Frobenioids 1

Weronika Czerniawska

The Univeristy of Nottingham
18.07.2016

A Frobenioid is a category that is meant to encode the theory of divisors and line bundles on "coverings" i.e. normalizations in various finite separable extensions of the function field of a given normal integral scheme.

Having a sketchy idea of how to formulate IUT, Mochizuki developed the theory of Frobenioids which provided a unified, intrinsic, category theoretic language to encode the theory of divisors and line bundles in appropriate categories, general enough to fit in whatever would be developed.

Plan

1. Motivating examples
2. Basic definitions
3. Model Frobenioids

Example (Frobenioid of geometric origin)

V proper normal variety over k
K the function field

- Div_{K} the set of \mathbb{Q}-Cartier divisors on V

For a finite extension L of K put

- Div_{L} prime divisors of the normalization $V[L]$ that map into Div_{K}
- effective Cartier divisors of $V[L]$ with support in Div_{L}

$$
\Phi(L) \in \mathfrak{M o n}
$$

- (a subgroup of) Cartier divisors

$$
\Phi^{\mathrm{gp}}(L) \in \mathfrak{G r p} \subset \mathfrak{M o n}
$$

- the group of rational functions on $V[L]$ with zeroes and poles belonging to Div_{L}

$$
\mathbb{B}(L)
$$

- principal divisors homomorphism

$$
\mathbb{B}(L) \rightarrow \Phi^{\mathrm{gp}}(L)
$$

Let \widetilde{K} be a Galois extension of K (can be infinite) with the Galois group

$$
G \stackrel{\text { def }}{=} \operatorname{Gal}(\widetilde{K} / K)
$$

which has a natural profinite topology.

The connected objects of the category of finite sets with continuous G-action (those which don't split into a disjoint union of non-empty G-sets)

$$
\mathcal{D} \stackrel{\text { def }}{=} \mathcal{B}(G)^{0}
$$

can be identified with finite extensions $K \subset L \subset \widetilde{K}$.

We can consider a category of pairs

$$
(L, \mathcal{L})
$$

where $K \subset L \subset \widetilde{K}$ is finite and \mathcal{L} is a line bundle on $V[L]$ with morphisms

$$
\phi:(L, \mathcal{L}) \rightarrow(M, \mathcal{M})
$$

consisting of

- $\operatorname{Spec}(L) \rightarrow \operatorname{Spec}(M)$ morphism over $\operatorname{Spec}(K)$
- $d \in \mathbb{N}_{\geq 1}$
- $\left.\mathcal{L}^{\otimes d} \rightarrow \mathcal{M}\right|_{V[L]}$ morphism of line bundles whose zero locus is a Cartier divisor supported in Div_{L}

Example (Frobenioid of arithmetic origin)

L : a number field
$\mathbb{V}(L)$: the set of valuations of L,
L_{v} : the completion of L at $v \in \mathbb{V}(L)$,

$$
\begin{gathered}
\mathcal{O}_{v}^{\times} \stackrel{\text { def }}{=}\{|z|=1\}, \quad \mathcal{O}_{v}^{\triangleright} \stackrel{\text { def }}{=}\{0<|z| \leq 1\} \\
\operatorname{ord}\left(L_{v}\right) \stackrel{\text { def }}{=} L_{v}^{\times} / \mathcal{O}_{v}^{\times} \cong\left\{\begin{array}{l}
\mathbb{Z}, \text { if } v \text { nonarchimedean } \\
\mathbb{R}, \text { if } v \text { archimedean }
\end{array}\right. \\
\operatorname{ord}\left(\mathcal{O}_{v}^{\triangleright}\right) \stackrel{\text { def }}{=} \mathcal{O}_{v}^{\triangleright} / \mathcal{O}_{v}^{\times} \cong\left\{\begin{array}{l}
\mathbb{Z}_{\geq 0}, \text { if } v \text { non-archimedean } \\
\mathbb{R}_{\geq 0}, \text { if } v \text { archimedean }
\end{array}\right. \\
\operatorname{ord}\left(L_{v}\right)=\operatorname{ord}\left(\mathcal{O}_{v}^{\triangleright}\right)^{\mathrm{gp}} .
\end{gathered}
$$

- effective arithmetic divisors on L

$$
\Phi(L) \stackrel{\text { def }}{=} \bigoplus_{v \in \mathbb{V}(L)} \operatorname{ord}\left(\mathcal{O}_{v}^{\triangleright}\right)
$$

