ON THE ESSENTIAL LOGICAL STRUCTURE OF INTER-UNIVERSAL TEICHMÜLLER THEORY I, II, III, IV, V

Shinichi Mochizuki (RIMS, Kyoto University)
September 2021

$$
\begin{gathered}
\text { http://www.kurims.kyoto-u.ac.jp/~motizuki } \\
\text { "Travel and Lectures" }
\end{gathered}
$$

Parts I, II, III: Origins of IUT ([IUTchIII] $\rightsquigarrow[$ IUTchII $] \rightsquigarrow[$ IUTchI $]$!)

§1. Isogs. of ell. curves and global multipl. subspaces/canon. generators
§2. Gluings via Teichmüller dilations, inter-universality, and logical \wedge / \vee
$\S 3$. Symmetries/nonsymmetries and coricities of the log-theta-lattice
§4. Frobenius-like vs. étale-like strs. and Kummer-detachment indets.
§5. Conjugate synchronization and the str. of $\left(\Theta^{ \pm e l l} N F-\right)$ Hodge theaters §6. Multiradial representation and holomorphic hull

Parts IV, V: Technical and logical subtleties of IUT ([EssLgc], §3)

$\S 7$ RCS-redundancy, Frobenius-like/étale-like strs., and Θ-/log-links
§8. Chains of gluings/logical \wedge relations
§9. Poly-morphisms, descent to underlying strs., and inter-universality
§10. Closed loops via multiradial representations and holomorphic hulls
§1. Isogenies of elliptic curves and global multiplicative subspaces/canonical generators
(cf. [Alien], §2.3, §2.4; [ClsIUT], §1; [EssLgc], §3.2)

- A special case of Faltings' isogeny invariance of the height for elliptic curves

- First key point of proof. (invalid for isogenies by non-GMS subspaces!!)

(at primes of bad multiplicative reduction)

... cf. positive characteristic Frobenius morphism!
$\ldots \rightsquigarrow$ "Gaussian" values of theta functions in IUT $\ldots \rightsquigarrow$ need not only GMS. but also
$j=1, \ldots, \ell^{*}, \cdots e-1$ global canonical generators (GCG) (cf. §5)!
Second key point of proof:

$$
d \log (q)=\frac{d q}{q}(d) d \log (q)
$$

\ldots yields common (ct $(\wedge!)$ container (cf. ampleness of $\omega_{E}!$) for both elliptic curves!
$\ldots \rightsquigarrow \mathfrak{l o g}$-link, anabelian geometry in IUT

- One way to summarize IUT:
to generalize the above approach to bounding heights via theta functions + anabelian geometry
to the case of arbitrary elliptic curves by somehow "simulating" GMS + GCG!
§2. Gluing via Teichmüller dilations, inter-universality, and logical \wedge / \vee
(cf. [Alien], §2.11; [Alien], §3.3, (ii), (vi), (vii); [Alien], §3.11, (iv);
[EssLgc], Examples 2.4.5, 2.4.7, 3.1.1; [EssLgc], §3.3, §3.4, §3.8 §3.11; [ClsIUT], §3)
Naive approach to generalizing Frobenius aspect " $q^{l} \approx q$ ") of $\S 1$
-i.e., a situation in which, at the level of arithmetic fine bundles, one may act as if there exists a "Frobenius automorphism of the number field" $q \mapsto q^{l}$ hat preserves arithmetic degrees, while at the same time multiplying them by T(!):
for $N \geq 2$ an integer, p a prime number, glue via " $*$ " (cf. [Alien], §3.11, (iv); [EssLgc], Example 3.1.1; [EssLgc], §3.4):

not compatible with ring structures!! (with addition)
Ant (f, (d) *. but compatible with multiplicative structures,
actions of Galois groups as abstract groups!!
. . AND " \wedge " depends on distinct labels!!
\ldots ultimately, we want to delete labels (cf. §1!), but doing so naively yields - if one is to avoid giving rise to a contradiction a meaningless OR " \vee " indeterminacy!!

... in IUT, we would like to delete the labels in a somewhat more

> "constructive" (!) way!

- In IUT, we consider gluing via Θ-link, for l a prime number (cf. [Alien], §2.11; [Alien], §3.3, (ii), (vii); [EssLgc], §3.4, §3.8):

\ldots where , $l \geq 5$ a prime number; $l * \stackrel{\text { def }}{=} \frac{l-1}{2}$;
, $E\left(=E_{F}\right)$ is an elliptic curve over a number field F s.t. ... ;
- $E[l] \subseteq E$ subgroup scheme of l-torsion points; $K \stackrel{\text { def }}{=} F(E[l])$;
- j_{E} is the j-invariant of E, so $F_{\text {mod }} \stackrel{\text { def }}{=} \mathbb{Q}\left(j_{E}\right) \subseteq F$;
$\underline{\mathbb{V}} \subseteq \mathbb{V}(K)$ collection of valuations of K s.t....;

of number fields and mixed characteristic local fields, Colum. $=2$ topological dimension of \mathbb{C}^{\times}

$$
s^{2} \times \prod_{2}
$$

Concrete example of gluing
(cf. [EssLgc], Example 2.4.7):
the projective line as a gluing of

... cf. assertions of the RCS!

- Concrete example of gluing
(cf. [EssLgc], Example 3.3.1; [ClsIUT], §3; [Alien], §2.11): classical complex Teichmüller deformations
of holomorphic structure
... cf. two combinatorial/arithmetic dimensions of a ring!!
... cf. assertions of the RCS!
- In IUT, we consider not just Θ-link, but also the log-link, which is defined, roughly speaking, by considering the $\boldsymbol{p}_{\underline{v}}$-adit logarithm at each \underline{v}
(cf. [Alien], §3.3, (ii), (vi), Fig. 3.6; [EssLgc], §3.3, (InfH); [EssLgc], §3.11, (Θ ORInd), (logORInd), (Di/NDi)), where we write $p_{\underline{v}}$ for the residue characteristic of (nomarch.) \underline{v} :
apply same principle as above of label deletion via "saturation with all possibilities on either side of the link"
... but for Θ-link, this yields meaningless
(tOT $\operatorname{mad}^{2} 1 \mid$
... instead, consider "saturation" (logORImator log-link,
chit
 ... i.e., for invariants, "nondilated \Longleftrightarrow dilated" ... cf. proof of $\S 1$!!
- The entire log-theta-lattice and the "infinite H" portion that is actually used:

§3. Symmetries/nonsymmetries and coricities of the

 log-theta-lattice(cf. [Alien], §2.7, §2.8, §2.10, §3.2; [Alien], §3.3, (ii), (vi), (vii); [Alien], §3.6, (i); [EssLgc], §3.2, §3.3; ([IUAni2])

- Fundamental Question:

So how do we construct log-link invariants?

- Fundamental Observations:
Θ-link (i.e., " q " $\leftarrow: q$ " for some $N \geq 2$) and $\mathfrak{l o g}$-link (i.e., " p-adic logarithm" for some p) clearly satisfy the following:
(1) Θ-link, log-link are not compatible with the ring structures in their domains/codomains;
(2) O-link, log-link are not symmetric with respect to switching theit omansfedomains;
(3) log-link $\circ \Theta$-link $\neq \Theta$-link $\circ \mathfrak{l o g}-l i n k ;$
(4) $\mathfrak{l o g}-\operatorname{link} \circ \Theta-\operatorname{link} \neq \Theta-$ link

Frobenius-like gbjects: objets whose definition depends, apriari, on the coordinate $((n, m)) \in \mathbb{Z} \times \mathbb{Z}$ " of the $\left(\Theta^{ \pm e l l} N F\right.$-) Hodge theater at which they are defined (e.g., rings, monoids, etc. that do not map isomorphically via Θ-link, log-link)
Étale-like objects: arise from arithmetic (étale) fund. $\left\langle\zeta_{\text {groups }}^{\text {Y. ops }}\right.$
regarded as abstract topological gps. ...cf. inter-universality!
\Longrightarrow mono-anabelian absolute anabelian geometry may be applied (ct. ampleness of ω_{E} n $n 1!$) e.g.: inside each ($\Theta^{ \pm \text {ell }} N F$ - $)$ Hodge theater "•", at each \underline{v}, \exists a copy of the arithmetic/tempered fundamental group

of a certain finite étale covering of the once-punctured elliptic curve $X_{\underline{v}} \stackrel{\text { def }}{=} E_{\underline{v}} \backslash\{$ origin $\}\left(\right.$ where $E_{\underline{v}} \stackrel{\text { def }}{=} E \times{ }_{F} K_{\underline{v}}$)

Étale-likedbjects satisfy crucial coricity
(i.e., "common - cf. \wedge ! - to the domain/codomain")

- each log-link induces indeterminate (cf. inter-universality!) isomorphisms

- cf. the evident Galois-equivariance of the (power series defining the p-adic logarithmy. - between copies in domain/codomain of the log-link
- each Θ-link-induces indeterminate (cf. inter-universality!) isomorphisms
- i.e., (Ind1)

of the Θ-link
(so abstract top. gps. $\Pi_{\underline{v}}, G_{\underline{v}}$ are coric for log-, Θ-links!) and symmetry properties:

