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§1. Hodge-Arakelov-theoretic Motivation

We begin with a concrete argument. Suppose that h ∈ R≥0 is a quantity
that we wish to bound from above, and that, for some integer N ≥ 2, we
know that the equality (a sort of “qualitative version” of ‘a ∈ a’ !)

N · h
(

def
= h + h + . . . + h

)
= h

holds. (Note here the symmetries (i.e., LHS only; LHS ∪ RHS) of the
various h’s!) Then an easy algebraic manipulation shows that

(N − 1) · h = 0, i.e., h = 0.

An easy variant of this argument involves a “relatively small” constant
C ∈ R for which the inequality

N · h ≤ h+ C

holds; this inequality implies that

(N − 1) · h ≤ C, i.e., h ≤ 1
N−1 · C

— that is to say, that h can indeed be bounded from above, as desired.

————————————————————————————————

Next, we consider elliptic curves. For l a prime number, the module

of l-torsion points associated to a Tate curve E
def
= Gm/qZ (over, say, a

p-adic field or C) fits into a natural exact sequence:

0 −→ μl −→ E[l] −→ Z/lZ −→ 0

That is to say, one has canonical objects as follows:

a “multiplicative subspace” μl ⊆ E[l] and “generators” ±1 ∈ Z/lZ

In the following, we fix an elliptic curve E over a number field F and a
prime number l ≥ 5. Also, we suppose that E has stable reduction at all
finite places of F . Then, in general, E[l] does not admit

a global “multiplicative subspace” and “generators”

that coincide with the above canonical “multiplicative subspace” and “gen-
erators” at all finite places where E has bad multiplicative reduction!
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Nevertheless, let us suppose (!!) that such global objects do in fact ex-
ist. Then, if we denote by E → E∗ the isogeny obtained by forming the
quotient of E by the “global multiplicative subspace”, then, at each
finite prime of bad multiplicative reduction, the respective q-parameters
satisfy the following relation:

qlE = qE∗

If we write log(qE), log(qE∗) for the arithmetic degrees ∈ R determined
by these q-parameters, then the above relation takes on the following form:

l · log(qE) = log(qE∗) ∈ R

On the other hand, if we denote the respective heights of the elliptic curves
by htE , htE∗ ∈ R, then we may conclude that

ht(−) ≈ 1
6 · log(q(−))

(where “≈” means “up to a discrepancy bounded by a constant”). Moreover,
by the famous computation concerning differentials due to Faltings
(1983), one knows that:

htE∗ � htE + log(l)

Thus, just as in the argument given prior to the present discussion of elliptic
curves, we conclude that

l · htE � htE + log(l), i.e., htE � 1
l−1 · log(l) � constant

— that is to say, that the height htE of the elliptic curve E can be bounded
from above, and hence (under suitable hypotheses) that there are only
finitely many isomorphism classes of elliptic curves E that admit a “global
multiplicative subspace”.

Ultimately, we would like to generalize the above argument to the case of
general elliptic curves for which “global multiplicative subspaces”, etc.
do not necessarily exist. But, before doing so, we would like to consider an
approach that is slightly different from the above argument, still under the
(unrealistic!) assumption that such global objects do indeed exist.
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To this end, it is necessary to “review” the Fundamental Theorem of
Hodge-Arakelov Theory— i.e., a sort of “discrete polynom. version”
of the classical Gaussian integral

‘vol.(canon. radial bump)’ =
∫∞
−∞ e−x2

dx =
√
π =

√
‘ang. period’

— under this assumption that such global objects do indeed exist.

Models of “discrete versions”

df(x)
dx = lim

δ→0

f(x+δ)−f(x)
δ � f(X + 1)− f(X);

the following ‘isom.’ concerning polynomials with Z coeffs. of degree < d:

Z[X]<d ‘
∼→ ’

d−1⊕
0

Z

(cf. [Hartshorne], I, §7!) In Hodge-Arakelov theory (≈ late 1990’s), one con-
structs, in the spirit of these models, discrete versions of the analysis =
‘∂, ∂, Green’s fns., etc.’ applied in classical Arakelov theory at arch. primes.

