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§1. Isogenies of elliptic curves and global multiplicative
subspaces/canonical generators
(cf. [Alien], §2.3, §2.4; [ClsIUT], §1; [EssLgc], §3.2)

· A special case of Faltings’ isogeny invariance of the height for
elliptic curves

Key assumption:

∃ global multiplicative subspace (GMS)

· First key point of proof:
(invalid for isogenies by non-GMS subspaces!!)

q �→ ql (at primes of bad multiplicative reduction)

. . . cf. positive characteristic Frobenius morphism!

. . . � “Gaussian” values of theta functions in IUT

. . . � need not only GMS, but also

. . . global canonical generators (GCG) (cf. §5)!

· Second key point of proof:

dlog(q) = dq
q �→ l · dlog(q)

. . . yields common (cf. ∧!) container (cf. ampleness of ωE !)

for both elliptic curves!

. . . � log-link, anabelian geometry in IUT

· One way to summarize IUT:

to generalize the above approach to bounding heights

via theta functions + anabelian geometry

to the case of arbitrary elliptic curves

by somehow “simulating” GMS + GCG!
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§2. Gluings via Teichmüller dilations, inter-universality, and
logical ∧/∨
(cf. [Alien], §2.11; [Alien], §3.3, (ii), (vi), (vii); [Alien], §3.11, (iv);

[EssLgc], Examples 2.4.5, 2.4.7, 3.1.1; [EssLgc], §3.3, §3.4, §3.8
§3.11; [ClsIUT], §3)

· Naive approach to generalizing Frobenius aspect “ql ≈ q” of §1
— i.e., a situation in which, at the level of arithmetic line

bundles, one may act as if there exists a “Frobenius
automorphism of the number field” q �→ ql that preserves
arithmetic degrees, while at the same time multiplying them
by l (!):

for N ≥ 2 an integer, p a prime number, glue via “∗”
(cf. [Alien], §3.11, (iv); [EssLgc], Example 3.1.1; [EssLgc], §3.4):

†Z 
 †pN ←: ∗ :→ ‡p ∈ ‡Z . . . so (∗ �→ †pN ∈ †Z) ∧ (∗ �→ ‡p ∈ ‡Z)

. . . not compatible with ring structures!!

. . . but compatible with multiplicative structures,
actions of Galois groups as abstract groups!!

. . . AND “∧” depends on distinct labels!!

. . . ultimately, we want to delete labels (cf. §1!), but doing so naively
yields — if one is to avoid giving rise to a contradiction “pN = p”! —

a meaningless OR “∨” indeterminacy!!

(∗ �→ pN ∈ Z) ∨ (∗ �→ p ∈ Z) ⇐⇒ ∗ �→ ?? ∈ {p, pN} ⊆ Z

(cf. “contradiction” asserted by
“redundant copies school (RCS)”!)

. . . in IUT, we would like to delete the labels in a somewhat more
“constructive” (!) way!
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· In IUT, we consider gluing via Θ-link, for l a prime number
(cf. [Alien], §2.11; [Alien], §3.3, (ii), (vii); [EssLgc], §3.4, §3.8):

(Θ±ellNF-)
Hodge theater,

i.e., another model of
conventional scheme
theory surrounding
given elliptic curve E

non-scheme-
———————

theoretic
Θ-link

(Θ±ellNF-)
Hodge theater,
i.e., model of

conventional scheme
theory surrounding
given elliptic curve E

loc. unit gps.: Gv � O×μ
ṽ

∼→ Gv � O×μ
ṽ

loc. val. gps.:

(
{qj2

v
}j=1,...,l�

)N
∼→

(
q
v

def
= q

1
2l
v

)N

glob. val. gps.: corresponding global realified Frobenioids
(s.t. product formula holds!)

. . . where l ≥ 5 a prime number; l�
def
= l−1

2 ;

E (= EF ) is an elliptic curve over a number field F s.t. . . . ;

E[l] ⊆ E subgroup scheme of l-torsion points; K
def
= F (E[l]);

jE is the j-invariant of E, so Fmod
def
= Q(jE) ⊆ F ;

V ⊆ V(K) collection of valuations of K s.t. . . . ;

qv denotes local q-parameter of E at bad (nonarch.) v ∈ V;

Gv denotes the (local) absolute Galois group of Kv regarded
“inter-universally” as an abstract top. group,

i.e., not as a (“Galois”!) group of field automorphisms

(cf. incompatibility with ring structure!);

O×
ṽ : units of the ring of integers Oṽ of an algebraic closure

Kṽ of the completion Kv of K at v;

O×μ
ṽ

def
= O×

ṽ /tors + “integral str.” {Im((O×
ṽ )

H)}open H⊆Gv

. . . note
two arithmetic/combinatorial dimensions of ring

= one dilated dimension + another undilated dimension

. . . cf. cohomological dimension of absolute Galois groups
of number fields and mixed characteristic local fields,

topological dimension of C×!
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· Concrete example of gluing
(cf. [EssLgc], Example 2.4.7):

the projective line as a gluing of
ring schemes along a multiplicative group scheme

. . . cf. assertions of the RCS!

· Concrete example of gluing
(cf. [EssLgc], Example 3.3.1; [ClsIUT], §3; [Alien], §2.11):

classical complex Teichmüller deformations
of holomorphic structure

. . . cf. two combinatorial/arithmetic dimensions of a ring!!

. . . cf. assertions of the RCS!

· In IUT, we consider not just Θ-link, but also the log-link,
which is defined, roughly speaking, by considering the

pv-adic logarithm at each v

(cf. [Alien], §3.3, (ii), (vi), Fig. 3.6; [EssLgc], §3.3, (InfH);
[EssLgc], §3.11, (ΘORInd), (logORInd), (Di/NDi)), where
we write pv for the residue characteristic of (nonarch.) v:

apply same principle as above of label deletion via
“saturation with all possibilities on either side of the link”

. . . but for Θ-link, this yields meaningless (ΘORInd)!!
. . . instead, consider “saturation” (logORInd) for log-link,

i.e., by constructing invariants for log-link
. . . where we recall that

log : nondilated unit groups � dilated value groups

. . . i.e., for invariants, “nondilated ⇐⇒ dilated” . . . cf. proof of §1!!
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· The entire log-theta-lattice and the “infinite H” portion
that is actually used:

...
...�⏐⏐log

�⏐⏐log

. . .
Θ−→ • Θ−→ • Θ−→ . . .�⏐⏐log

�⏐⏐log

. . .
Θ−→ • Θ−→ • Θ−→ . . .�⏐⏐log

�⏐⏐log

. . .
Θ−→ • Θ−→ • Θ−→ . . .�⏐⏐log

�⏐⏐log

...
...

⊇

...
...

∨
�⏐⏐log ∨

�⏐⏐log

• •
∨
�⏐⏐log ∨

�⏐⏐log

• Θ−→
∧

•

∨
�⏐⏐log ∨

�⏐⏐log

• •
∨
�⏐⏐log ∨

�⏐⏐log

...
...(

i.e., not
Θ−→
∨

!

)
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§3. Symmetries/nonsymmetries and coricities of the
log-theta-lattice
(cf. [Alien], §2.7, §2.8, §2.10, §3.2; [Alien], §3.3, (ii), (vi), (vii);

[Alien], §3.6, (i); [EssLgc], §3.2, §3.3; [IUAni2])

· Fundamental Question:
So how do we construct log-link invariants?