- Thus, in summary,
with regard to the desired symmetry and coricity properties:

Frobenius-like	$\underline{\text { FALSE }}$		
$\underline{\text { étale-like }}$	$\underline{\text { FRUE }}$	\quad	TRUE
:---			

§4. Frobenius-like vs. étale-like structures and Kummer-detachment indeterminacies (cf. [Alien], Examples 2.12.1, 2.12.3, 2.13.1; [Alien], §3.4;
[Alien], §3.6, (ii), (iv); [Alien], §3.7, (i), (ii))

- Kummer theory yields isoms. between corresponding objects:

Frobenius-like objects $\xrightarrow{\rightarrow}$ (mono-anabelian) étale-like objects
... but gives rise to Kummer-detachment indeterminacies, i.e., one must pay some sort of price for passing from

Frobenius-like objects that do not satisfy coricity/symmetry properties to étale-like objects that do satisfy coricity/symmetry properties

- In IUT, there are three types of Kummer theory: (\&f.(4)-4int !)
(a) for local units $\mathcal{O}_{\tilde{v}}^{\times}$. classical Kummer theory via local class field theory (LCFT)/Brauer groups (cf. [Alien], Example 2.12.1);
(b) for local theta values $\left\{\underline{\underline{q}}_{\underline{j^{2}}}\right\}_{\text {, }}=1, \ldots, l *$: Kummer theory via theta functions and Galois evaluation at l torsion points (cf. [Alien], $\S 3.4$, (iii), (iv));
(c) for global field of moduli $F_{\text {mod }}$: Kummer theory via " κ-coric" algebraic rational functions (essentially, non-linear polynomials w.r.t. some "point at infinity") and Galois evaluation at points defined over number fields (cf. [Alien], Example 2.13.1; [Alien], §3.4, (ii))
- In general, "Kummer theory" proceeds by:

 from the conventional cyclotomic rigidity isomorphism (CRI)

$$
(\widehat{\mathbb{Z}}) \cong \mu_{\widehat{\mathbb{Z}}}(M) \quad \stackrel{\sim}{\rightarrow} \quad \overline{\mu_{\widehat{\mathbb{Z}}}(\Pi)}(\cong \widehat{\mathbb{Z}})
$$

arising from scheme theory (cf. [Alien], §3.4, (i), (ii), (iii), (iv))
... note that this is a very substantive issue! indeed,
indeterminate $\widehat{\mathbb{Z}}^{\times}$-multiples /powers of gives. , line dis., rational/merom. fins., ts. of number fields/local fields completely destroy any notion of positivity/ inequalities. (recall that -1 lies in the closure of the natural numbers in $\widehat{\mathbb{Z}}$!) for arithmetic degrees $/$ heights, \mathbb{R}
moreover, inter-universality - ie., the property of "not being anchored to/rigidimed by any particular ring/scheme theory" - means that the $\left(\mathcal{O}_{\tilde{v}}^{\times \mu}\right.$ in the Θ-link (cf. §2) is subject to an unavgialable $\widehat{\mathbb{Z}}^{\mathbf{x}}-\frac{v}{\bar{n}}$ determinacy '(Ind))'

the functorial equivariance/nonfunctoriality - of a given ie., S_{3} Kummer theory with the "inter-universality indeterminacies" (Indy)), (Ind2) as the multiradiality/uniradiality of the Summer theory; thus, the multiradiality of the Kummer theory may be understood as a sort of "splitting/decoupling" of the Summer theory from the unit group $\mathcal{O}_{\underline{\tilde{v}}}^{\times \mu}$

Another Substantive Issue for Quclotomic Rigidity Isomorphisms: compatibility with the profinite/tempered topology, ie., the property of admitting finitely truncated versions

$$
\left(\mathbb{Z} / n \mathbb{Z} \cong \xrightarrow{\mu_{n}(M)} \xrightarrow[\rightarrow]{\rightarrow} \mu_{n}(\mathrm{II}) \quad(\cong \mathbb{Z} / n \mathbb{Z})\right.
$$

\ldots this will be important (cf. [Alien], $\S 3.6$, (ii)) since ring stars. - which are necessary in order to define the power s res for t. p-adic logarithm (cf. Nog-linK) - only exist at "finite n ", i.e., infinite "multiplicative Rummer towers $れ$ §" destroy additive strs.!

- In the case of the three types (a), (b), (c) of Kummer theory that are actually used in IUT (cf., especially, [Alien], Fig. 3.10; [Alien], §3.4, (v)):
(a) this approach to constructing CRI's is manifestly compatible with the profinite topology, but is uniradial since it depends in an essential won the extension of Galois modules $1 \rightarrow\left(\mathcal{O}_{\tilde{v}}^{\times} \rightarrow\left(K_{\dot{x}}^{\times}\right) \rightarrow \mathbb{Q} \rightarrow 1\right.$,
 $\left(\left(\mathbb{\mathcal { M }}^{\times}\right) \curvearrowright\left(\mathcal{O}_{\underline{\tilde{v}}}^{\times} \rightarrow+\left(\widehat{\mathcal{O}}_{\underline{\tilde{v}}}^{\times \mu}\right)\right.\right.$ (cf. [Alien], §3.4, (i));
(b) it follows from the theory of the étale theta function - in particular, the symmetries of theta groups, together with the canonical splittings arising from restriction t 2- (or, alternatively (6)) torsion points - that this approach to constructing CRI's is both compatible with the profinite/tempered topology and multiradial (cf. [Alien], §3.4, (iii), (iv));
(c) it follows from elementary considerations concerning " κ-coric" algebraic rational functions that this approach to constructing CRI's is multiradial, but incompatible with the profinite topology (cf. [Alien], Example 2.13.1; [Alien], §3.4, (ii))
-The indeterminacie ${ }^{\prime} \widehat{\mathbb{Z}}^{\times} \curvearrowright \mathcal{O}_{\tilde{v}}^{\times} \rightarrow \mathcal{O}_{\tilde{v}}^{\times \mu}$ of (a) mean that the thetaf values and elts. $\in F_{\text {mod }}$ obtained by Galois evaluation $\binom{$ Kummer class of some }{ sort of function } decomposition group of a point
in (b), (c) are only meaningful - i.e., can only be protected from the $\widetilde{\mathbb{Z}}^{\times}$-indeterminacies - if they are considered, by applying the "non-interference" (up to roots of unity) of the monoids of (a) with those of (b) and (c), in terms of their actions on log-shells

$10,-1$
- Here, we recall that only the multiplicative monoid $\mathcal{O}_{v}^{\times 4}$ i.e., not the ring structures, log-link, etc.! - is accessibre, via the common data (cf. " \wedge !") in the gluing of the Θ-link, to the opposite side (i.e., domain/codomain) of the Θ-link!

Thus, to overcome the vertical log-shift discussed above, it is necessary to construct invariants w.r.t. the log-lipk (cf. §2!). Here, we recall that étale-like structures "o" - such as " Π_{v} " - are indeed log-link-invariant, but the diagram - called the ${ }^{l o g}$-Kummer correspondence - arising from the vertical column (written horizontally, for convenience) in the domain of the Θ-link

- where the vertical/diagonal arrows in the diagram are

Kummer isomorphisms - is not commutative!
On the other hand, it is upper semi-commutative (!), i.e., all composites of Kummer and log-link morphisms on $\mathcal{O}_{\underline{v}}^{\times}$

have images contained in the log-shell $\mathcal{I}_{\underline{v}}$ (cf. [Alien], Example 2.12.3, (iv)). This very rough variant of "commutativity" thought of as a type of indeterminacy, which is called ("(Ind3)") It is (Ind3) that gives rise, ultimately, to the upper hound in the height inequalities that are obtained in IUT (cf. [Alien], Example 2.12.3, (iv); [Alien], §3.6, (iv); [Alien], §3.7, (i), (ii)).

- Thus, in summary, we have two Kummer-indeterminacies, namely,
§5. Conjugate synchronization and the structure of $\left(\Theta^{ \pm e l l} \mathrm{NF}-\right)$

Hodge theaters

(cf. [Alien], §3.3, (ii), (iv), (v); [Alien], §3.4, (ii), (iii); [Alien], §3.6, (i),
(ii), (iii); [AbsTopIII], §1; [EssLgc], §3.3; [EssLgc], Examples 3.3.2, 3.8.2; [ClsIUT], §3, §4; [IUTchI], Fig. I1.2)

- Fundamental Question:

So how do we "simulate" GMS + GCG?