The Fundamental Theorem of Hodge-Arakelov Theory — i.e., con-
cretely speaking, the isom. obtained by

restricting the theta fn. and its derivatives to the l-torsion pts.

may be formulated as follows:

Γ(E†,L)<l ∼→
l�⊕

j=−l�
qj

2 · OF

— where
· E† → E is the “universal vectorial extension” of E;

· “< l” is the “relative degree” w.r.t. this extension; l�
def
= (l − 1)/2;

· L is a line bundle that arises from a (nontrivial) 2-torsion point;

· “q” is the q-parameter at bad places of F ; q
def
= q1/2l;

· the LHS admits a Hodge filtration F−i s.t. F−i/F−i+1 is (roughly)

∼→ ω
⊗(−i)
E

(i = 0, 1, . . . , l − 1; ωE = cotang. bun. at the origin (≈ ‘d log(U)’) );

· the RHS admits a natural Galois action compatible with “
⊕

”.
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This isom. is, a priori, only defined/F , but is in fact (essentially) compa-
tible with the natural integral structures/metrics at all places of F .

A similar isom. may be considered over the moduli stack of ell. curves.
The proof of such an isom. is based on a computation (where log(q)
denotes the divisor associated to the q-parameter), which shows that the
degrees [−] of the vector bundles on either side of the isom. coincide:

1
l · LHS ≈ − 1

l ·
∑l−1

i=0 i · [ωE ] ≈ − l
2 · [ωE ]

1
l · RHS ≈ − 1

l2 ·∑l�

j=1 j2 · [log(q)] ≈ − l
24 · [log(q)] = − l

2 · [ωE ]

On the other hand, returning to the situation over number fields, since Fi

is not compatible with the above direct sum decomposition, it follows
that, by projecting to the factors of this direct sum decomposition, one may
construct a sort of relative of the so-called “arithmetic Kodaira-Spencer
morphism”, i.e., for (most) j, a (nonzero) morphism of line bundles:

(OF ≈) F0 ↪→ qj
2 · OF .

Since, moreover, the arithmetic degree degarith(F
0) ≈ 0, it follows that, if

we denote the height determined by the logarithmic differentials Ωlog
M |E

associated to the moduli stack of elliptic curves by htE
def
= 2 ·degarith(ωE) =

degarith(Ω
log
M |E) and write log(q) for the arithmetic divisor associated to the

q-parameter, then we obtain an inequality (!) as follows:
1
6 · degarith(log(q)) = htE < constant

In fact, of course, since the global mult. subspace and generators which
play an essential role in the above argument do not, in general, exist, this
argument cannot be applied immediately in its present form.

This state of affairs motivates the following approach, which may appear
somewhat far-fetched at first glance! Suppose that the assignment{

qj
2
}
j=1,... ,l�


→ q

somehow determines an automorphism of the number field F ! Such an
“automorphism” necessarily preserves degrees of arith. line bundles.
Thus, since the absolute value of the degree of the RHS of the above as-
signment is “small” by comparison to the absolute value of the (average!)
degree of the LHS, we thus conclude that a similar inequality (!) holds:

1
6 · degarith(log(q)) = htE < constant

Of course, such an automorphism of a NF does not in fact exist!!
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On the other hand, what happens if we regard the “{qj2}” on the LHS and

the “q” on the RHS as belonging to distinct copies of “conventional ring/

scheme theory” = “arithmetic holomorphic structures”, and we think
of the assignment under consideration{

qj
2
}
j=1,... ,l�


→ q

— i.e., which may be regarded as a sort of “tautological solution” to the

“obstruction to applying HA theory to diophantine geometry”

— as a sort of quasiconformal map between Riemann surfaces equipped
with distinct holomorphic structures?