· Fundamental Observations:
Θ-link (i.e., “qN ←: q” for some N ≥ 2) and
log-link (i.e., “p-adic logarithm” for some p)

clearly satisfy the following:

(1) Θ-link, log-link are not compatible with
the ring structures in their domains/codomains;

(2) Θ-link, log-link are not symmetric with respect
to switching their domains/codomains;

(3) log-link ◦ Θ-link �= Θ-link ◦ log-link;

(4) log-link ◦ Θ-link �= Θ-link

· Frobenius-like objects: objects whose definition depends,
a priori, on the coordinate “(n,m) ∈ Z× Z” of the
(Θ±ellNF-)Hodge theater at which they are defined
(e.g., rings, monoids, etc. that do not map isomorphically
via Θ-link, log-link)

· Étale-like objects: arise from arithmetic (étale) fund. groups
regarded as abstract topological gps. . . . cf. inter-universality!
=⇒ mono-anabelian absolute anabelian geometry may

be applied (cf. ampleness of ωE in §1!)
e.g.: inside each (Θ±ellNF-)Hodge theater “•”, at each v,
∃ a copy of the arithmetic/tempered fundamental group

Πv � Gv

of a certain finite étale covering of the once-punctured

elliptic curve Xv
def
= Ev \{origin} (where Ev

def
= E×F Kv)
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· Étale-like objects satisfy crucial coricity
(i.e., “common — cf. ∧! — to the domain/codomain”)

· each log-link induces indeterminate (cf. inter-universality!)
isomorphisms

Πv
∼→ Πv

— cf. the evident Galois-equivariance of the (power se-
ries defining the) p-adic logarithm! — between copies in
domain/codomain of the log-link

· each Θ-link induces indeterminate (cf. inter-universality!)
isomorphisms

Gv
∼→ Gv

— i.e., “(Ind1)” — between copies in domain/codomain
of the Θ-link

(so abstract top. gps. Πv, Gv are coric for log-, Θ-links!) and
symmetry properties:

...
...�⏐⏐log

�⏐⏐log

• Θ−→ •

Πv � Gv � Πv

. . . symmetric w.r.t.
dom./codom.
of Θ-link!�

Aut(Gv)�⏐⏐log

�⏐⏐log

...
...

· Thus, in summary,
with regard to the desired symmetry and coricity properties:

Frobenius-like FALSE FALSE

étale-like TRUE TRUE
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§4. Frobenius-like vs. étale-like structures and
Kummer-detachment indeterminacies
(cf. [Alien], Examples 2.12.1, 2.12.3, 2.13.1; [Alien], §3.4;

[Alien], §3.6, (ii), (iv); [Alien], §3.7, (i), (ii))

· Kummer theory yields isoms. between corresponding objects:

Frobenius-like objects
∼→ (mono-anabelian) étale-like objects

. . . but gives rise to Kummer-detachment indeterminacies,
i.e., one must pay some sort of price for passing from

Frobenius-like objects that do not satisfy coricity/symmetry properties
to étale-like objects that do satisfy coricity/symmetry properties

· In IUT, there are three types of Kummer theory:

(a) for local units O×
ṽ : classical Kummer theory via lo-

cal class field theory (LCFT)/Brauer groups (cf.
[Alien], Example 2.12.1);

(b) for local theta values {qj2
v
}j=1,...,l� : Kummer the-

ory via theta functions and Galois evaluation at l-
torsion points (cf. [Alien], §3.4, (iii), (iv));

(c) for global field of moduli Fmod: Kummer theory via
“κ-coric” algebraic rational functions (essentially,
non-linear polynomials w.r.t. some “point at infinity”)
and Galois evaluation at points defined over number
fields (cf. [Alien], Example 2.13.1; [Alien], §3.4, (ii))

· In general, “Kummer theory” proceeds by:⎛⎜⎜⎜⎜⎜⎝
extracting

n-th roots ∈ M ,
for n ∈ Z>0, of
some element
f ∈ a multipl.
monoid M

⎞⎟⎟⎟⎟⎟⎠ �

⎛⎜⎜⎜⎜⎜⎝
Kummer class κf

∈ H1

([
some “Gal. group”
Π that acts on M

]
, μn(M)

)
⎞⎟⎟⎟⎟⎟⎠

. . . where μn(M) denotes n-torsion — i.e., roots of unity! — of M ;

� “Ẑ version” by taking lim←−
n
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· Main Substantive Issue: eliminating potential Ẑ×-indeterminacy
from the conventional cyclotomic rigidity isomorphism (CRI)

(Ẑ ∼=) μ
Ẑ
(M)

∼→ μ
Ẑ
(Π) (∼= Ẑ)

arising from scheme theory (cf. [Alien], §3.4, (i), (ii), (iii), (iv))
. . . note that this is a very substantive issue! indeed,

indeterminate Ẑ×-multiples/powers of divs., line bdls.,
rational/merom. fns., elts. of number fields/local fields

completely destroy any notion of positivity/inequalities
(recall that −1 lies in the closure of the natural numbers in Ẑ!)
for arithmetic degrees/heights;

moreover, inter-universality — i.e., the property of “not being
anchored to/rigidified by any particular ring/scheme theory”
— means that the O×μ

ṽ in the Θ-link (cf. §2) is subject to
an unavoidable Ẑ×-indeterminacy “(Ind2)”

Ẑ× � O×μ
ṽ

. . . we shall refer to the compatibility/incompatibility — i.e.,
the functorial equivariance/nonfunctoriality — of a given
Kummer theory with the “inter-universality indeterminacies” (Ind1),
(Ind2) as the multiradiality/uniradiality of the Kummer theory;
thus, the multiradiality of the Kummer theory may be understood
as a sort of “splitting/decoupling” of the Kummer theory from
the unit group O×μ

ṽ

· Another Substantive Issue for Cyclotomic Rigidity Isomorphisms:
compatibility with the profinite/tempered topology, i.e.,
the property of admitting finitely truncated versions

(Z/nZ ∼=) μn(M)
∼→ μn(Π) (∼= Z/nZ)

. . . this will be important (cf. [Alien], §3.6, (ii)) since ring strs.
— which are necessary in order to define the power series for the
p-adic logarithm (cf. log-link!) — only exist at “finite n”, i.e.,

infinite “multiplicative Kummer towers lim←−
n
” destroy additive strs.!
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· In the case of the three types (a), (b), (c) of Kummer theory that
are actually used in IUT (cf., especially, [Alien], Fig. 3.10;
[Alien], §3.4, (v)):
(a) this approach to constructing CRI’s is manifestly com-

patible with the profinite topology, but is unira-
dial since it depends in an essential way on the exten-
sion of Galois modules 1 → O×

ṽ → K×
ṽ → Q → 1,

hence is fundamentally incompatible with indeterminacies

Ẑ× � O×
ṽ � O×μ

ṽ (cf. [Alien], §3.4, (i));
(b) it follows from the theory of the étale theta func-

tion — in particular, the symmetries of theta groups,
together with the canonical splittings arising from re-
striction to 2- (or, alternatively, 6-) torsion points — that
this approach to constructing CRI’s is both compatible
with the profinite/tempered topology and multira-
dial (cf. [Alien], §3.4, (iii), (iv));

(c) it follows from elementary considerations concerning
“κ-coric” algebraic rational functions that this ap-
proach to constructing CRI’s ismultiradial, but incom-
patible with the profinite topology (cf. [Alien], Ex-
ample 2.13.1; [Alien], §3.4, (ii))

· The indeterminacies Ẑ× � O×
ṽ � O×μ

ṽ of (a) mean that the
theta values and elts. ∈ Fmod obtained by Galois evaluation(

Kummer class of some
sort of function

)
|| decomposition group of a point

in (b), (c) are only meaningful — i.e., can only be protected from
the Ẑ×-indeterminacies — if they are considered, by applying the
“non-interference” (up to roots of unity) of the monoids of (a)
with those of (b) and (c), in terms of their actions on log-shells

{qj2
v
}j=1,...,l� � � F×

modIv def
= 1

2pv
logpv

(O×μ
v )

. . . whose definition requires one to apply the pv-adic logarithm, i.e.,
the log-link vertically shifted by −1, relative to the coordin. “(n,m)”
of the (Θ±ellNF-)Hodge theater that gave rise to the theta values
and elements ∈ Fmod under consideration (cf. [Alien], §3.7, (i)).
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· Here, we recall that only the multiplicative monoid O×μ
v —

i.e., not the ring structures, log-link, etc.! — is accessible, via
the common data (cf. “∧!”) in the gluing of the Θ-link, to
the opposite side (i.e., domain/codomain) of the Θ-link!