- In a word, we consider certain finite étale coverings over $K=$ $F(E[l])$ of the hyperbolic orbicurves

$$
X \stackrel{\text { def }}{=} E \backslash\{\text { origin }\}, \quad C \stackrel{\text { def }}{=} X / /\{\nmid \pm 1\}
$$

$$
\cdots
$$

determined by some rank one quotient $E[l], ~$ 为 $\rightarrow Q$:

$$
\begin{aligned}
& \ell\left\{\begin{array}{l}
\stackrel{\infty}{n} \underset{\sim}{\sim} \quad \underline{X}_{K} \rightarrow X_{K} \stackrel{\text { def }}{=} X \times_{F} K
\end{array}\right. \\
& \ldots \text { determined by } E[l]_{K} \rightarrow Q \\
& \underline{C}_{K} \rightarrow C_{K} \stackrel{\text { def }}{=} C \times_{F} K \quad \ldots \text { by taking } C_{K} \stackrel{\text { def }}{=} X_{K} / /\{ \pm 1\} \\
& \ldots \text { where"//" denotes the "stack-theoretic quotient" }
\end{aligned}
$$

and restrict to "local analytic sections" of $\operatorname{Spec}(K) \rightarrow \operatorname{Spec}(F)$ - called "prime-strips" which there are various types, as summarized in IUTchI, Fig. I1.2) which may be thought of as a sort of monoid- or Galois-theoretic version of the classical notion of adèles/idèles - determined by various $\mathrm{Gal}(K / F)$-orbits of the subset/section

$$
\delta_{2} \lessdot \mathbb{V}(K)=\mathbb{V} V_{\bmod }
$$

where the quotient $E[l]_{K} \rightarrow \underline{Q}$ is indeed the "multiple. subspace", or where some generator, up to ± 1, of Q is indeed the "canonical generator".

Working with such prime-strips means that many conventional objects associated to number fields - such as absolute global Galois groups or prime decomposition trees - much be abandoned! Indeed, this was precisely the original motivation (around 2005 2006) for the development of the \boldsymbol{p}-adic absolute mono-anabelian geometry of [AbsTopIII], $\S 1[c f .[A l i e n], \S \overline{3.3, ~(i v)]!}$

$\cdots \cdots=\cdots$	$\begin{aligned} & = \\ & \subseteq \mathbb{V}(K) \backslash \underline{\mathbb{V}} \end{aligned}$
\ldots	$\begin{aligned} & \subseteq \mathbb{V}(K) \backslash \underline{\mathbb{V}} \\ & \subseteq \mathbb{V}(K) \backslash \underline{\mathbb{V}} \end{aligned}$

$F_{\text {mod }}$
$\ldots \ldots \cdot=\mathbb{V}\left(F_{\mathrm{mod}}\right)$

- The hyperbolic orbicurves $\underline{X}_{K}, \underline{C}_{K}$ admit symmetries

$$
\begin{aligned}
& \text {. multiplicative/arithmetic! }
\end{aligned}
$$

obtained by considering the respective actions on cusps of $\underline{X}_{K}, \underline{C}_{K}$, that arise from elements of the quotient $E[l]_{K}-Q$ [cf. [Alien], $\S 3.3$, (v); [Alien], §3.6, (i)]. At the level of arithmetic fundamental groups, these symmetries may be thought of as finite groups of outer automorphisms of

$$
\Pi_{\underline{X}_{K}}, \quad \Pi_{\underline{C}_{K}}
$$

- where we note that since, as is well-known, both the geometric fundamental group $\Delta_{\underline{X}_{K}}$ and the global absolute Galois group $G_{\text {k }}$ are slim and do not admit finite subgroups of order >2, these finite groups of outer automorphisms do not lift to finite groups of (non-outer) auto $\overline{\text { orphisms (cf. [EssLgc], Example 3.8.2)! }}$ way around, which would obligate us consider all Galois, hence, in particular, all $S L_{2}\left(\mathbb{F}_{l}\right)$-conjugates of Q. Note that this is precisely the reverse (!) order to proceed from the point of view of classical Galois theory (cf. [Alien], §3.6, (iii); [EssLgc], Example 3.8.2).

In particular, the "strictly outer" nature of the multiplicative/arithmetic \mathbb{F}_{i}^{*}-symmetriesmeans that various copies of the absolute local Galois groups " G_{v} ") (for, say, monarch. $\underline{v} \in \underline{\mathbb{V}}$) in the prime-strips that are permuted by these symmetries can only be identified with one another up to indeterminate inner automorphisms, ie., there is no way to synchronize these conjugate indeterminacies (cf. [Alien], §3.6, (iii); [EssLgc], Example 3.8.2).

On the other hand, the $G_{v} \curvearrowright \mathcal{O}_{\tilde{v}}^{\times \mu, r)}$ that appears in the gluing data for the Θ-link (cf. §2) must be independent of the \because) $\in \mathbb{F}_{l}^{*} "$ (cf. the " $\underline{y}^{j^{2}}$ " of $\overline{\xi 2}$, where we think of this $(" j)$) as the smallest integer lifting $\left.j \in \mathbb{F}_{l}^{*}\right)$. That is to say, we need a "conjugate synchronized" G_{v} in order to construct the Θ-link, i.e., ultimately, in order to express the LHS bf the Θ-link in terms of the RHS). This is done by applying the additive/geometric $\mathbb{F}_{l}^{\rtimes \pm}$-symmetries (cf. [Alien], $\S 3.6$, (ii); [EssLgc], Example 3.8.2).

Moreover, these additive/geometric $\mathbb{F}_{l}^{\rtimes \pm}$-symmetries are compatible, relative to the log-link, with the crucial local CRI's (a), (b) (but not (c)!) of $\S 4$, precisely because these local CRI's (a), (b) are compatible with the profinite/tempered topology, which means that they may be computed at a finite truncated level, where the ring structure, hence also the power series for the p-adic logarithm, is well-defined (cf. [Alien], §3.6, (ii)).

Here, we recall that this crucial property of compatibility with the profinite/tempered topology in the case of (b), as opposed to (c), may be understood as a consequence of the fact that the orders of the zeroes/ poles at cusps of the theta function are all equal te 1.) Moreover, this phenomenon may in turn be understood as a consequence of the symmetries of theta groups, or, alternatively, as a consequence of the quadratic form/first Chern class " \square " in the exponent of the classical series representation of the theta function (cf. [Alien], §3.4, (iii), as well as the discussion below). of the algebraic rational functions that are used differ from one another by mich moke arbitrary elements of \mathbb{Q}^{\times}(cf. [Alien], §3.4, (ii))!

$$
\begin{aligned}
& \Uparrow \quad \Rightarrow \text { glue! } \Leftarrow
\end{aligned}
$$

$$
\begin{aligned}
& \Uparrow \\
& \left(\begin{array}{rl}
(1) & < \\
& < \\
& l^{*}
\end{array}\right) \\
& \Downarrow \\
& \text { additive, geometric } \\
& \text { symmetries }
\end{aligned}
$$

$$
\begin{aligned}
& \text { arithmetic symmetries }
\end{aligned}
$$

$t^{2}+1 \quad-2 \operatorname{att} i$
-2 at b

- The properties of theta functions in IUT discussed above are particularly remarkable viewed from the point of view of the analogy with th Jacobi identity for the theta function on the upper half-plane (cf. [EssLgc], Example 3.3.2; [ClsIUT], §4). Indeed, on the one hand, the quadratic form/first Chern class " \square " in the exponent of the classical series representation of the theta function (on the imaginary axis of the upper half-plane)

$$
\theta(t) \stackrel{\text { def }}{=} \sum_{n=-\infty}^{+\infty} e n^{n-n}
$$

gives rise to the theta group symmetries that underlie the rigidity properties of theta functions that play a central role in IUT from the point of view of the ultimate goal in IUD of expressing the LHS of the Θ-link in terms of the RHS

- i.e., expressing the " Θ-pilot" on the LHS of the Θ-link in terms of the " q-pilot" on the RHS of the Θ-link.

On the other hand, this same quadratic form in the exponent of the classical series representation of the thetafunction - which in fact appears as " $t \cdot \square^{2}$ ", i.e., with a factor t, where t denotes the standard coordinate on the imaginary axis of the upper half-plane - also underlies the well-known Fourier transform invariance of the Gaussian distribution, up to a sort of "rescaling"

It is precisely this rescaling that gives rise to the Jacobi identity.
This state of semarkable (cf. [ClsIUT], §3, §4) in that the transformatio $t \mapsto t^{-1}$ corresponds to the linear fractional transformation given by tite matrix $\left(\begin{array}{ll}0 & -1 \\ 1 & 0\end{array}\right)$ which, from the point of view of the analogy between the "infinite \mathbf{H} " discussed at the en of $\S 2$
 and the well-known bijection

(where $\lambda \in \mathbb{R}_{\geq 1}$), may be understood as follows:

(cf. [Alien], §3.3, (ii); [EssLgc], §3.3, (InfH), Example 3.3.2).
Concluding Question:
So why do we need to "simulate" GMS + GCG?
\ldots in order to secure the \boldsymbol{l}-torsion points at which one conducts the Galois evaluation of the (reciprocal of the l-th root of the) étale theta function, i.e., the Kummer class of the p-adic theta function (cf. the discussion of the Θ-link in $\S 2 ; ~ \S 4,(\mathrm{~b}))$

$$
\left.\left.\underline{\underline{\Theta}}\right|_{l-\text {-torsion points }} ^{\longrightarrow Q^{j^{2}}}\right)^{j=1, \ldots, l^{*}}
$$

...cf. the classical series representation of the theta function on the (imag. axis of the) upper half-plane - i.e., in essence, " $q=e^{2 \pi i(i t) "!}$

$$
\theta(t) \stackrel{\text { def }}{=} \sum_{n=-\infty}^{+\infty} e^{-\pi n^{2} t}=\sum_{n=-\infty}^{+\infty}(\hat{q})^{\frac{1}{2} n^{2}}
$$

§6. Multiradial representation and holomorphic hull (cf. [Alien], §3.6, (iv), (v); [Alien], §3.7, (i), (ii); [EssLgc], §3.6, §3.10, §3.11; [ClsIUT], §2; [IUAni1])

- Fundamental Theme:

To express/describe the Θ-pilot on the LHS of the Θ-link in terms of the RHS of the Θ-link, while keeping the Θ-link itself fixed (!)