Remark: The method of first preparing a “supplementary stage” on
which a “taut. solution” holds, then proceeding to compare this supple-
mentary stage with the “original stage” (i.e., isomorphic? almost isom’ic?)
is a standard tool that is frequently applied in arithmetic geometry, or,
indeed, in mathematics in general. Put another way, this method consists
of allowing ourselves first to acquire the “taut. solution” for free and then
proceeding to calculate the costs incurred as a result of this acquisition.

Classical examples of “taut. solutions”: The mechanism (which dates
back to ancient civilizations!) whereby one applies borrowed assets to
conduct business, which leads to the creation of new assets that render
it possible to reimburse the borrowed assets with interest. The intro-
duction of indeterminates and algebraic manipulations into a situa-
tion in which only addition, subtraction, multiplication, and division of
rational numbers are known. The introduction of abstract “fields” and
Galois groups into a situation in which only explicit formulas via radicals
for roots of equations of degree 2 to 4 are known.

That is to say, (returning to the above discussion of elliptic curves over num-
ber fields) this approach allows us to realize the assignment under consid-
eration, albeit at the cost of partially dismantling conventional ring/sch.
theory. On the other hand, this approach requires us

to compute just how much of a distortion occurs

as a result of dismantling = deforming conventional ring/scheme theory.
This vast computation is the content of IUTeich.
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In conclusion, at a concrete level, the “distortion” that occurs at the portion
labeled by the index j is (roughly)

≤ j · (log-diffF + log-condE).

In particular, by the exact same computation (i.e., of the “leading term”
of the average over j) as the computation discussed above in the case of the
moduli stack of elliptic curves, we obtain the inequality of the following
strong version of the so-called Szpiro Conjecture (⇐⇒ ABC Conj.):

1
6 · degarith(log(q)) = htE ≤ (1 + ε)(log-diffF + log-condE) + constant

Remark: The equality “N · h = h” considered above corresponds to

the “tautological solution” ⇐⇒ “N · hLHS = hRHS”

— i.e., where one distinguishes the LHS andRHS “h’s”. Once one allows
for the ensuing distortions, one may then identify these two “h’s” and
conclude that “N · h ≤ h+ C” ⇐⇒ the [strong] Szpiro Conj. inequality.

§2. Teichmüller-theoretic Deformations

Classical Teichmüller theory over C:

Relative to a canonical coordinate z = x+ iy (associated to a square differ-
ential) on the Riemann surface, Teich. deformations are given by

z 
→ ζ = ξ + iη = Kx+ iy

— where 1 < K < ∞ is the dilation factor.

Key point: one holomorphic dim., but two underlying real dims., of which
one is dilated/deformed, while the other is left fixed/undeformed!

p-adic Teichmüller theory:

· p-adic canonical liftings of a hyperbolic curve in positive characteristic
equipped with a nilpotent indigenous bundle
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· canonical Frobenius liftings over the ordinary locus of the moduli stack
of curves, as well as over the tautological curve — cf. the metric on the
Poincaré upper half-plane, Weil-Petersson metric in the theory/C.

Analogy betw. IUTeich and pTeich (cf. univ. ell. curve/P1\{0, 1,∞}!):
conventional scheme theory/Z ←→ scheme theory/Fp

number field (+ fin. many places) ←→ hyperbolic curve in pos. char.

once-punctured elliptic curve/NF ←→ nilpotent indigenous bundle

log-Θ-lattice ←→ p-adic canonical lifting + canonical Frob. lifting

The arithmetic case: addition and multiplication, cohom. dim.:

Regard the ring structure of rings such as Z as a

one-dimensional “arithmetic holomorphic structure”!

— which has two underlying combinatorial dimensions!

“addition” and “multiplication”

(Z,+) � (Z,×)

one combinatorial dim. one combinatorial dim.

— cf. the two cohomological dims. of the absolute Galois group of

· a (totally imaginary) number field F/Q < ∞,

· a p-adic local field k/Qp < ∞,

(Note: the pro-l-related portion of Gal(Qp/Qp) is ≈ Zl � Z×
l ),

as well as the two underlying real dims. of

· C×.