Thus, to overcome the vertical log-shift discussed above, it is
necessary to construct invariants w.r.t. the log-link (cf. §2!).
Here, we recall that étale-like structures “◦” — such as “Πv”
— are indeed log-link-invariant, but the diagram — called the
log-Kummer correspondence — arising from the vertical
column (written horizontally, for convenience) in the domain
of the Θ-link

. . .
log−→ • log−→ • log−→ • log−→ . . .

. . . ↘ ↓ ↙ . . .

◦

— where the vertical/diagonal arrows in the diagram are
Kummer isomorphisms — is not commutative!

On the other hand, it is upper semi-commutative (!), i.e.,
all composites of Kummer and log-link morphisms on O×

v

O×
v ↪→ Ov ↪→ Iv ←↩ logpv

(O×μ
v )

have images contained in the log-shell Iv (cf. [Alien], Example
2.12.3, (iv)). This very rough variant of “commutativity” may be
thought of as a type of indeterminacy, which is called “(Ind3)”.
It is (Ind3) that gives rise, ultimately, to the upper bound in the
height inequalities that are obtained in IUT (cf. [Alien],
Example 2.12.3, (iv); [Alien], §3.6, (iv); [Alien], §3.7, (i), (ii)).

· Thus, in summary, we have twoKummer-detachment indetermi-
minacies, namely,

(Ind2), (Ind3).
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§5. Conjugate synchronization and the structure of (Θ±ellNF-)
Hodge theaters
(cf. [Alien], §3.3, (ii), (iv), (v); [Alien], §3.4, (ii), (iii); [Alien], §3.6, (i),
(ii), (iii); [AbsTopIII], §1; [EssLgc], §3.3; [EssLgc], Examples 3.3.2, 3.8.2;
[ClsIUT], §3, §4; [IUTchI], Fig. I1.2)

· Fundamental Question:
So how do we “simulate” GMS + GCG?

· In a word, we consider certain finite étale coverings over K =
F (E[l]) of the hyperbolic orbicurves

X
def
= E \ {origin}, C

def
= X//{±1}

determined by some rank one quotient E[l]K � Q:

XK → XK
def
= X ×F K . . . determined by E[l]K � Q

CK → CK
def
= C ×F K . . . by taking CK

def
= XK//{±1}

. . . where “//” denotes the “stack-theoretic quotient”

and restrict to “local analytic sections” of Spec(K) → Spec(F )
— called “prime-strips” (of which there are various types, as
summarized in [IUTchI], Fig. I1.2), which may be thought of as a
sort of monoid- or Galois-theoretic version of the classical notion of
adèles/idèles — determined by various Gal(K/F )-orbits of the sub-
set/section

V(K) ⊇ V
∼→ Vmod

where the quotient E[l]K � Q is indeed the “multipl. subspace”,
or where some generator, up to ±1, of Q is indeed the “canonical
generator”.

Working with such prime-strips means that many conventional ob-
jects associated to number fields — such as absolute global Galois
groups or prime decomposition trees — much be abandoned!
Indeed, this was precisely the original motivation (around 2005 -
2006) for the development of the p-adic absolute mono-anabelian
geometry of [AbsTopIII], §1 [cf. [Alien], §3.3, (iv)]!
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K

· − · − · − . . .− · − · − · = V

· − · − · − . . .− · − · − · ⊆ V(K) \ V

. . .

· − · − · − . . .− · − · − · ⊆ V(K) \ V
· − · − · − . . .− · − · − · ⊆ V(K) \ V

� Gal(K/F )

↪→ GL2(Fl)

⏐⏐�
Fmod · − · − · − . . .− · − · − · = V(Fmod)

· The hyperbolic orbicurves XK , CK admit symmetries

F�±
l

def
= Fl � {±1} ↪→ AutK(XK) ⊆ Aut(XK)

. . . additive/geometric! (i.e., K-linear!)

Aut(CK) ↪→ Gal(K/F ) � F�

l
def
= F×

l /{±1}
. . . multiplicative/arithmetic!

obtained by considering the respective actions on cusps of XK , CK

that arise from elements of the quotient E[l]K � Q [cf. [Alien], §3.3,
(v); [Alien], §3.6, (i)]. At the level of arithmetic fundamental groups,
these symmetries may be thought of as finite groups of outer
automorphisms of

ΠXK
, ΠCK

— where we note that since, as is well-known, both the geometric
fundamental group ΔXK

and the global absolute Galois group
GK are slim and do not admit finite subgroups of order > 2, these
finite groups of outer automorphisms do not lift to finite groups of
(non-outer) automorphisms (cf. [EssLgc], Example 3.8.2)!
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Here, we note that since it is of crucial importance to fix the quotient
E[l]K � Q by the “simulated GMS”, we want to start from CK and
descend, via the multiplic. F�

l -symms., to CFmod
(where CFmod

×Fmod
F

= C), not the other way around, which would obligate us to consider
all Galois-, hence, in particular, all SL2(Fl)-conjugates of Q. Note
that this is precisely the reverse (!) order to proceed from the point of
view of classical Galois theory (cf. [Alien], §3.6, (iii); [EssLgc], Ex. 3.8.2).
In particular, the “strictly outer” nature of the multiplicative/arith-
metic F�

l -symmetries means that various copies of the absolute
local Galois groups “Gv” (for, say, nonarch. v ∈ V) in the prime-strips
that are permuted by these symmetries can only be identified with one
another up to indeterminate inner automorphisms, i.e., there is
no way to synchronize these conjugate indeterminacies (cf. [Alien], §3.6,
(iii); [EssLgc], Example 3.8.2).

On the other hand, the “Gv � O×μ
ṽ ” that appears in the gluing data

for the Θ-link (cf. §2) must be independent of the “j ∈ F�

l ” (cf. the
“qj

2

” of §2, where we think of this “j” as the smallest integer lifting
j ∈ F�

l ). That is to say, we need a “conjugate synchronized” Gv in
order to construct the Θ-link, i.e., ultimately, in order to express the
LHS of the Θ-link in terms of the RHS!! This is done by applying the
additive/geometric F�±

l -symmetries (cf. [Alien], §3.6, (ii); [EssLgc],
Example 3.8.2).

Moreover, these additive/geometric F�±
l -symmetries are compatible,

relative to the log-link, with the crucial local CRI’s of (a), (b) (but not
of (c)!) of §4, precisely because these local CRI’s of (a), (b) are compati-
ble with the profinite/tempered topology, which means that they may be
computed at a finite truncated level, where the ring structure,
hence also the power series for the p-adic logarithm, is well-defined
(cf. [Alien], §3.6, (ii)).
Here, we recall that this crucial property of compatibility with the pro-
finite/tempered topology in the case of (b), as opposed to (c), may be
understood as a consequence of the fact that the orders of the zeroes/
poles at cusps of the theta function are all equal to 1! Moreover,
this phenomenon may in turn be understood as a consequence of the
symmetries of theta groups, or, alternatively, as a consequence of
the quadratic form/first Chern class “�2” in the exponent of the
classical series representation of the theta function (cf. [Alien], §3.4,
(iii), as well as the discussion below).
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By contrast, in the case of (c), the orders of the zeroes/poles at cusps
of the algebraic rational functions that are used differ from one
another by arbitrary elements of Z \ {0} (cf. [Alien], §3.4, (ii))!