- For instance, the labels $\left(j^{\prime}\right)$ in $\left(\left\{\underline{\underline{q}}^{j^{2}}\right\}\right)=1, \ldots, l * "$ depend on the complicated bookkeeping system for these essen'ly cuspidal labels (i.e., labels of cuspidal inertia groups in the geometric fundamental groups $\frac{\Delta_{v}}{\left.\stackrel{\text { def }}{=} \operatorname{Ker}\left(\Pi_{\underline{v}}\right) \rightarrow\left(G_{\underline{v}}\right)\right) \text { furnished (cf. } \S 5 \text {) by the structure of }}$ the $\left(\Theta^{ \pm \mathrm{ell}} N F\right.$-) Hodge theater on the $L H S$, which is not accessible from the point of view of the RHS. Thus, it is necessary to express these labels a way that is accessible from the RHS, i.e., by means of processions) of capsules of prime-strips "/"

$$
\|\Leftrightarrow\|_{0} \Leftrightarrow\left\|_{0}\right\|_{1} \|
$$

(i.e., succiessive inclusions of ${ }^{2}$ nordered collections of prime-strips of incrementally increasing cardinality) - which still yield symmetries between the prime-strips at different labels without "label-crushing", i.e., identifications between distinct labels (cf. [Alien], §3.6, (v)). We then consider the actions of (b), (c) (cf. §4) on tensor-packets of the logeshells arising from the data of (a) (cf. §4) inside each capsule:

$$
\left(\underline{\left.\underline{q^{j^{2}}}\right\}_{j=1, \ldots, l *}} \curvearrowright \mathcal{I}_{\underline{\underline{v}} \otimes \ldots \otimes \mathcal{I}_{\underline{v}}} \curvearrowleft\left(F_{\bmod }^{\times}\right)_{j}\right.
$$

- where the "tensor-packet" is a tensor product of $\underline{j+1}$ copies of $\mathcal{I}_{\underline{v}}$.

In fact, the various monoids, (Galois groups,) etc. that appear in the data (a), (b), (c) of $\S 4-\operatorname{such}$ as $\left.\left(\mathcal{I}_{\underline{v}}, \underline{\underline{q}}_{i^{2}}\right\}_{i j}=1, \ldots, l^{*}, F_{\mathrm{mod}}^{\times}\right)$. come in four types (cf. [Alien], $\S 3.6,(\mathrm{iv}) ;$ Alien], $\S 3.7$, (i)):
holomorphic Frobenius-like " (n, m) ": monoids etc. on which $\Pi_{\underline{v}} \downarrow$ acts, and whose construction involves the ring structure associated to the $\left(\Theta^{ \pm e l l} \mathrm{NF}\right.$ - $)$ Hodge theater at $(n, m) \in \mathbb{Z} \times \mathbb{Z}$;
holomorphic étale-like " $n(0)$)": similar data to (n, m), but reconstructed from $\left(\Pi_{v}\right)$ hence independent of " m "; mono-analytic Frobenius-like (n, m : monoids, etc., on which $\left(G_{v}\right) \curvearrowright$ acts; used in the gluing data - called an

mono-analytic étale-like " $\left(n, 0\right.$ 上 : : similar data to $(n, m)^{\vdash}$, but reconstructed from $\left(G_{v}\right.$) hence independent of " m " (and in fact also of " n ").

- Thus, in summary, the log-Kummer correspondence yields actions of the monoids of (b), (c) (cf. §4) on tensor-packets of log-shells arising from the data of (a) (cf. §4) up to the indeterminacy (Ind3)

$$
\left\{\underline{\underline{q}}_{\underline{j^{2}}}^{\}^{2}}\right\}_{j=1, \ldots, l *} \curvearrowright \quad \mathcal{I}_{\underline{v}} \otimes \ldots \otimes \mathcal{I}_{\underline{v}} \quad \curvearrowleft\left(F_{\mathrm{mod}}^{\times}\right)_{J}
$$

~ first, at the level of objects of (0,(0);

- then by "descent" (i.e., the observation that reconstructions from certain input data may in fact be conducted, up to natural ism., from less/weaker input data) up to indeterminacies (Ind1) at the level of objects of $(0, \circ)^{\vdash}$,
- then again by "descent" up to indeterminacies (Ind2) at the level of objects of $(0,0)^{\vdash} \xrightarrow{\sim}(1,0)^{\vdash}$ (via the Θ-link).

(This last step involving (Ind2) plays the role of fixing vertical coordinate, so that (Ind1). (Ind) are not mixed with Ind3) cf. the discussion of " $\mathbb{C}^{\times} \backslash G L_{2}^{+}(\mathbb{R}) / \mathbb{C}^{\times}$" at the end of $\S 5!$)

$$
\mathbb{N}^{x} \stackrel{(}{\lambda}\left(\begin{array}{ll}
\lambda & 0 \\
0 & 1
\end{array}\right) \cap \mathbb{C}^{x}
$$

This is the multiradial representation of the Θ-pilot on the LHS of the Θ-link in terms of the RHS (cf. [Alien], §3.7, (i); [EssLgc], $\S 3.10, \S 3.11)$. This multiradial representation plays the important role of exhibiting the (value group portion of the) Θ-pilot at $(0,0)$ (i.e., which appears in the Θ-link!) 25 one of the possibilities within a container arising from the RHS of the Θ-link (cf. the "infinite H " at the end of $\delta 2$, [EssLgc], §3.6, §3.10)."

Next, by applying the operation of forming the holomorphic hull (i.e., "O्O ${ }_{v}$-modute generated by") to the various output regions of the multiradial representation, we obtain a module over the local $\mathcal{O}_{\underline{v}}$'s on the RHS of the Θ-link. Then taking a suitable root of " $\operatorname{det}^{(}(-)$" of this module yields an arithmetic line bundle in the same category as the category that gives rise to the \boldsymbol{q}-pilot on the RHS of the Θ-link - except for a vertical log-shift by 1 in the 1 -column (cf. the construction of log-shells from the " $\mathcal{O}_{\tilde{v}}^{\times \mu}$, s" that appear in the gluing data of the Θ-link!) - cf. [EssLgc], $\S 3.10$.

Thus, by symmetrizing (i.e., with respect to vertical shifts in the 1-column) the procedure described thus far, we obtain a closed loop, i.e.,

a situation in which the distinct label on either side of the Θ-link (cf. the discussion at the beginning रि? ? !) may be eliminated, up to suitable indeterminacies (i.e., (Ind1), (Ind2), (Ind3); the holgnorpbic \in hull). In particular, by performing an entirely elementary log-volume) computation, one obtains a nontrivial height inequality This completes the proof of the main theorems of HUT (ct. [Alien], §3.7, (ii); [EssLgc], §3.10, §3.11).

Here, it is important to note that although the term "closed loop" at first might seem to suggest issues of "diagram commutativity" or "log-volume compatibility" - i.e., issues of
"How does one conclude a relationship between the output data and the input data of the closed loop?"

- in fact, such issues simply do not exist in this situation! That is

proceeds by fixing the logical AND " \wedge " relation satisfied by the Θ-link and then adding various logical OR " \vee " indeterminacies, as illustrated in the following diagram (cf. [EssLgc], §3.10):

§7. RCS-redundancy, Frobenius-like/étale-like strs., and
Θ-/log-links
(cf. [Alien], §3.3, (ii); [EssLgc], Example 2.4.7; [EssLgc], §3.1, §3.2, §3.3, §3.4, §3.8, §3.11)

RCS ("redundant copies school") model of IUT (i.e., "RCS-IUT" - cf. [EssLgc], §3.1):

This model ignores the various crucial intertwinings of two dims. in IUT (such as addition/multiplication, local unit groups/value groups, --link/log-link, etc.).