. . . . . . 
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Units and value groups:

In the case of a p-adic local field k/Qp < ∞, one may also think of these
two underlying combinatorial dimensions as follows:

O×
k ⊆ k× � k×/O×

k (∼= Z)

one combinatorial dim. one combinatorial dim.

— cf. the direct product decomp. in the complex case: C× = S1 × R>0.

In IUTeich, we shall deform the holom. str. of the number field by

dilating the value groups via the theta function, while

leaving the units undilated!

§3. The Log-theta-lattice

Noncommutative (!) 2-dim. diagram of Hodge theaters “•”:
2 dims. of the diagram ←→ 2 comb. dims. of a p-adic local field/ring!

...
...	⏐⏐ 	⏐⏐

. . . −→ • −→ • −→ . . .	⏐⏐ 	⏐⏐

. . . −→ • −→ • −→ . . .	⏐⏐ 	⏐⏐
...

...

Analogy between IUTeich and pTeich (cf. also the Witt vectors!):

• = a copy of scheme theory/Z ←→ a copy of scheme theory/Fp	⏐⏐ = log-link = gluing betw. two copies ←→ the Frob. mor. in pos. char.

−→ = Θ-link = gluing betw. two copies ←→
(
pn/pn+1 � pn+1/pn+2

)



10 SHINICHI MOCHIZUKI (RIMS, KYOTO UNIVERSITY)

This diagram may also be compared to the 2 comb. dims. of a ring:

−→ = Θ-link ←→ ‘×’ N≥1
∼= ⊕

p
pN ( =⇒ p1? p2? pλ1 (N � λ �= 0) ?)	⏐⏐ = log-link ←→ ‘×’ � ‘+’ ( =⇒ p1 = 1+ . . .+1 �= p2 = 1+ . . .+1 !!)

[Θ±ellNF-]Hodge theaters:

A “[Θ±ellNF-]Hodge theater” is a model of the conventional scheme-
theoretic arithmetic geometry surrounding an elliptic curve E over a
number field F . At a more concrete level, it is a complicated system of

abstract monoids and Galois groups/arith. fund. gps.

that arise naturally from E/F and its various localizations.

The principle that underlies this system: the system serves as
a bookkeeping apparatus for the l-tors. points that allows one
to simulate a global multiplicative subspace generators (cf. §1)!

� F�
l -, F

�±
l -sym’tries (where F�

l
def
= F×

l /{±1}, F�±
l

def
= Fl � {±1})

{±1}
�

(−l� < . . . < −1 < 0

< 1 < . . . < l�

)
⇒

[
1 < . . .

< l�

]
⇐

(
1 < . . .

< l�

)
⇓ ⇓

± → ±
↑ F

�±
l
� ↓

± ← ±

� → �

↑ F
�

l
� ↓

� ← �

. . . cf. ord. monodromy! . . . cf. s/sing.!

Hint that underlies the construction of this apparatus: structure of p-Hecke
correspondence special fiber; global multiplicative subspace on the
moduli stack of elliptic curves over Qp, as in p-adic Hodge theory

(p-adic Tate module)⊗ (p-adic ring of fns.)

... � “combinatorial rearrangement” of basepoints by means
of a mysterious ‘⊗’ !

←→ the absolute anabelian geometry applied in a Hodge theater!
= “invariant” w.r.t. two distinct roles played by ‘ring of fns.’
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log-Link:

At nonarchimedean v of the number field F , the ring structures on
either side of the log-link are related by a non-ring-homomorphism (!)

logv : O×
k

→ k

— where k is an algebraic closure of k
def
= Fv; Gv

def
= Gal(k/k).

Key point: The log-link is compatible with the isomorphism

Πv
∼→ Πv

between the arithmetic fundamental groups Πv on either side of the log-link,
relative to the natural actions via Πv � Gv. Moreover, if one allows v to
vary, the log-link is also compatible with the action of the global absolute
Galois groups. Finally, at archimedean v of F , one has an analogous
theory.