[−l� < . . . < −1 < 0

< 1 < . . . < l�

] [
1 < . . .

< l�

]

⇑ ⇒ glue! ⇐ ⇑

{±1}
�

(−l� < . . . < −1 < 0

< 1 < . . . < l�

) (
1 < . . .

< l�

)

⇓ ⇓
± → ±
↑ F

�±
l
� ↓

± ← ±

� → �

↑ F
�

l
� ↓

� ← �

. . . additive, geometric . . .multiplicative,
symmetries arithmetic symmetries

· The properties of theta functions in IUT discussed above are
particularly remarkable when viewed from the point of view of the
analogy with the Jacobi identity for the theta function on the
upper half-plane (cf. [EssLgc], Example 3.3.2; [ClsIUT], §4). Indeed,
on the one hand, the quadratic form/first Chern class “�2”
in the exponent of the classical series representation of the theta
function (on the imaginary axis of the upper half-plane)

θ(t)
def
=

+∞∑
n=−∞

e−πn2t

gives rise to the theta group symmetries that underlie the
rigidity properties of theta functions that play a central
role in IUT from the point of view of the ultimate goal in IUT of
expressing the LHS of the Θ-link in terms of the RHS
— i.e., expressing the “Θ-pilot” on the LHS of the Θ-link in terms
of the “q-pilot” on the RHS of the Θ-link.
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On the other hand, this same quadratic form in the exponent of
the classical series representation of the theta function — which in
fact appears as “t ·�2”, i.e., with a factor t, where t denotes the
standard coordinate on the imaginary axis of the upper half-plane
— also underlies the well-known Fourier transform invariance
of the Gaussian distribution, up to a sort of “rescaling”

t ·�2 �→ t−1 ·�2.

It is precisely this rescaling that gives rise to the Jacobi identity.

This state of affairs is remarkable (cf. [ClsIUT], §3, §4) in that the
transformation t �→ t−1 corresponds to the linear fractional transfor-
mation given by the matrix

(
0 −1
1 0

)
, which, from the point of view of

the analogy between the “infinite H” discussed at the end of §2
and the well-known bijection

C×\GL+
2 (R)/C

× ∼→ [0, 1)(
λ 0
0 1

) �→ λ−1
λ+1

(where λ ∈ R≥1), may be understood as follows:(
λ 0
0 1

) ←→ Θ-link . . . cf. “not Θ-link-invariants”!(
0 −1
1 0

) ←→ log-link . . . cf. “log-link-invariants”!

(cf. [Alien], §3.3, (ii); [EssLgc], §3.3, (InfH), Example 3.3.2).

· Concluding Question:
So why do we need to “simulate” GMS + GCG?

. . . in order to secure the l-torsion points at which one conducts
the Galois evaluation of the étale theta function, i.e., the
Kummer class of the (reciprocal of the l-th root of the) p-adic theta
function (cf. the discussion of the Θ-link in §2; §4, (b))

Θ|l-torsion points = {qj2}j=1,...,l�

. . . cf. the classical series representation of the theta function on the
(imag. axis of the) upper half-plane — i.e., in essence, “q = e2πi(it)”!

θ(t)
def
=

+∞∑
n=−∞

e−πn2t =

+∞∑
n=−∞

q
1
2n

2
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§6. Multiradial representation and holomorphic hull
(cf. [Alien], §3.6, (iv), (v); [Alien], §3.7, (i), (ii); [EssLgc], §3.6, §3.10,
§3.11; [ClsIUT], §2; [IUAni1])

· Fundamental Theme:
To express/describe the Θ-pilot on the LHS of the Θ-link in
terms of the RHS of the Θ-link, while keeping the Θ-link itself
fixed (!)

· For instance, the labels “j” in “{qj2}j=1,...,l�” depend on the com-

plicated bookkeeping system for these essen’ly cuspidal labels
(i.e., labels of cuspidal inertia groups in the geometric fundamental

groups Δv
def
= Ker(Πv � Gv)) furnished (cf. §5) by the structure of

the (Θ±ellNF-)Hodge theater on the LHS, which is not accessible
from the point of view of the RHS. Thus, it is necessary to express
these labels in a way that is accessible from the RHS, i.e., by means
of processions of capsules of prime-strips “/”

/ ↪→ / / ↪→ / / / ↪→ . . . ↪→ / . . . /

(i.e., successive inclusions of unordered collections of prime-strips of
incrementally increasing cardinality) — which still yield symmetries
between the prime-strips at different labels without “label-crushing”,
i.e., identifications between distinct labels (cf. [Alien], §3.6, (v)). We
then consider the actions of (b), (c) (cf. §4) on tensor-packets of
the log-shells arising from the data of (a) (cf. §4) inside each capsule:

{qj2
v
}j=1,...,l� � � (F×

mod)jIv ⊗ . . . ⊗ Iv
— where the “tensor-packet” is a tensor product of j + 1 copies of Iv.

· In fact, the various monoids, Galois groups, etc. that appear in

the data (a), (b), (c) of §4 — such as Iv, {qj2
v
}j=1,...,l� , (F

×
mod)j , etc.

— come in four types (cf. [Alien], §3.6, (iv); [Alien], §3.7, (i)):
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holomorphic Frobenius-like “(n,m)”: monoids etc. on which
Πv � acts, and whose construction involves the ring structure
associated to the(Θ±ellNF-)Hodge theater at (n,m) ∈ Z× Z;

holomorphic étale-like “(n, ◦)”: similar data to (n,m), but
reconstructed from Πv, hence independent of “m”;

mono-analytic Frobenius-like “(n,m)�”: monoids, etc., on
which Gv � acts; used in the gluing data — called an
F��×μ-prime-strip — that appears in the Θ-link;

mono-analytic étale-like “(n, ◦)�”: similar data to (n,m)�,
but reconstructed from Gv, hence independent of “m” (and
in fact also of “n”).

· Thus, in summary, the log-Kummer correspondence yields actions
of the monoids of (b), (c) (cf. §4) on tensor-packets of log-shells
arising from the data of (a) (cf. §4) up to the indeterminacy (Ind3)

{qj2
v
}j=1,...,l� � � (F×

mod)jIv ⊗ . . . ⊗ Iv

· first, at the level of objects of (0, ◦);
· then by “descent” (i.e., the observation that reconstructions from
certain input data may in fact be conducted, up to natural isom.,
from less/weaker input data) up to indeterminacies (Ind1) at the
level of objects of (0, ◦)�;

· then again by “descent” up to indeterminacies (Ind2) at the level
of objects of (0, 0)� ∼→ (1, 0)� (via the Θ-link).