Instead one works relative to a single rigidified ring structure by implementing, as described below, various "RCS-identifications" of "RCS-redundant" copies of objects - i.e., on the grounds that such RCS-identifications may be implemented without affecting the essential logical structure of the theory:
(RC-FrÉt) the Frobenius-like and étale-like versions of objects in IUT are identified;
(RC-log) the $\left(\Theta^{ \pm e l l}\right.$ NF- $)$ Hodge theaters on opposite sides of the $\mathfrak{l o g}$-link in IUT are identified;
(RC- Θ) the ($\Theta^{ \pm e l l}$ NF-)Hodge theaters on opposite sides of the Θ-link in IUT are identified.

Thus, locally, if
$\mathcal{O}_{\bar{k}}$ is the ring of integers of an algebraic closure \bar{k} of \mathbb{Q}_{p},
$k \subseteq \bar{k}$ is a finite subextension of \mathbb{Q}_{p},
$\underline{q} \in \mathcal{O}_{k}$ is a nonzero nonunit,
$\overline{\bar{G}} \stackrel{\text { def }}{=} \operatorname{Gal}(\bar{k} / k)$, and
$\Pi(\rightarrow G)$ is the étale fundamental group of some hyperbolic curve (say, of strictly Belyi type) over k,
then we obtain the following situation:

RCS- Θ-link:

$$
(k \supseteq) \quad\left(\underline{q}^{N}\right)^{\mathbb{N}} \quad \xrightarrow{\sim} \quad \underline{\underline{q}}^{\mathbb{N}} \quad(\subseteq k)
$$

... where the copies of " \bar{k} ", " k ", and " $G \curvearrowright \mathcal{O}_{\bar{k}}^{\times}$" on opposite sides are identified (and in fact $N=1^{2}, 2^{2}, \ldots,\left(l^{*}\right)^{2}$, but we think of N as some fixed integer ≥ 2);

RCS-log-link:

$$
(\bar{k} \supseteq) \quad \mathcal{O}_{\bar{k}}^{\times} \quad \xrightarrow{\log _{p}} \bar{k}
$$

\ldots where the copies of " $\bar{k} "$, " k ", and " $\Pi \curvearrowright \mathcal{O}_{\bar{k}}^{\times}$" on opposite sides are identified.

Then the $R C S-\Theta$-link identifies

$$
(0 \neq) N \cdot \operatorname{ord}(\underline{\underline{q}})=\operatorname{ord}\left(\underline{\underline{q}}^{N}\right)
$$

with $\operatorname{ord}(q)$ (where ord : $k^{\times} \rightarrow \mathbb{Z}$ is the valuation), which yields (since $N \neq 1)$ a ${ }^{\text {"'contradiction"! }}$

- Elementary observation: (cf. [EssLgc], Example 3.1.1)

Let ${ }^{\dagger} \mathbb{R},{ }^{\ddagger} \mathbb{R}$ be (not necessarily distinct!) copies of \mathbb{R}. Let $0<x, y \in \mathbb{R}$; write ${ }^{\dagger} x,{ }^{\ddagger} x,{ }^{\dagger} y,{ }^{\ddagger} y$ for the corresponding elements of ${ }^{\dagger} \mathbb{R}$, ${ }^{\ddagger} \mathbb{R}$. If these two copies ${ }^{\dagger} \mathbb{R},{ }^{\ddagger} \mathbb{R}$ of \mathbb{R} are distinct, we may glue ${ }^{\dagger} \mathbb{R}$ to ${ }^{\ddagger} \mathbb{R}$ along

$$
{ }^{\dagger} \mathbb{R} \supseteq\left\{\left\{^{\dagger} x\right\} \xrightarrow{\sim}\left\{{ }^{\ddagger} y\right\} \subseteq{ }^{\ddagger} \mathbb{R}\right.
$$

without any consequences or contradictions. On the other hand, if $\dagger \mathbb{R}$ and ${ }^{\ddagger} \mathbb{R}$ are the same copy of \mathbb{R}, then to assert that ${ }^{\dagger} \mathbb{R}$ is glued to $\ddagger \mathbb{R}$ along

$$
\dagger \mathbb{R} \supseteq\left\{\left\{^{\dagger} x\right\} \xrightarrow{\sim}\left\{{ }^{\ddagger} y\right\} \subseteq{ }^{\ddagger} \mathbb{R}\right.
$$

implies that we have a contradiction, unless $x=y$.

- Note that the RCS-identification (RC- Θ) discussed above may be regarded as analogous to identifying the two distinct copies of the ring scheme \mathbb{A}^{1} that occur in the conventional gluing of these two distinct copies along the group scheme \mathbb{G}_{m} to obtain \mathbb{P}^{1}. That is to say, the RCS-assertion of some sort of logical equivalence

$$
\text { IUT } \Longleftrightarrow \text { RCS-IUT }
$$

amounts to an assertion of an equivalence

$$
" \mathbb{P}^{1} " \Longleftrightarrow\left(\begin{array}{c}
\text { "A }
\end{array}\right.
$$

(cf. [EssLgc], Example 2.4.7) - i.e., which is absurd!

Fundamental Problem with RCS-IUT:

(cf. [EssLgc], §3.2, §3.4, §3.8, §3.11)
There does not exist any single "neutral" ring structure with a single element "*" such that

$$
\left(*=\underline{\underline{q}}^{N}\right) \quad \wedge \quad(*=\underline{\underline{q}})
$$

Of course, there exists a single"neutral" ring structure with a single element "*" such that

$$
\left(*=\underline{\underline{q}}^{N}\right) \quad \vee \quad(*=\underline{\underline{q}})
$$

- but this requires one to contend, in RCS-IUT, with a fundamental (drastic!) indeterminacy (Θ ORInd) that renders the entire theory (i.e., RCS-IUT, not IUT!) meaningless!

That is to say, the essential logical structure of IUT depends, in a very fundamental way, on the crucial logical AND " \wedge " property of the Θ-link, i.e., that the abstract $\mathcal{F}^{\mid+\times \mu}$-prime-strip in the Θ-link, regarded up to isomorphism, is simultaneously the Θ-pilot on the LHS of the Θ-link AND the \boldsymbol{q}-pilot on the RHS of the Θ-link.

This is possible precisely because the realified Frobenioids and multiplicative monoids with abstract group actions that constitute these Θ-/q-pilot $\mathcal{F}^{\mid \vdash \times \mu \text {-prime-strips are isomorphic - i.e., unlike the }}$ "field plus distinguished element" pairs

$$
\left(k, \underline{\underline{q}}^{N}\right) \text { and }(k, \underline{\underline{q}}),
$$

which are not isomorphic!
(. . cf. the situation with \mathbb{P}^{1} : there does not exist a single ring scheme \mathbb{A}^{1} with a single rational function "*" such that

$$
\left(*=T^{-1}\right) \quad \wedge \quad(*=T) .
$$

There only exists a single ring scheme \mathbb{A}^{1} with a single rational function "*" such that $\left(*=T^{-1}\right) \vee(*=T)$.)

Here, we note that the RCS-identifications of
G on opposite sides of the RCS- Θ-link or Π on opposite sides of the RCS-log-link or

- which arise from Galois-equivariance properties with respect to the single "neutral" ring structure discussed above, i.e., which is subject to the (drastic!) (Θ ORInd) indeterminacies - yield false symmetry/coricity (such as the symmetry of " $\Pi \rightarrow G \longleftrightarrow \Pi$ ") properties, i.e., false versions of the symm./cor. props. discussed in $\S 3$.

Indeed, the various Galois-rigidifications - i.e., embeddings of the abstract topological groups involved into the group of automorphisms of some field - that underlie these Galois-equivariance or false symmetry/coricity properties are unrelated to the Galois-rigidifications that underlie the corresponding symmetry/coricity properties of $\S 3$. That is to say, setting up a situation in which these symm./cor. props. of $\S 3$ do indeed hold is the whole point of "inter-universality", i.e., working with abstract groups, abstract monoids, etc.!

- Finally, we observe that (cf. [Alien], §3.3, (ii); [EssLgc], §3.3)
the very definition of the log-link, Θ-link (cf. $\S 2$;
$\mathfrak{l o g}$: nondilated unit groups \rightleftarrows dilated value groups!)
$\Longrightarrow \quad$ the falsity of (RC-log):

Indeed, there is no natural way to relate the two Θ-links (i.e., the two horizontal arrows below) that emanate from the domain and codomain of the log-link (i.e., the left-hand vertical arrow)

— that is to say, there is no natural candidate for "??" (i.e., such as, for instance, an isomorphism or the log-link between the two bullets " \bullet " on the right-hand side of the diagram) that makes the diagram commute. Indeed, it is an easy exercise to show that neither of these candidates for "??" yields a commutative diagram.

