. Belyi, On Galois extensions of a maximal cyclotomic field, Izv.
Akad. Nauk SSSR Ser. Mat. 43:2 (1979), pp. 269-276; English transl. in
Math. USSR-Izv. 14 (1980), pp. 247-256.

[FJ] M. Fried and M. Jarden, Field arithmetic (Second Edition), Ergebnisse der
Mathematik und ihrer Grenzgebiete 3. Folge, A Series of Modern Surveys
in Mathematics 11, Springer-Verlag (2005).

[Hsh1] Y. Hoshi, On the Grothendieck conjecture for affine hyperbolic curves
over Kummer-faithful fields, Kyushu J. Math. 71 (2017), pp. 1-29.

[Hsh2] Y. Hoshi, The absolute anabelian geometry of quasi-tripods, Kyoto J.
Math. 62 (2022), pp. 179-224.

[CbGT] Y. Hoshi, A. Minamide, and S. Mochizuki, Group-theoreticity of
numerical invariants and distinguished subgroups of configuration space
groups, Kodai Math. J. 45 (2022), pp. 295-348.

99



[CbTpI] Y. Hoshi and S. Mochizuki, Topics surrounding the combinatorial an-
abelian geometry of hyperbolic curves I: Inertia groups and profinite Dehn
twists, Galois-Teichmiiller Theory and Arithmetic Geometry, Adv. Stud.
Pure Math. 63, Math. Soc. Japan, 2012, pp. 659-811.

[CbTpIT] Y. Hoshi and S. Mochizuki, Topics surrounding the combinatorial an-
abelian geometry of hyperbolic curves II: Tripods and combinatorial cusp-
idalization, Lecture Notes in Mathematics 2299, Springer-Verlag (2022).

[KLR] N. Katz and S. Lang, Finiteness theorems in geometric class field theory,
with an appendix by Kenneth A. Ribet, Enseign. Math. (2) 27 (1981), pp.
285-319.

[Lang] S.Lang, Fundamentals of Diophantine geometry, Springer-Verlag (1983).

[Mi] A. Minamide, Indecomposability of various profinite groups arising from
hyperbolic curves, Okayama Math. J. 60 (2018), pp. 175-208.

[LocAn] S. Mochizuki, The local pro-p anabelian geometry of curves, Invent.
Math. 138 (1999), pp. 319-423.

[NCBel] S. Mochizuki, Noncritical Belyi Maps, Math. J. Okayama Univ. 46
(2004), pp. 105-113.

[AbsAnab] S. Mochizuki, The absolute anabelian geometry of hyperbolic curves,
Galois Theory and Modular Forms, Kluwer Academic Publishers (2004),
pp. 77-122.

[AnabTop| S. Mochizuki, Topics surrounding the anabelian geometry of hyper-
bolic curves, Galois groups and fundamental groups, Math. Sci. Res. Inst.
Publ. 41, Cambridge Univ. Press. (2003), pp. 119-165.

[CmbGC] S. Mochizuki, A combinatorial version of the Grothendieck conjec-
ture, Tohoku Math. J. 59 (2007), pp. 455-479.

[AbsCsp| S. Mochizuki, Absolute anabelian cuspidalizations of proper hyper-
bolic curves, J. Math. Kyoto Univ. 47 (2007), pp. 451-539.

[CmbCsp] S. Mochizuki, On the combinatorial cuspidalization of hyperbolic
curves, Osaka J. Math. 47 (2010), pp. 651-715.

[AbsToplI] S. Mochizuki, Topics in absolute anabelian geometry I: Generalities,
J. Math. Sci. Univ. Tokyo 19 (2012), pp. 139-242.

[AbsToplI] S. Mochizuki, Topics in absolute anabelian geometry II: Decompo-
sition groups and endomorphisms, J. Math. Sci. Univ. Tokyo 20 (2013),
pp. 171-269.

[AbsTopIII] S. Mochizuki, Topics in absolute anabelian geometry III: Global
reconstruction algorithms, J. Math. Sci. Univ. Tokyo 22 (2015), pp. 939—
1156.

100



[MT] S. Mochizuki and A. Tamagawa, The algebraic and anabelian geometry
of configuration spaces, Hokkaido Math. J. 37 (2008), pp. 75-131.

[Moon] H. Moon, On the Mordell-Weil groups of Jacobians of hyperelliptic
curves over certain elementary abelian 2-extensions, Kyungpook Math. J.
49 (2009), pp. 419-424.

[Mumf] D. Mumford, Abelian Varieties, Oxford Univ. Press (1974).

[NSW] J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of number fields,
Grundlehren der Mathematischen Wissenschaften 323, Springer-Verlag
(2000).

[Tama] A. Tamagawa, The Grothendieck conjecture for affine curves, Compo-
sitio Math. 109 (1997), pp. 135-194.

sjm| S. Tsujimura, Combinatorial Belyl cuspidalization and arithmetic sub-

Tsj S. Tsuji Combi ial Belyi idalizati d arith i b
quotients of the Grothendieck-Teichmiiller group, Publ. Res. Inst. Math.
Seci. 56 (2020), pp. 779-829.

(Yuichiro Hoshi) Research Institute for Mathematical Sciences, Kyoto Uni-
versity, Kyoto 606-8502, Japan
Email address: yuichiro@kurims.kyoto-u.ac.jp

(Shinichi Mochizuki) Research Institute for Mathematical Sciences, Kyoto
University, Kyoto 606-8502, Japan
Email address: motizuki@kurims.kyoto-u.ac.jp

(Shota Tsujimura) Research Institute for Mathematical Sciences, Kyoto Uni-

versity, Kyoto 606-8502, Japan
Email address: stsuji@kurims.kyoto-u.ac.jp

101