(0, 0)
(Ind3)� (0, ◦) (Ind1)� (0, ◦)� (Ind2)� (0, 0)�

Θ-link∼→ (1, 0)�

(This last step involving (Ind2) plays the role of fixing the vertical
coordinate, so that (Ind1), (Ind2) are not mixed with (Ind3) —
cf. the discussion of “C×\GL+

2 (R)/C
×” at the end of §5!)
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This is the multiradial representation of the Θ-pilot on the
LHS of the Θ-link in terms of the RHS (cf. [Alien], §3.7, (i); [EssLgc],
§3.10, §3.11). This multiradial representation plays the important
role of exhibiting the (value group portion of the) Θ-pilot at (0, 0)
(i.e., which appears in the Θ-link!) as one of the possibilities
within a container arising from the RHS of the Θ-link (cf. the
“infinite H” at the end of §2; [EssLgc], §3.6, §3.10).
Next, by applying the operation of forming the holomorphic hull
(i.e., “Ov-module generated by”) to the various output regions of the
multiradial representation, we obtain a module over the local Ov’s
on the RHS of the Θ-link. Then taking a suitable root of “det(−)”
of this module yields an arithmetic line bundle in the same
category as the category that gives rise to the q-pilot on the RHS
of the Θ-link — except for a vertical log-shift by 1 in the 1-column
(cf. the construction of log-shells from the “O×μ

ṽ ’s” that appear in
the gluing data of the Θ-link!) — cf. [EssLgc], §3.10.
Thus, by symmetrizing (i.e., with respect to vertical shifts in the
1-column) the procedure described thus far, we obtain a closed loop,
i.e.,

1-
column

1-
column

...
...

• •�⏐⏐log ↗
�⏐⏐log

• •�⏐⏐log ↗
�⏐⏐log

• •�⏐⏐log ↗
�⏐⏐log

• •
...

...
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a situation in which the distinct labels on either side of the Θ-link
(cf. the discussion at the beginning of §2!) may be eliminated, up to
suitable indeterminacies (i.e., (Ind1), (Ind2), (Ind3); the holomorphic
hull). In particular, by performing an entirely elementary log-volume
computation, one obtains a nontrivial height inequality. This
completes the proof of the main theorems of IUT (cf. [Alien], §3.7, (ii);
[EssLgc], §3.10, §3.11).
Here, it is important to note that although the term “closed loop” at
first might seem to suggest issues of “diagram commutativity” or
“log-volume compatibility” — i.e., issues of

“How does one conclude a relationship between the output
data and the input data of the closed loop?”

— in fact, such issues simply do not exist in this situation! That is
to say, the essential logical structure of the situation

A ∧B = A ∧ (B1 ∨B2 ∨ . . . )

=⇒ A ∧ (B1 ∨B2 ∨ . . . ∨B′
1 ∨B′

2 ∨ . . . )

=⇒ A ∧ (B1 ∨B2 ∨ . . . ∨B′
1 ∨B′

2 ∨ . . . ∨B′′
1 ∨B′′

2 ∨ . . . )

...

proceeds by fixing the logical AND “∧” relation satisfied by the
Θ-link and then adding various logical OR “∨” indeterminacies,
as illustrated in the following diagram (cf. [EssLgc], §3.10):

• = =
∧
= = = •

� ( ∨ • =) =
∧
= = = •

� ( ∨ ∨ • = =)
∧
= = = •

� ( ∨ ∨ ∨ • = =
∧
=) = = •

� ( ∨ ∨ ∨ ∨ • = =
∧
= =) = •

� ( ∨ ∨ ∨ ∨ ∨ • = =
∧
= = =) •

� ( ∨ ∨ ∨ ∨ ∨ ∨ • = =
∧
= = = • )
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§7. RCS-redundancy, Frobenius-like/étale-like strs., and
Θ-/log-links
(cf. [Alien], §3.3, (ii); [EssLgc], Example 2.4.7; [EssLgc], §3.1, §3.2, §3.3,
§3.4, §3.8, §3.11)

· RCS (“redundant copies school”) model of IUT
(i.e., “RCS-IUT” — cf. [EssLgc], §3.1):
This model ignores the various crucial intertwinings of two dims.
in IUT (such as addition/multiplication, local unit groups/value groups,
Θ-link/log-link, etc.).

Instead one works relative to a single rigidified ring structure by
implementing, as described below, various “RCS-identifications” of
“RCS-redundant” copies of objects — i.e., on the grounds that such
RCS-identifications may be implemented without affecting the essential
logical structure of the theory (cf. §2, §3!):
(RC-FrÉt) the Frobenius-like and étale-like versions of objects in

IUT are identified;

(RC-log) the (Θ±ellNF-)Hodge theaters on opposite sides of the
log-link in IUT are identified;

(RC-Θ) the (Θ±ellNF-)Hodge theaters on opposite sides of the
Θ-link in IUT are identified.

Thus, locally, if

Ok is the ring of integers of an algebraic closure k of Qp,

k ⊆ k is a finite subextension of Qp,

q ∈ Ok is a nonzero nonunit,

G
def
= Gal(k/k), and

Π (� G) is the étale fundamental group of some hyperbolic curve
(say, of strictly Belyi type) over k,

then we obtain the following situation:
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RCS-Θ-link:

(k ⊇) (qN )N
∼→ qN (⊆ k)

. . . where the copies of “k”, “G � k”, and “G � O×μ

k
” on op-

posite sides are identified (and in fact N = 12, 22, . . . , j2, . . . , (l�)2,

but we think of N as some fixed integer ≥ 2);

RCS-log-link:

(k ⊇) O×
k

logp−→ k

. . . where the copies of “k”, “Π � k”, and “Π � O×
k
” on oppo-

site sides are identified.

Then the RCS-Θ-link identifies

(0 �=) N · ord(q) = ord(qN )

with ord(q) (where ord : k× → Z is the valuation), which yields (since
N �= 1) a “contradiction”!

· Elementary observation: (cf. §2; [EssLgc], Example 3.1.1)

Let †R, ‡R be (not necessarily distinct!) copies of R. Let 0 < x, y ∈ R;
write †x, ‡x, †y, ‡y for the corresponding elements of †R, ‡R. If these
two copies †R, ‡R of R are distinct, we may glue †R to ‡R along

†R ⊇ {†x} ∼→ {‡y} ⊆ ‡R

without any consequences or contradictions. On the other hand, if †R
and ‡R are the same copy of R, then to assert that †R is glued to ‡R
along

‡R = †R ⊇ {†x} ∼→ {‡y} ⊆ ‡R = †R

implies that we have a contradiction, unless x = y.
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· Note that the RCS-identification (RC-Θ) discussed above may
be regarded as analogous to identifying the two distinct copies of
the ring scheme A1 that occur in the conventional gluing of these
two distinct copies along the group scheme Gm to obtain P1. That
is to say, the RCS-assertion of some sort of logical equivalence

IUT ⇐⇒ RCS-IUT

amounts to an assertion of an equivalence

“P1” ⇐⇒
(

“A1 regarded up to some sort of
identification of the standard coord.

T with its inverse T−1”

)

(cf. §2; [EssLgc], Example 2.4.7) — i.e., which is absurd!

· Fundamental Problem with RCS-IUT:
(cf. [EssLgc], §3.2, §3.4, §3.8, §3.11)
There does not exist any single “neutral” ring structure with
a single element “∗” such that

(∗ = qN ) ∧ (∗ = q)

Of course, there exists a single “neutral” ring structure with a single
element “∗” such that

(∗ = qN ) ∨ (∗ = q)

— but this requires one to contend, in RCS-IUT, with a fundamental
(drastic!) indeterminacy (ΘORInd) that renders the entire theory
(i.e., RCS-IUT, not IUT!) meaningless!

That is to say, the essential logical structure of IUT depends, in a very
fundamental way, on the crucial logical AND “∧” property of the
Θ-link, i.e., that the abstract F��×μ-prime-strip in the Θ-link,
regarded up to isomorphism, is simultaneously the Θ-pilot on the LHS
of the Θ-link AND the q-pilot on the RHS of the Θ-link.
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This is possible precisely because the — “weaker than ring” structures
given by — realified Frobenioids and multiplic. monoids with abstract
group actions that constitute these Θ-/q-pilot F��×μ-prime-strips are
isomorphic — i.e., unlike the “field plus distinguished element” pairs

(k, qN ) and (k, q),

which are not isomorphic!