Analogy with classical complex Teichmüller theory:

 (cf. [EssLgc], Example 3.3.1)Let $\lambda \in \mathbb{R}_{>1}$. Recall the most fundamental deformation of complex structure in classical complex Teichmüller theory

$$
\begin{aligned}
\Lambda: \mathbb{C} & \rightarrow \mathbb{C} \\
\mathbb{C} \quad \ni z=x+i y & \mapsto \zeta=\xi+i \eta \stackrel{\text { def }}{=} x+\lambda \cdot i y \in \mathbb{C}
\end{aligned}
$$

- where $x, y \in \mathbb{R}$. Let $n \geq 2$ be an integer, ω a primitive n-th root of unity. Write $(\omega \in) \mu_{n} \subseteq \mathbb{C}$ for the group of n-th roots of unity. Then observe that

$$
\begin{aligned}
& \text { if } n \geq 3 \text {, then there does not exist } \omega^{\prime} \in \mu_{n} \text { such that } \\
& \Lambda(\omega \cdot z)=\omega^{\prime} \cdot \Lambda(z) \text { for all } z \in \mathbb{C} \text {. }
\end{aligned}
$$

(Indeed, this observation follows immediately from the fact that if $n \geq 3$, then $\omega \notin \mathbb{R}$.) That is to say, in words,
Λ is not compatible with multiplication by μ_{n} unless $n=2$ (in which case $\omega=-1$).

This incompatibility with "indeterminacies" arising from multiplication by μ_{n}, for $n \geq 3$, may be understood as one fundamental reason for the special role played by square differentials (i.e., as opposed to n-th power differentials, for $n \geq 3$) in classical complex Teichmüller theory.
$\S 8 . \frac{\text { Chains of gluings } / \text { logical } \wedge \text { relations }}{(\text { cf. [EssLgc], } \S 3.5, \S 3.6, ~ § 3.11 ;[\text { ClsIUT] } \S 2)}$

Fundamental Question:
Why is the logical AND " \wedge " relation of the Θ-link so fundamental in IUT?

- Consider, for instance, the classical theory of crystals (cf. [ClsIUT], §2; [EssLgc], §3.5, (CrAND), (CrOR), (CrRCS)):

The "crystals" that appear in the conventional theory of crystals may be thought of as " \wedge-crystals". Alternatively, one could consider the (in fact meaningless!) theory of " \vee-crystals". One verifies easily that this theory of "V-crystals" is in fact essentially equivalent to the theory obtained by replacing the various thickenings of diagonals that appear in the conventional theory of crystals by the " $(-)_{\text {red }}$ " of these thickenings, i.e., by the diagonals themselves! Finally, we observe that consideration of "V-crystals" corresponds to the indeterminacy (Θ ORInd) that appears in RCS-IUT, i.e.:

Frequently Asked Question:
In IUT, one starts with the fundamental logical AND " \wedge " relation of the Θ-link, which holds precisely because of the distinct labels on the domain/codomain of the Θ-link. Then what is the the minimal amount of indeterminacy that one must introduce in order to delete the distinct labels without invalidating the fundamental logical AND" " \wedge " relation?

In short, the answer (cf. §6!) is that one needs (Ind1), (Ind2), (Ind3), together with the operation of forming the holomorphic hull. In some sense, the most fundamental of these indeterminacies is

> (Ind3),
which in fact in some sense "subsumes" the other indeterminacies — at least "to highest order", i.e., in the height inequalities that are ultimately obtained (cf. [EssLgc], §3.5, (CnfInd1+2), (CnfInd3); [EssLgc], §3.11, (Ind3>1+2)).

Recall from $\S 4$ that (Ind3) is an inevitable consequence of the noncommutativity of the log-Kummer correspondence

(cf. also the discussion of the falsity of (RC-log), (RC-FrÉt) in §7!). On the other hand, observe that since automorphisms of the (topological module constituted by the) log-shell $\mathcal{I}_{\underline{v}}$ always preserve the submodule

$$
p^{n} \cdot \mathcal{I}_{\underline{v}}
$$

(where $n \geq 0$ is an integer) - i.e., even if they do not necessarily preserve $\mathcal{O}_{\underline{v}} \subseteq \mathcal{I}_{\underline{v}}$ or positive powers of the maximal ideal $\mathfrak{m}_{\underline{v}} \subseteq \mathcal{O}_{\underline{v}}$! - it follows immediately that
(Ind1) (or, a fortiori, the " Π_{v} version" of (Ind1) — cf. the discussion of (Ind1) in §3) and
(Ind2)
(both of which induce automorphisms of $\mathcal{I}_{\underline{v}}$) can never account for any sort of "confusion" (cf. the definition of the Θ-link) between

$$
\text { " } \underline{q}_{\underline{v}}^{\left(l^{*}\right)^{2}} " \text { and " } \underline{\underline{q}} \underline{\underline{v}}
$$

(cf. [EssLgc], §3.5, (CnfInd1+2), (CnfInd3); [EssLgc], Example 3.5.1; [EssLgc], $\S 3.11,($ Ind3 $>1+2)$)! This is a common misunderstanding!

- Now let us return to the Fundamental Question posed above.

We begin our discussion by observing (cf. [EssLgc], §3.6) that (\wedge-Chn) the logical structure of IUT proceeds by observing a chain of AND relations " \wedge " (not a chain of intermediate inequalities! - cf. [EssLgc], §3.6, (Syp3)).
That is to say, one starts with the logical AND " \wedge " relation of the Θ-link. This logical AND" " \wedge " relation is preserved when one passes to the multiradial representation of the Θ-pilot as a consequence of the following fact:
(\wedge-Input) the input data for this multiradial algorithm consists solely of an abstract $\mathcal{F}^{\Downarrow>} \times \mu$-prime-strip; moreover, this multiradial algorithm is functorial with respect to arbitrary isomorphisms between $\mathcal{F}^{\mid \vdash \times \mu}$-prime-strips.

Indeed, at a more technical level, we make the fundamental observation that this multiradial algorithm proceeds by successive application, in one form or another, of the following principle of "extension of indeterminacies":
(ExtInd) If A, B, and C are propositions, then it holds (that $B \Longrightarrow B \vee C$ and hence) that

$$
A \wedge B \Longrightarrow A \wedge(B \vee C)
$$

(cf. the final portion of $\S 6!$). Applications of (ExtInd) may be further subclassified into the following two types:
(ExtInd1) ("set-theoretic") operations that consist of simply adding more possibilites/indeterminacies (which corresponds to passing from B to $B \vee C$) within some fixed container;
(ExtInd2) ("stack-theoretic") operations in which one identifies (i.e., "crushes together", by passing from B to $B \vee C$) objects with distinct labels, at the cost of passing to a situation in which the object is regarded as being only known up to isomorphism
(cf. the discussion of $\S 9$ below).
At this point, we recall from $\S 6$ that the ultimate goal of various applitions of (ExtInd) in the algorithms that constitute the multiradial representation of the Θ-pilot is to
exhibit the (value group portion of the) Θ-pilot at $(0,0)$ (i.e., which appears in the Θ-link!) as one of the possibilities within a container arising from the RHS of the Θ-link
(cf. the situation surrounding rational functions on \mathbb{P}^{1}, as discussed in [EssLgc], Example 2.4.7, (ii)!).

In particular, any problems in understanding the essential logical str. of IUT (i.e., the argument of §6) may be diagnosed/analyzed by asking the following diagnostic question:
(\wedge-Dgns) precisely where in the finite sequence of steps that appear is the first step at which the person feels that the preservation of the crucial AND relator " \wedge " is no longer clear?

§9. Poly-morphisms, descent to underlying strs., and interuniversality (cf. [EssLgc], Example 3.1.1; §3.7, §3.8, §3.9, §3.11)

- In IUT, one often considers poly-morphisms, i.e., sets of morphisms between objects - such as full poly-isomorphisms (the set of all isomorphisms between two objects) - as a tool to keep track explicitly of all possibilities that appear. Roughly speaking, consideration of full poly-isomorphisms corresponds to the usual notion of "considering objects up to isomorphism". From the point of view of chains of \wedge 's and \vee 's

$$
\begin{aligned}
A \wedge B \quad & =A \wedge\left(B_{1} \vee B_{2} \vee \ldots\right) \\
& \Longrightarrow A \wedge\left(B_{1} \vee B_{2} \vee \ldots \vee B_{1}^{\prime} \vee B_{2}^{\prime} \vee \ldots\right) \\
& \Longrightarrow A \wedge\left(B_{1} \vee B_{2} \vee \ldots \vee B_{1}^{\prime} \vee B_{2}^{\prime} \vee \ldots \vee B_{1}^{\prime \prime} \vee B_{2}^{\prime \prime} \vee \ldots\right)
\end{aligned}
$$

discussed in $\S 6$, consideration of poly-morphisms corresponds to adding to the collection of possibilities, i.e., to the collection of \vee 's that appear (cf. "set-theoretic" (ExtInd1)!) - cf. [EssLgc], §3.7.