Θ-Link:

At bad nonarchimedean v of the number field F , the ring structures
on either side of the Θ-link are related by a non-ring-homomorphism (!)

O×
k

∼→ O×
k
; (Θ|l-tors)N =

{
qj

2
}N

j=1,... ,l�

∼→ qN

— where k is an algebraic closure of k
def
= Fv; Gv

def
= Gal(k/k).

Key point: The Θ-link is compatible with the isomorphism

Gv
∼→ Gv

between the Galois groups Gv on either side of the Θ-link, relative to the
natural actions on O×

k
. At good nonarchimedean/archimedean v of

F , one can give an analogous definition, by applying the product formula.

Remark: It is only possible to define the “walls/barriers” (i.e., from the
point of view of the ring structure of conventional ring/scheme theory)
constituted by the log-, Θ-links by working with

abstract monoids/...

— i.e., of the sort that appear in a Hodge theater!
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Remark: By contrast, the objects that appear in the étale-picture (cf.
the diagram below!) — i.e., the portion of the log-theta-lattice constituted
by the

arithmetic fundamental groups/Galois groups
— have the power (via Galois-equivariance!) to

slip through these “walls”!
Various versions of “Kummer theory” — which allow us to relate the
following two types of mathematical objects:

abstract monoids Frobenius-like objects and
arith. fund. gps./Galois groups = étale-like objects

— play a very important role throughout IUTeich! Moreover, the transition

Frobenius-like � étale-like

may be regarded as a global analogue over number fields of the com-
putation — i.e., via “cartesian coords. � polar coords.” — of the
classical Gaussian integral∫ ∞

−∞
e−x2

dx =
√
π

(
= “weight 1

2”
)

�∈ Q · πZ � ζ(n ∈ 2 · Z) !

Indeed, the miraculous (!) coordinate transformation e−r2 � u

2 · (∫ e−x2

dx)2 = 2 · ∫ ∫
e−x2−y2

dx dy =
∫ ∫

e−r2 · 2rdr dθ

=
∫ ∫

d(e−r2) dθ =
∫ ∫

du dθ

that appears in this computation is quite similar in form to the Θ-link!

arith. hol.
str. Πv

. . .
|

. . .

arith.
hol. str.

Πv

. . .

–
mono-
analytic
core Gv

|

–
arith.
hol. str.

Πv

. . .

arith. hol.
str. Πv
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Main objects to which Kummer theory is applied (cf. LHS of Θ-link!):

(a) gp. of units O×
k

� Ẑ× (nonarch. v)

(b) values of theta fn. Θ|l-tors =
{
qj

2
}
j=1,... ,l�

(bad nonarch. v)

(c) a sort of “realification” of the number field F (⊇ F×)
Main focus of the theory is to decouple the units/value gps. and thus to

protect the cyclotomes (∼= Ẑ(1)) contained in the monoids related to (b),

(c) from the indeterminacy “ � Ẑ×”, i.e., cyclotomic rigidity!

Case of (b): theory of étale theta fn. =⇒ decoupling + cyc. rig.
Case of (c): elem. alg. no. theory =⇒ decoupling + cyc. rig.

The Kummer theory of (b), (c) is well-suited to the resp. portions of a
Hodge theater where the symmetries act (cf. the chart below)!

This state of affairs closely resembles the (well-known) elementary theory
of the “functions” associated to the various symmetries of the classi-
cal upper half-plane H (cf. the chart below)! Such symms. underlie the
alternative proof of the geometric Szpiro Conj. due to Bogomolov!

The classical Θ±ellNF-Hodge
upper half-plane H theaters in IUTch

(Cuspidal) z 
→ z + a, F�±
l -

add. symm. z 
→ −z + a (a ∈ R) symmetry

“Local fns.” transcendental Θ|l-tors
assoc. to function q

def
= e2πiz =

{
qj

2
}
j=1,... ,l�

add. symm.