( . . . cf. the situation with P1: there does not exist a single ring
scheme A1 with a single rational function “∗” such that

(∗ = T−1) ∧ (∗ = T ).

There only exists a single ring scheme A1 with a single rational func-
tion “∗” such that (∗ = T−1) ∨ (∗ = T ).)

Here, we note that the RCS-identifications of

G on opposite sides of the RCS-Θ-link or
Π on opposite sides of the RCS-log-link or

— which arise from Galois-equivariance properties with respect to
the single “neutral” ring structure discussed above, i.e., which is
subject to the (drastic!) (ΘORInd) indeterminacies — yield false
symmetry/coricity (such as the symmetry of “Π � G � Π”)
properties, i.e., false versions of the symm./cor. props. discussed in §3.
Indeed, the various Galois-rigidifications — i.e., embeddings of the
abstract topological groups involved into the group of automorphisms
of some field — that underlie these Galois-equivariance or false
symmetry/coricity properties are unrelated to the Galois-rigidifications
that underlie the corresponding symmetry/coricity properties of §3.
That is to say, setting up a situation in which these symm./cor. props.
of §3 do indeed hold is the whole point of “inter-universality”, i.e.,
working with abstract groups, abstract monoids, etc.!

· Finally, we observe that (cf. [Alien], §3.3, (ii); [EssLgc], §3.3)
the very definition of the log-link, Θ-link (cf. §2;
log : nondilated unit groups � dilated value groups!)

=⇒ the falsity of (RC-log):
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Indeed, there is no natural way to relate the two Θ-links (i.e.,
the two horizontal arrows below) that emanate from the domain
and codomain of the log-link (i.e., the left-hand vertical arrow)

• Θ−→ •�⏐⏐log

...
??...• Θ−→ •

— that is to say, there is no natural candidate for “??” (i.e., such
as, for instance, an isomorphism or the log-link between the two
bullets “•” on the right-hand side of the diagram) that makes the
diagram commute. Indeed, it is an easy exercise to show that
neither of these candidates for “??” yields a commutative diagram.

· Analogy with classical complex Teichmüller theory:
(cf. [EssLgc], Example 3.3.1)

Let λ ∈ R>1. Recall the most fundamental deformation of complex
structure in classical complex Teichmüller theory

Λ : C → C

C 
 z = x+ iy �→ ζ = ξ + iη
def
= λ · x+ iy ∈ C

— where x, y ∈ R. Let n ≥ 2 be an integer, ω a primitive n-th root
of unity. Write (ω ∈) μn ⊆ C for the group of n-th roots of unity.
Then observe that

if n ≥ 3, then there does not exist ω′ ∈ μn such that
Λ(ω · z) = ω′ · Λ(z) for all z ∈ C.

(Indeed, this observation follows immediately from the fact that if
n ≥ 3, then ω �∈ R.) That is to say, in words,

Λ is not compatible with multiplication by μn unless n = 2
(in which case ω = −1).

This incompatibility with “indeterminacies” arising from multipli-
cation by μn, for n ≥ 3, may be understood as one fundamental rea-
son for the special role played by square differentials (i.e., as op-
posed to n-th power differentials, for n ≥ 3) in classical complex
Teichmüller theory.
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§8. Chains of gluings/logical ∧ relations
(cf. [EssLgc], §3.5, §3.6, §3.11; [ClsIUT], §2)

· Fundamental Question:
Why is the logical AND “∧” relation of the Θ-link so
fundamental in IUT?

· Consider, for instance, the classical theory of crystals
(cf. [ClsIUT], §2; [EssLgc], §3.5, (CrAND), (CrOR), (CrRCS)):

The “crystals” that appear in the conventional theory of crystals may
be thought of as “∧-crystals”. Alternatively, one could consider the
(in fact meaningless!) theory of “∨-crystals”. One verifies easily that
this theory of “∨-crystals” is in fact essentially equivalent to the the-
ory obtained by replacing the various thickenings of diagonals that
appear in the conventional theory of crystals by the “(−)red” of these
thickenings, i.e., by the diagonals themselves! Finally, we observe
that consideration of “∨-crystals” corresponds to the indeterminacy
(ΘORInd) that appears in RCS-IUT, i.e.:

IUT ←→ “∧-crystals”
RCS-IUT ←→ “∨-crystals”

· Frequently Asked Question:
In IUT, one starts with the fundamental logical AND “∧” rela-
tion of the Θ-link, which holds precisely because of the distinct
labels on the domain/codomain of the Θ-link. Then what is the
the minimal amount of indeterminacy that one must intro-
duce in order to delete the distinct labels without invalidating
the fundamental logical AND “∧” relation?

In short, the answer (cf. §6!) is that one needs (Ind1), (Ind2),
(Ind3), together with the operation of forming the holomorphic
hull. In some sense, the most fundamental of these indets. is

(Ind3),

which in fact in some sense “subsumes” the other indeterminacies
— at least “to highest order”, i.e., in the height inequalities that
are ultimately obtained (cf. [EssLgc], §3.5, (CnfInd1+2), (CnfInd3);
[EssLgc], §3.11, (Ind3>1+2)).
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Recall from §4 that (Ind3) is an inevitable consequence of the non-
commutativity of the log-Kummer correspondence

. . .
log−→ • log−→ • log−→ • log−→ . . .

. . . ↘ ↓ ↙ . . .

◦

(cf. also the discussion of the falsity of (RC-log), (RC-FrÉt) in §7!).
On the other hand, observe that since automorphisms of the (topo-
logical module constituted by the) log-shell Iv always preserve the
submodule

pn · Iv
(where n ≥ 0 is an integer) — i.e., even if they do not necessarily
preserve Ov ⊆ Iv or positive powers of the maximal ideal mv ⊆ Ov!
— it follows immediately that

(Ind1) (or, a fortiori, the “Πv version” of (Ind1) — cf. the
discussion of (Ind1) in §3) and

(Ind2)

(both of which induce automorphisms of Iv) can never account for
any sort of “confusion” (cf. the definition of the Θ-link) between

“q(l
�)2

v
” and “q

v
”

(cf. [EssLgc], §3.5, (CnfInd1+2), (CnfInd3); [EssLgc], Example 3.5.1;
[EssLgc], §3.11, (Ind3>1+2))! This is a common misunderstanding!

· Now let us return to the Fundamental Question posed above.

We begin our discussion by observing (cf. [EssLgc], §3.6) that
(∧-Chn) the logical structure of IUT proceeds by observing a

chain of AND relations “∧” (not a chain of inter-
mediate inequalities! — cf. [EssLgc], §3.6, (Syp3)).

That is to say, one starts with the logical AND “∧” relation of the
Θ-link. This logical AND “∧” relation is preserved when one passes to
the multiradial representation of the Θ-pilot as a consequence
of the following fact:
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(∧-Input) the input data for this multiradial algorithm consists
solely of an abstract F��×μ-prime-strip; moreover,
this multiradial algorithm is functorial with respect to
arbitrary isomorphisms between F��×μ-prime-strips.

Indeed, at a more technical level, we make the fundamental observa-
tion that this multiradial algorithm proceeds by successive applica-
tion, in one form or another, of the following principle of “extension
of indeterminacies”:

(ExtInd) If A, B, and C are propositions, then it holds (that
B =⇒ B ∨ C and hence) that

A ∧B =⇒ A ∧ (B ∨ C).