- One fundamental aspect of IUT lies in the use of numerous functorial algorithms that consist of the construction

$$
\text { input data } \rightsquigarrow \text { output data }
$$

of certain output data associated to given input data. Often it is natural to regard the"input data" as "original data" and to regard the "output data" as "underlying data":

original data
underlying data
One important example of this sort of situation in IUT involves the notion of " q-/ Θ-intertwinings" on an $\mathcal{F}^{\mid-} \times \mu$-prime-strip (cf. [EssLgc], §3.9):
original data ("equipped with an intertwining"):
the \boldsymbol{q}-pilot $\mathcal{F}^{1+\times \boldsymbol{\mu}}$-prime-strip (in the case of the " q-intertwining")
 ing"), equipped with the auxiliary data of how this $q-/ \Theta$-pilot $\mathcal{F}^{\mid \vdash \times \mu_{-}}$ prime-strip is constructed from some ($\Theta^{ \pm e l l} N F$-) Hodge theater; underlying data:
the abstract $\mathcal{F}^{\Vdash>} \times \mu_{\text {-prime-strip }}$ associated to the above original data, i.e., obtained by forgetting the auxiliary data.

- In general, in any sort of situation involving original/underlying data, it is natural to consider the issue of descent to (a functorial algorithm in) the underlying data of a functorial algorithm in the original data: we say that
a functorial algorithm Φ in the original data descends to a functorial algorithm Ψ in the underlying data if there exists a functorial isomorphism

$$
\left.\Phi \xrightarrow{\sim} \Psi\right|_{\text {original data }}
$$

between Φ and the restriction of Ψ, i.e., relative to the given construction original data \rightsquigarrow underlying data.
That is to say, roughly speaking, to say that the functorial algorithm Φ in the original data descends to the underlying data means, in essence, that although the construction constituted by Φ depends, a priori, on the "finer" original data, in fact, up to natural isomorphism (cf. "stack-theoretic" (ExtInd2)!), the functorial algorithm only depends on "coarser" underlying data.

- One elementary example of descent is the following (cf. [EssLgc], Example 3.9.1):
Let X be a scheme, T a topological space. Write
- $|X|$ for the underlying topological space of X,
- $\operatorname{Open}(X)$ for the category of open subschemes of X and open immersions over X,
- Open (T) for the category of open subsets of T and open immersions over T.

Then the functorial algorithm

$$
X \quad \mapsto \quad \operatorname{Open}(X)
$$

- defined, say, on the category of schemes and morphisms of schemes
- descends, relative to the construction $X \rightsquigarrow|X|$, to the functorial algorithm

$$
T \quad \mapsto \quad \operatorname{Open}(T)
$$

- defined, say, on the category of topological spaces and continuous maps of topological spaces. That is to say, there is a natural functorial isomorphism

$$
\operatorname{Open}(X) \quad \xrightarrow{\sim} \quad \operatorname{Open}(|X|)
$$

(i.e., more precisely, following the conventions employed in IUT, a natural functorial isomorphism class of equivalences of categories).

Inter-universality in IUT - cf. the abstract topological groups/monoids (as opposed to Galois groups/multiplicative monoids of rings!) that appear in the Θ-link, as discussed in $\S 2, \S 3, \S 4, \S 7$ - arises from the fact that the structures common (cf. " \wedge "!) to both sides of the Θ-link are weaker than ring structures. On the other hand, despite this "ring str. vs. weaker than ring str." difference, at a purely foundational level, the resulting indeterminacies (i.e., (Ind1), (Ind2)) are in fact completely qualitatively similar to the inner automorphism indeterminacies in [SGA1] (cf. [EssLgc], §3.8).
In this context, it is useful to recall the elementary fact that these inner automorphism indeterminacies are unavoidable (cf. [EssLgc], Example 3.8.1 (i)!):

Let
k be a perfect field;
\bar{k} an algebraic closure of k;
$N \subseteq G_{k} \stackrel{\text { def }}{=} \operatorname{Gal}(\bar{k} / k)$ a normal open subgroup of G_{k};
$\sigma \in G_{k}$ such that the automorphism $\iota_{\sigma}: N \xrightarrow{\sim} N$ of N given by conjugating by σ is not inner.
(One verifies immediately that, for instance, if k is a number field or a mixed-characteristic local field, then such N, σ do indeed exist.)

Write

$$
\begin{aligned}
& k_{N} \subseteq \bar{k} \text { for the subfield of } N \text {-invariants of } \bar{k}, \\
& G_{k_{N}} \stackrel{\text { def }}{=} N \subseteq G_{k} .
\end{aligned}
$$

Then observe that if one assumes that the functoriality of the étale fundamental group holds even in the absence of inner automorphism indeterminacies, then the commutative diagram of natural morphisms of schemes

$$
\operatorname{Spec}(k)
$$

induces a commutative diagram of profinite groups

- which (since the natural inclusion $N=G_{k_{N}} \hookrightarrow G_{k}$ is injective!) implies that ι_{σ} is the identity automorphism, in contradiction to our assumption concerning σ !

As a consequence of the inter-universality considerations discussed above (e.g., the need to work with abstract topological groups!), one must consider various reconstruction algorithms in IUT. Since reconstruction of an object is never "set-theoretically on the nose", but rather always up to (a necessarily indeterminate!) isomorphism - whence the use of full poly-isomorphisms! - such reconstruction algorithms necessarily lead to (ExtInd2) indeterminacies. At first glance, this phenomenon may seem rather strange, but in fact, at a purely foundational level, this phenomenon is completely qualitatively similar to the indeterminacies that appear in such classical construc tions as

- the notion of an algebraic closure of a field,
- projective/inductive limits, or
- cohomology modules (i.e., which arise as subquotients of "some" indeterminate resolution)
— cf. [EssLgc], §3.8, §3.9, §3.11.
- As a result of such (ExtInd2) indeterminacies, one does not obtain any nontrivial consequences/inequalities (cf. the "Elementary Observation" of $\S 7$; [EssLgc], Example 3.1.1; [EssLgc], §3.8, $\S 3.9)$ at "stack-theoretic" intermediate steps, i.e., even if one applies the log-volume!
In order to obtain nontrivial consequences/inequalities (cf. the "Eleementary Observation" of $\S 7$; [EssLgc], Example 3.1.1; [EssLgc], §3.8, §3.9), it is necessary to obtain a "set-theoretic" closed loop, i.e., by
- applying the multiradial representation of the Θ-pilot, which gives rise to the indeterminacies (Ind1), (Ind2), (Ind3);
- forming the holomorphic hull,
- symmetrizing with respect to vertical log-shifts in the 1-column;
- and, finally, applying the log-volume
- as described in $\S 6$.

$$
\left(\begin{array}{c}
\text { some portion of } \\
\text { the Frobenius-like } \\
\text { local data at } \\
\underline{v} \text { of the } \\
\left(\Theta^{ \pm e l l} \mathrm{NF}-\right) \\
\text { Hodge theater } \\
\text { in the domain } \\
\text { of the } \Theta \text {-link }
\end{array}\right)
$$

§10. Closed loops via multiradial representations and holomorphic hulls
(cf. [EssLgc], Example 2.4.6, (iii); [EssLgc], §3.10, §3.11; [ClsIUT], §2)

- We begin by observing that by eliminating superfluous overlaps from the chain of \wedge 's and \vee 's that constitutes the essential logical structure of IUT (cf. §6) and replacing the various logical OR "V's" by logical XOR " \dot{V} 's", we may think of this essential logical str. of IUT as consisting of a chain of \wedge 's and $\dot{\vee}$'s:

$$
\begin{aligned}
A \wedge B \quad & =A \wedge\left(B_{1} \dot{\vee} B_{2} \dot{\vee} \ldots\right) \\
& \Longrightarrow A \wedge\left(B_{1} \dot{\vee} B_{2} \dot{\vee} \ldots \dot{\vee} B_{1}^{\prime} \dot{\vee} B_{2}^{\prime} \dot{\vee} \ldots\right) \\
& \Longrightarrow A \wedge\left(B_{1} \dot{\vee} B_{2} \dot{\vee} \ldots \dot{\vee} B_{1}^{\prime} \dot{\vee} B_{2}^{\prime} \dot{\vee} \ldots \dot{\vee} B_{1}^{\prime \prime} \dot{\vee} B_{2}^{\prime \prime} \dot{\vee} \ldots\right)
\end{aligned}
$$

Recall that from the point of view of the arithmetic of the field \mathbb{F}_{2},

$$
\begin{array}{ccc}
\hat{\vee} & \longleftrightarrow & \text { multiplication } \\
\dot{V} & \text { addition }
\end{array}
$$

while from the point of view of the arithmetic of the truncated ring of Witt vectors $\mathbb{F}_{2} \times \mathbb{F}_{2}$ (i.e., $\mathbb{Z} / 4 \mathbb{Z}$),

$$
\begin{array}{ccc}
\wedge & \longleftrightarrow & \text { multiplication of Teichmüller reps. of } \mathbb{F}_{2} \\
(\wedge, \dot{\vee}) & \longleftrightarrow & \text { carry-addition on Teichmüller reps. of } \mathbb{F}_{2}
\end{array}
$$