(Nodal/toral) z 
→ z·cos(t)−sin(t)
z·sin(t)+cos(t) , F�

l -

mult. symm. z 
→ z·cos(t)+sin(t)
z·sin(t)−cos(t) (t ∈ R) symmetry

“Global fns.” rational algebraic representation of

assoc. to function w
def
= z−i

z+i elts. of no. fld. F

mult. symm. via Belyi maps
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In fact, this portion of IUTeich closely resembles, in many respects (cf. the
chart below!), Jacobi’s identity

θ(t) = t−1/2 · θ(1/t)
— which may be thought of as a sort of function-theoretic version of the
Gaussian integral that appeared in the discussion above — concerning
the classical theta function on the upper half-plane

θ(t) =
∞∑

n=−∞
e−πn2t.

IUTeich Theory of Jacobi’s identity

rigidity properties invariance of Gaussian distrib.
of étale theta fn. w.r.t. Fourier transform

the indeterminacy unit factor in Fourier transform

O×
k

� Ẑ× ∫
(−) · eit, t ∈ R

proof of rig. properties via proof of Fourier invariance via
quad’icity of theta gp. [−,−] quad’icity of exp. of Gauss. dist.

{
qj

2
}
j=1,... ,l�

Gaussian expansion of theta fn.

abs. anab. geom. applied to analytic continuation ∞ � 0,
rotation of �, � via log-link the rotation

(
0 1

−1 0

) ⇐⇒ t 
→ 1
t

local/global functoriality of analytic continuation to
abs. anab. algorithms, the entire upper half-plane
Belyi cuspidalization
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One way to interpret Jacobi’s identity

θ(t) = t−1/2 · θ(1/t)
concerning the classical theta function on the upper half-plane

θ(t) =
∞∑

n=−∞
e−πn2t

is as follows: the property of being representable, in a neighborhood of ∞,
by a series in which each nonconstant summand is a rapidly decreasing
function continues to hold — somewhat mysteriously! — even after
analytic continuation

∞ � 0!

This phenomenon corresponds to the global realization of the expression

“
{
qj

2
}
j=1,... ,l�

”

discussed in §1!

∞

０

Gaussian

Gaussian

θ
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§4. Inter-universality and Anabelian Geometry

Note that the log-, Θ-links are not compatible with the ring structures

logv : O×
k

→ k, (Θ|l-tors)N =
{
qj

2
}N

j=1,... ,l�

∼→ qN

in their domains and codomains, hence are not compatible, in a quite
essential way, with the scheme-theoretic “basepoints” and

Galois groups ⊆ Autfield(k)

that arise from ring homomorphisms! That is to say, when one passes
to the “opposite side” of the log-, Θ-links,

“Πv” and “Gv”

only make sense in their capacity as abstract topological groups (cf. the
outer autom. of absolute Galois groups induced by an autom. of a field)!

=⇒ As a consequence, in order to compute the relationship between the ring
structures in the domain and codomain of the log-, Θ-links, it is necessary to
apply anabelian geometry! At the level of previous papers by the author,
we derive the following Main Theorem by applying the results and theory
of

· Semi-graphs of Anabelioids · The Geometry of Frobenioids I, II

· The Étale Theta Function ... · Topics in Absolute Anab. Geo. III

concerning

absolute anabelian geometry and

various rigidity properties of the étale theta function.

Main Theorem One can give an explicit, algorithmic description,
up to mild indeterminacies, of the LHS of the Θ-link in terms of the “alien”
ring structure on the RHS of the Θ-link.

Interpretation: Even under circumstances where one is only linked by a
“narrow pipe” (i.e., such as an astronaut on a space vessel or miners work-
ing in an underground mine), it is possible to reconstruct and grasp the situ-
ation on the “other side” by making wise use of the limited information
available.
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Key points:

· the coricity (i.e., coric nature) of Gv � O×
k

!

· various versions of “Kummer theory”, which allow us to relate the
following two types of mathematical objects (cf. the latter portion of §3):

abstract monoids Frobenius-like objects and

arith. fund. gps./Galois groups = étale-like objects.