(cf. the final portion of §6!). Applications of (ExtInd) may be further
subclassified into the following two types:

(ExtInd1) (“set-theoretic”) operations that consist of simply adding
more possibilites/indeterminacies (which corresponds
to passing from B to B ∨ C) within some fixed container;

(ExtInd2) (“stack-theoretic”) operations in which one identifies (i.e.,
“crushes together”, by passing from B to B ∨ C) objects
with distinct labels, at the cost of passing to a situation
in which the object is regarded as being only known up
to isomorphism

(cf. the discussion of §9 below).

At this point, we recall from §6 that the ultimate goal of various appli-
tions of (ExtInd) in the algorithms that constitute the multiradial
representation of the Θ-pilot is to

exhibit the (value group portion of the) Θ-pilot at (0, 0) (i.e.,
which appears in the Θ-link!) as one of the possibilities within
a container arising from the RHS of the Θ-link

(cf. the situation surrounding rational functions on P1, as discussed in
[EssLgc], Example 2.4.7, (ii)!).

In particular, any problems in understanding the essential logical str.
of IUT (i.e., the argument of §6) may be diagnosed/analyzed by asking
the following diagnostic question:
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(∧-Dgns) precisely where in the finite sequence of steps that
appear is the first step at which the person feels that
the preservation of the crucial AND relator “∧” is
no longer clear?
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§9. Poly-morphisms, descent to underlying strs., and inter-
universality
(cf. [EssLgc], Example 3.1.1; §3.7, §3.8, §3.9, §3.11)

· In IUT, one often considers poly-morphisms, i.e., sets of mor-
phisms between objects — such as full poly-isomorphisms (the
set of all isomorphisms between two objects) — as a tool to keep
track explicitly of all possibilities that appear. Classical examples
include homotopy classes of continuous maps in topology and
outer homomorphisms (i.e., homomorphisms considered up to
composition with inner automorphisms). Roughly speaking, working
with full poly-isomorphisms corresponds to “considering objects up
to isomorphism”. From the point of view of the chains of ∧’s/ ∨’s

A ∧B = A ∧ (B1 ∨B2 ∨ . . . )

=⇒ A ∧ (B1 ∨B2 ∨ . . . ∨B′
1 ∨B′

2 ∨ . . . )

=⇒ A ∧ (B1 ∨B2 ∨ . . . ∨B′
1 ∨B′

2 ∨ . . . ∨B′′
1 ∨B′′

2 ∨ . . . )

...

discussed in §6, consideration of poly-morphisms corresponds to
adding to the collection of possibilities, i.e., to the collection of ∨’s
that appear (cf. “set-theoretic” (ExtInd1)!) — cf. [EssLgc], §3.7.

· One fundamental aspect of IUT lies in the use of numerous func-
torial algorithms that consist of the construction

input data � output data

of certain output data associated to given input data. Often it is
natural to regard the “input data” as “original data” and to re-
gard the “output data” as “underlying data”:

input data � output data

|| ||
original data underlying data

One important example of this sort of situation in IUT involves
the notion of “q-/Θ-intertwinings” on an F��×μ-prime-strip
(cf. [EssLgc], §3.9):
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original data (“equipped with an intertwining”):
the q-pilot F��×μ-prime-strip (in the case of the “q-intertwining”)
or the Θ-pilot F��×μ-prime-strip (in the case of the “Θ-intertwin-
ing”), equipped with the auxiliary data of how this q-/Θ-pilot F��×μ-
prime-strip is constructed from some (Θ±ellNF-)Hodge theater;

underlying data:
the abstract F��×μ-prime-strip associated to the above original data,
i.e., obtained by forgetting the auxiliary data.

· In general, in any sort of situation involving original/underlying
data, it is natural to consider the issue of descent to (a functorial
algorithm in) the underlying data of a functorial algorithm in
the original data: we say that

a functorial algorithm Φ in the original data descends to a
functorial algorithm Ψ in the underlying data if there exists
a functorial isomorphism

Φ
∼→ Ψ|original data

between Φ and the restriction of Ψ, i.e., relative to the given
construction original data � underlying data.

That is to say, roughly speaking, to say that the functorial algorithm
Φ in the original data descends to the underlying data means, in es-
sence, that although the construction constituted by Φ depends, a
priori, on the “finer” original data, in fact, up to natural isomor-
phism (cf. “stack-theoretic” (ExtInd2)!), the functorial algorithm only
depends on “coarser” underlying data.

· One elementary example of descent is the following (cf. [EssLgc],
Example 3.9.1):

Let X be a scheme, T a topological space. Write

· |X| for the underlying topological space of X,

· Open(X) for the category of open subschemes of X and open
immersions over X,

· Open(T ) for the category of open subsets of T and open
immersions over T .
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Then the functorial algorithm

X �→ Open(X)

— defined, say, on the category of schemes and morphisms of schemes
— descends, relative to the construction X � |X|, to the functorial
algorithm

T �→ Open(T )

— defined, say, on the category of topological spaces and continuous
maps of topological spaces. That is to say, there is a natural functor-
ial isomorphism

Open(X)
∼→ Open(|X|)

(i.e., more precisely, following the conventions employed in IUT, a
natural functorial isomorphism class of equivalences of categories)
— cf. (ExtInd2)!

· Inter-universality in IUT— cf. the abstract topological groups/mon-
oids (as opposed to Galois groups/multiplicative monoids of rings!)
that appear in the Θ-link, as discussed in §2, §3, §4, §7 — arises from
the fact that the structures common (cf. “∧”!) to both sides of the
Θ-link are weaker than ring structures. On the other hand, despite
this “ring str. vs. weaker than ring str.” difference, at a purely foun-
dational level, the resulting indeterminacies (i.e., (Ind1), (Ind2)) are
in fact completely qualitatively similar to the inner automorphism
indeterminacies in [SGA1] (cf. [EssLgc], §3.8).
In this context, it is useful to recall the elementary fact that these
inner automorphism indeterminacies are unavoidable (cf. [EssLgc],
Example 3.8.1, (i)!):

Let

k be a perfect field;

k an algebraic closure of k;

N ⊆ Gk
def
= Gal(k/k) a normal open subgroup of Gk;

σ ∈ Gk such that the automorphism ισ : N
∼→ N of N given

by conjugating by σ is not inner.

(One verifies immediately that, for instance, if k is a number field or
a mixed-characteristic local field, then such N , σ do indeed exist.)
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Write

kN ⊆ k for the subfield of N -invariants of k,

GkN

def
= N ⊆ Gk.

Then observe that if one assumes that the functoriality of the étale
fundamental group holds even in the absence of inner automorphism
indeterminacies, then the commutative diagram of natural morphisms
of schemes

Spec(kN )
σ−→ Spec(kN )

↘ ↙
Spec(k)

induces a commutative diagram of profinite groups

GkN

ισ−→ GkN

↘ ↙
Gk

— which (since the natural inclusion N = GkN
↪→ Gk is injective!)

implies that ισ is the identity automorphism, in contradiction to our
assumption concerning σ!