(cf. [EssLgc], Example 2.4.6, (iii)). That is to say, carry-addition which may thought of as a sort of

$$
" \wedge \text { stacked on top of an } \dot{\vee} "
$$

- is remarkably reminiscent of the essential logical structure of $I U T$, as well as of the fact that IUT itself is a theory concerning the explication of how the two "combinatorial dimensions" of a ring are mutually intertwined, i.e., how the multiplicative structure of a ring is "stacked on top of" the additive structure of a ring! In the case of the chain of \wedge 's and $\dot{\vee}$'s that constitutes the essential logical structure of IUT, we observe that:

$$
\wedge \quad\left(\begin{array}{c}
\text { multiplicative } \Theta \text {-link; } \\
\text { data common to the } \\
\text { domain/codomain of the } \\
\Theta \text {-link }
\end{array}\right)
$$

$$
\dot{\vee} \longleftrightarrow\left(\begin{array}{c}
\text { additive log-shells } \\
\text { arising from the log-link; } \\
\text { mutually exclusive distinct } \\
\text { possibilities }
\end{array}\right)
$$

Finally, relative to the analogy between IUT and crystals, it is also of interest to observe that:

$$
\begin{array}{ll}
\wedge & \longleftrightarrow\binom{\text { crystals }}{=\text { " } \wedge \text {-crystals" }} \\
\dot{\vee} \longleftrightarrow\left(\begin{array}{c}
\text { mutually exclusive } \\
\text { pull-backs of the } \\
\text { Hodge filtration }
\end{array}\right)
\end{array}
$$

— where we recall that it is precisely the "intertwining between these $\wedge / \dot{\mathrm{V}}$ aspects" that gives rise to the Kodaira-Spencer morphism (cf. [EssLgc], ($\wedge(\stackrel{\vee}{\mathrm{V}})$-Chn); [ClsIUT], §2).

- We conclude by reviewing once again the discussion of $\S 6$, this time taking into account the various subtleties discussed in §7, §8, §9 (cf. also [EssLgc], §3.10, §3.11).

We begin by recalling that the log-Kummer correspondence

$$
\begin{array}{cccccc}
\ldots & \xrightarrow{\mathfrak{l o g}} \quad \bullet & \xrightarrow{\mathfrak{l o g}} & \bullet & \xrightarrow{\mathfrak{l o g}} \quad \bullet & \xrightarrow{\mathfrak{l o g}} \\
& \ldots & \searrow & \downarrow & \swarrow & \cdots \\
& & & & & \\
& & & & &
\end{array}
$$

- which juggles the dilated and nondilated underlying arithmetic dimensions of the rings involved (cf. §2)
$\mathfrak{l o g}$: nondilated unit groups \rightleftarrows dilated value groups
yields, by applying various descent operations

$$
(0,0) \stackrel{(\text { Ind3 }}{\rightsquigarrow}(0, \circ) \stackrel{(\text { Ind1 })}{\rightsquigarrow}(0, \circ)^{\vdash} \stackrel{(\text { Ind2 })}{\rightsquigarrow}(0,0)^{\vdash} \stackrel{\Theta}{\xrightarrow{\Theta-l i n k}}(1,0)^{\vdash}
$$

(where we recall that the last step involving (Ind2) plays the role of fixing the vertical coordinate, so that (Ind1), (Ind2) are not mixed with (Ind3) - cf. the discussion of " $\mathbb{C}^{\times} \backslash G L_{2}^{+}(\mathbb{R}) / \mathbb{C}^{\times}$" at the end of $\S 5!)$, the multiradial representation of the Θ-pilot, up to the indeterminacies (Ind1), (Ind2), (Ind3).
Then forming the holomorphic hull and symmetrizing with respect to vertical log-shifts in the 1-column

yields a closed loop, to which we may apply the log-volume to obtain "set-theoretic" consequences/inequalities (cf. the "Elementary Observation" of §7; [EssLgc], Example 3.1.1; [EssLgc], §3.8, §3.9).

Here, we recall that the repeated introduction of "stack-theoretic" (ExtInd2) indeterminacies

$\Pi_{\underline{v}} \rightarrow$ \curvearrowright	$\begin{gathered} G_{\underline{v}} \\ \sigma \\ \operatorname{Aut}\left(G_{\underline{v}}\right) \end{gathered}$	$\leftarrow \Pi_{\underline{v}}$ \curvearrowright
$\left(\begin{array}{c} \text { some portion of } \\ \text { the Frobenius-like } \\ \text { local data at } \\ \underline{v} \text { of the } \\ \left(\Theta^{ \pm e l l} \mathrm{NF}-\right) \\ \text { Hodge theater } \\ \text { in the domain } \\ \text { of the } \Theta \text {-link } \end{array}\right)$		$\left(\begin{array}{c}\text { some portion of } \\ \text { the Frobenius-like } \\ \text { local data at } \\ \underline{v} \text { of the } \\ \left(\Theta^{ \pm e l l} \mathrm{NF}-\right) \\ \text { Hodge theater } \\ \text { in the codomain } \\ \text { of the } \Theta \text {-link }\end{array}\right)$

- especially in the context of various reconstruction algorithms allows us to achieve the central goal of exhibiting the (value group portion of the) Θ-pilot at $(0,0)$ (i.e., which appears in the Θ-link!) as one of the possibilities within a container arising from the RHS of the Θ-link. Moreover, the essential logical structure

$$
\begin{aligned}
A \wedge B \quad & =A \wedge\left(B_{1} \vee B_{2} \vee \ldots\right) \\
& \Longrightarrow A \wedge\left(B_{1} \vee B_{2} \vee \ldots \vee B_{1}^{\prime} \vee B_{2}^{\prime} \vee \ldots\right) \\
& \Longrightarrow \quad A \wedge\left(B_{1} \vee B_{2} \vee \ldots \vee B_{1}^{\prime} \vee B_{2}^{\prime} \vee \ldots \vee B_{1}^{\prime \prime} \vee B_{2}^{\prime \prime} \vee \ldots\right)
\end{aligned}
$$

underlying the closed loop referred to above means that there are no issues of "diagram commutativity" or "log-vol. compatibility" to contend with:

References

[IUAni1] E. Farcot, I. Fesenko, S. Mochizuki, The Multiradial Representation of Inter-universal Teichmüller Theory, animation available at the following webpage:

```
https://www.kurims.kyoto-u.ac.jp/~motizuki/IUT-
animation-Thm-A-black.wmv
```

[IUAni2] E. Farcot, I. Fesenko, S. Mochizuki, Computation of the log-volume of the q-pilot via the multiradial representation, animation available at the following webpage:
https://www.kurims.kyoto-u.ac.jp/~motizuki/2020$01 \% 20$ Computation $\% 20$ of $\% 20 \mathrm{q}-\mathrm{pilot} \% 20$ (animation).mp4
[AbsTopIII] S. Mochizuki, Topics in Absolute Anabelian Geometry III: Global Reconstruction Algorithms, J. Math. Sci. Univ. Tokyo 22 (2015), pp. 9391156.
[IUTchI] S. Mochizuki, Inter-universal Teichmüller Theory I: Construction of Hodge Theaters, Publ. Res. Inst. Math. Sci. 57 (2021), pp. 3-207.
[IUTchII] S. Mochizuki, Inter-universal Teichmüller Theory II: Hodge-Arakelovtheoretic Evaluation, Publ. Res. Inst. Math. Sci. 57 (2021), pp. 209-401.
[IUTchIII] S. Mochizuki, Inter-universal Teichmüller Theory III: Canonical Splittings of the Log-theta-lattice, Publ. Res. Inst. Math. Sci. 57 (2021), pp. 403-626.
[IUTchIV] S. Mochizuki, Inter-universal Teichmüller Theory IV: Log-volume Computations and Set-theoretic Foundations, Publ. Res. Inst. Math. Sci. 57 (2021), pp. 627-723.
[Pano] S. Mochizuki, A Panoramic Overview of Inter-universal Teichmüller Theory, Algebraic number theory and related topics 2012, RIMS Kōkyūroku Bessatsu B51, Res. Inst. Math. Sci. (RIMS), Kyoto (2014), pp. 301-345.
[Alien] S. Mochizuki, The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Inter-universal Teichmüller Theory, Inter-universal Teichmuller Theory Summit 2016, RIMS Kōkyūroku Bessatsu B84, Res. Inst. Math. Sci. (RIMS), Kyoto (2021), pp. 23-192.
[EssLgc] S. Mochizuki, On the essential logical structure of inter-universal Teichmüller theory in terms of logical AND " \wedge "/logical OR "V" relations: Report on the occasion of the publication of the four main papers on inter-universal Teichmüller theory, preprint available at the following webpage:

```
http://www.kurims.kyoto-u.ac.jp/~motizuki/papers-
english.html
```

[ClsIUT] S. Mochizuki, Classical roots of inter-universal Teichmüller theory, lecture notes for Berkeley Colloquium talk given in November 2011, available at the following webpage:

```
http://www.kurims.kyoto-u.ac.jp/~motizuki/travel-
english.html
```