Here, we recall the analogy with the computation of theGaussian integral,
i.e., the decoupling of units/value gps.:

definition of log-, Θ-link, log-theta-lattice ←→ cartesian coords.

algorithmic description via abs. anab. geom. ←→ polar coords.

crucial rigidity of cyclotomes (∼= Ẑ(1)) ←→ coord. trans. via S1 �

the log-link plays an indispensable role in the context of realizing the action
on the “log-shell” = “additive container for multiplicative objects”

theta values
{
qj

2
}
j=1,... ,l�

� log(O×
k
) � F× ⊆ F number field

... [cf. Bogomolov!] but various technical difficulties arise as a conse-
quence of the noncommutativity of the log-theta-lattice.

=⇒ in the subsequent “volume computation”,
one only obtains an inequality (i.e., not an equality)!

By performing a volume computation, as discussed in §1, concerning the
output of the algorithms of the above Main Theorem, one obtains (cf. the
class field theory, p-adic Hodge theory, algebraic geom. related to
abelian vars., etc. that appear in Faltings’ pf. of the Mordell Conjecture!):

Corollary: The “[Strong] Szpiro Conj.” (⇐⇒ “ABC Conj.”).

htE ≤ (1 + ε)(log-diffF + log-condE) + constant

Here, we recall the arguments of §1: “N · hLHS = hRHS” ( ←→ Θ-link!),
“N · h ≤ h+ C” ( ←→ Main Theorem + volume computation)!
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This portion of the theory resembles, in many respects, the theory surround-
ing Jacobi’s identity, as discussed at the end of §3:

IUTeich Theory of Jacobi’s identity

changes of universe, i.e., changes of coordinates, i.e.,
labeling apparatus labeling apparatus

for sets for points of a space

computation of volume of computation via polar coordinates of

log-shell log(−) Gaussian integral
∞∫

−∞
e−x2

dx =
√
π

startling application to startling improvement in
diophantine geometry computational accuracy of

values of classical theta function

In fact, the “ε” that appeared in the above inequality admits an upper
bound of the following form:

(htE)
− 1

2 · log(htE)
Here, the “ 1

2” is reminiscent of the Riemann hypothesis. Indeed, just as

in the case of the Riemann hypothesis, this “ 1
2” may be thought of as a

phenomenon of

“weight 1/2”

(where the “weight” may be thought of as the “s” of the Riemann zeta
function ζ(s)), i.e., a phenomenon that concerns not integral powers of π,
but rather the square root of π:∫ ∞

−∞
e−x2

dx =
√
π
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In fact, the computation of this “ε” involves quadratic forms of the sort
that appear in the Gaussian integral and the theta function; computation of
the minimal value of such quadratic forms, i.e., of the roots of such quadratic

forms, then gives rise to “square roots”, i.e., to the quantity “(htE)
− 1

2 ”.

————————————————————————————————

Relative to the analogy with the classical theory concerning hyperbolic
curves over p-adic local fields and the geometry of Riemann surfaces over
C, the corresponding inequalities (which may be regarded as expressions of
“hyperbolicity”) concerning the “volume of a holomorphic structure”
computed from outside the holomorphic structure are as follows:

· the degree = (2g − 2)(1− p) ≤ 0 of the

“Hasse invariant =
1

p
· d(Frob. lift.)”

in pTeich,

· the Gauss-Bonnet Theorem for a hyperbolic Riemann surface S

0 > −
∫
S

(Poincaré metric) = 4π(1− g).

————————————————————————————————

Finally, I wish to point out another (more elementary) example of the
“spirit of inter-universal geometry” — i.e.,

“of an approach that yields nontrivial results in ‘combinatorial’
situations in which conventional scheme theory is not available,
by performing constructions that are motivated by conventional
scheme theory and thus allow one to approximate conventional
scheme theory to a substantial extent”

— namely,

combinatorial anabelian geometry

� various results concerning the GT group

to effect that the GT group satisfies analogous properties to GQ — i.e.,
without necessarily showing that it is ∼= GQ !