· As a consequence of the inter-universality considerations discussed
above (e.g., the need to work with abstract topological groups!), one
must consider various reconstruction algorithms in IUT. Since
reconstruction of an object is never “set-theoretically on the nose”,
but rather always up to (a necessarily indeterminate!) isomorphism
— whence the use of full poly-isomorphisms! — such reconstruction
algorithms necessarily lead to (ExtInd2) indeterminacies. At first
glance, this phenomenon may seem rather strange, but in fact, at a
purely foundational level, this phenomenon is completely qualitatively
similar to the indeterminacies that appear in such classical construc-
tions as

· the notion of an algebraic closure of a field,
· projective/inductive limits, or
· cohomology modules (i.e., which arise as subquotients of “some”
indeterminate resolution)

— cf. [EssLgc], §3.8, §3.9, §3.11.
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· As a result of such (ExtInd2) indeterminacies, one does not
obtain any nontrivial consequences/inequalities (cf. the “Elemen-
tary Observation” of §7; [EssLgc], Example 3.1.1; [EssLgc], §3.8,
§3.9) at “stack-theoretic” intermediate steps, i.e., even if one applies
the log-volume!

In order to obtain nontrivial consequences/inequalities (cf. the “Ele-
ementary Observation” of §7; [EssLgc], Example 3.1.1; [EssLgc], §3.8,
§3.9), it is necessary to obtain a “set-theoretic” closed loop, i.e.,
by

· applying the multiradial representation of the Θ-pilot, which
gives rise to the indeterminacies (Ind1), (Ind2), (Ind3);

· forming the holomorphic hull,

· symmetrizing with respect to vertical log-shifts in the 1-column;

· and, finally, applying the log-volume

— as described in §6.

Πv � Gv � Πv

�
�

Aut(Gv)
�⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

some portion of
the Frobenius-like

local data at
v of the

(Θ±ellNF-)
Hodge theater
in the domain
of the Θ-link

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

some portion of
the Frobenius-like

local data at
v of the

(Θ±ellNF-)
Hodge theater
in the codomain
of the Θ-link

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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§10. Closed loops via multiradial representations and holomorphic
hulls
(cf. [EssLgc], Example 2.4.6, (iii); [EssLgc], §3.10, §3.11; [ClsIUT], §2)

· We begin by observing that by eliminating superfluous overlaps
from the chain of ∧’s and ∨’s that constitutes the essential logical
structure of IUT (cf. §6) and replacing the various logical OR “∨’s”
by logical XOR “∨̇’s”, we may think of this essential logical str.
of IUT as consisting of a chain of ∧’s and ∨̇’s:

A ∧B = A ∧ (B1 ∨̇ B2 ∨̇ . . . )

=⇒ A ∧ (B1 ∨̇ B2 ∨̇ . . . ∨̇ B′
1 ∨̇ B′

2 ∨̇ . . . )

=⇒ A ∧ (B1 ∨̇ B2 ∨̇ . . . ∨̇ B′
1 ∨̇ B′

2 ∨̇ . . . ∨̇ B′′
1 ∨̇ B′′

2 ∨̇ . . . )

...

Recall that from the point of view of the arithmetic of the field F2,

∧ ←→ multiplication
∨̇ ←→ addition,

while from the point of view of the arithmetic of the truncated ring
of Witt vectors F2 × F2 (i.e., Z/4Z),

∧ ←→ multiplication of Teichmüller reps. of F2

(∧, ∨̇) ←→ carry-addition on Teichmüller reps. of F2

(cf. [EssLgc], Example 2.4.6, (iii)). That is to say, carry-addition —
which may thought of as a sort of

“∧ stacked on top of an ∨̇”
— is remarkably reminiscent of the essential logical structure of
IUT, as well as of the fact that IUT itself is a theory concerning the
explication of how the two “combinatorial dimensions” of a ring are
mutually intertwined, i.e., how the multiplicative structure of a ring is
“stacked on top of” the additive structure of a ring! In the case of the
chain of ∧’s and ∨̇’s that constitutes the essential logical structure
of IUT, we observe that:
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∧ ←→

⎛⎜⎝multiplicative Θ-link;
data common to the

domain/codomain of the
Θ-link

⎞⎟⎠

∨̇ ←→

⎛⎜⎝ additive log-shells
arising from the log-link;
mutually exclusive distinct

possibilities

⎞⎟⎠
Finally, relative to the analogy between IUT and crystals, it is also of
interest to observe that:

∧ ←→
(

crystals
= “∧-crystals”

)

∨̇ ←→
(
mutually exclusive
pull-backs of the
Hodge filtration

)

— where we recall that it is precisely the “intertwining between these
∧ / ∨̇ aspects” that gives rise to the Kodaira-Spencer morphism
(cf. [EssLgc], (∧(∨̇)-Chn); [ClsIUT], §2).

· We conclude by reviewing once again the discussion of §6, this
time taking into account the various subtleties discussed in §7,
§8, §9 (cf. also [EssLgc], §3.10, §3.11).
We begin by recalling that the log-Kummer correspondence

. . .
log−→ • log−→ • log−→ • log−→ . . .

. . . ↘ ↓ ↙ . . .

◦

— which juggles the dilated and nondilated underlying arith-
metic dimensions of the rings involved (cf. §2)
log : nondilated unit groups � dilated value groups
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— yields, by considering invariants with respect to the log-link and
applying various descent operations

(0, 0)
(Ind3)� (0, ◦) (Ind1)� (0, ◦)� (Ind2)� (0, 0)�

Θ-link∼→ (1, 0)�

(where we recall that the last step involving (Ind2) plays the role of
fixing the vertical coordinate, so that (Ind1), (Ind2) are not mixed
with (Ind3) — cf. the discussion of “C×\GL+

2 (R)/C
×” at the end of

§5!), the multiradial representation of the Θ-pilot, up to the
indeterminacies (Ind1), (Ind2), (Ind3).

Then forming the holomorphic hull and symmetrizing with respect
to vertical log-shifts in the 1-column

1-
column

1-
column

...
...

• •�⏐⏐log ↗
�⏐⏐log

• •�⏐⏐log ↗
�⏐⏐log

• •�⏐⏐log ↗
�⏐⏐log

• •
...

...

yields a closed loop, to which we may apply the log-volume to obtain
“set-theoretic” consequences/inequalities (cf. the “Elementary
Observation” of §7; [EssLgc], Example 3.1.1; [EssLgc], §3.8, §3.9).
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Here, we recall that the repeated introduction of “stack-theoretic”
(ExtInd2) indeterminacies

Πv � Gv � Πv

�
�

Aut(Gv)
�⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

some portion of
the Frobenius-like

local data at
v of the

(Θ±ellNF-)
Hodge theater
in the domain
of the Θ-link

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

some portion of
the Frobenius-like

local data at
v of the

(Θ±ellNF-)
Hodge theater
in the codomain
of the Θ-link

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
— especially in the context of various reconstruction algorithms —
allows us to achieve the central goal of exhibiting the (value group
portion of the) Θ-pilot at (0, 0) (i.e., which appears in the Θ-link!)
as one of the possibilities within a container arising from the
RHS of the Θ-link. Moreover, the essential logical structure

A ∧B = A ∧ (B1 ∨B2 ∨ . . . )

=⇒ A ∧ (B1 ∨B2 ∨ . . . ∨B′
1 ∨B′

2 ∨ . . . )

=⇒ A ∧ (B1 ∨B2 ∨ . . . ∨B′
1 ∨B′

2 ∨ . . . ∨B′′
1 ∨B′′

2 ∨ . . . )

...

underlying the closed loop referred to above means that there are no
issues of “diagram commutativity” or “log-vol. compatibility”
to contend with:
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• = =
∧
= = = •

� ( ∨ • =) =
∧
= = = •

� ( ∨ ∨ • = =)
∧
= = = •

� ( ∨ ∨ ∨ • = =
∧
=) = = •

� ( ∨ ∨ ∨ ∨ • = =
∧
= =) = •

� ( ∨ ∨ ∨ ∨ ∨ • = =
∧
= = =) •

� ( ∨ ∨ ∨ ∨ ∨ ∨ • = =
∧
= = = • )
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