- arithmetic divisors on L

$$
\Phi(L)^{\mathrm{gp}}=\bigoplus_{v \in \mathbb{V}(L)} \operatorname{ord}\left(L_{v}\right)
$$

- multiplicative group of L

$$
\mathbb{B}(L) \stackrel{\text { def }}{=} L^{\times}
$$

- principal divisor homomorphism

$$
\mathbb{B}(L) \rightarrow \Phi(L)^{\mathrm{gp}}
$$

Let F be a number field and let \widetilde{F} / F be a Galois extension with Galois group

$$
G \stackrel{\text { def }}{=} \operatorname{Gal}(\widetilde{F} / F)
$$

G has a natural profinite topology.

The connected objects of the category of finite sets with continuous G-action

$$
\mathcal{D} \stackrel{\text { def }}{=} \mathcal{B}(G)^{0}
$$

can be again identified with finite extensions $F \subset L \subset \widetilde{F}$.

We can consider a category of pairs

$$
(L, \mathcal{L})
$$

where $F \subset L \subset \widetilde{F}$ is finite and \mathcal{L} is an arithmetic line bundle on $\operatorname{Spec}\left(\mathcal{O}_{L}\right)$ with morphisms

$$
\phi:(L, \mathcal{L}) \rightarrow(M, \mathcal{M})
$$

consisting of

- $\operatorname{Spec}(L) \rightarrow \operatorname{Spec}(M)$ morphism over $\operatorname{Spec}(F)$
- $d \in \mathbb{N}_{\geq 1}$
- $\left.\mathcal{L}^{\otimes d} \rightarrow \mathcal{M}\right|_{L}$ morphism of arithmetic line bundles on L.

A Frobenioid is a category \mathcal{C} which consists of the following data

For a commutative monoid $M \in \mathfrak{M o n}$

- $M^{ \pm}$submonoid of invertible elements of M
- $M^{\text {char }}=M / M^{ \pm}$
- Msp groupification of M

Definition

A monoid $M \in \mathfrak{M o n}$ is called

1. sharp if $M^{ \pm}=0$
2. integral if $\iota: M \rightarrow M^{\mathrm{gP}}$ is injective
3. saturated if for $a \in M^{g p}$ if $n a \in \iota(M)$ for $n \in \mathbb{N}_{\geq 1}$ then $a \in \iota(M)$
4. of characteristic type if fibres of $M \rightarrow M^{\text {char }}$ are torsors over $M^{ \pm}$
5. group-like if $M^{\text {char }}$ is trivial

Definition

A monoid is called

- pre-divisorial if it is integral, saturated and of characteristic type
- divisorial if it is pre-divisorial and sharp

Definition

A morphism

$$
M \rightarrow N
$$

in $\mathfrak{M o n}$ is called characteristically injective if it is injective and the induced morphism

$$
M^{\text {char }} \rightarrow N^{\text {char }}
$$

is also injective.

Definition

- A category is called connected if its associated graph

$$
\begin{aligned}
& \text { vertices } \longleftrightarrow \text { objects } \\
& \text { edges } \longleftrightarrow \text { morphisms }
\end{aligned}
$$

is connected.

- A category is called totally epimorphic if every morphism in this category is an epimorphism.

Definition

Let \mathcal{C} be a category. An arrow $\beta: B \rightarrow A$ is called

- fiberwise-surjective if for every arrow $\gamma: C \rightarrow A$ there exist arrows $\delta_{B}: D \rightarrow B$ and $\delta_{A}: D \rightarrow A$ such that the following diagram

commutes.
- FSM-morphism if it is a fiberwise-surjective monomorphism.

Definition

Let \mathcal{D} be a category. A monoid on \mathcal{D} is a contravariant functor

$$
\Phi: \mathcal{D} \rightarrow \mathfrak{M o n}
$$

such that for every morphism $\alpha: B \rightarrow A$ in \mathcal{D}

- $\alpha^{*}: \Phi(A) \rightarrow \Phi(B)$ is characteristically injective
- if α is FSM-morphism then α^{*} is an isomorphism of monoids,
where

$$
\alpha^{*} \Phi(A) \rightarrow \Phi(B):=\Phi(\alpha: B \rightarrow A)
$$

Definition (Elementary Frobenioid)

Let Φ be a monoid on a category \mathcal{D}. Elementary Frobenioid associated to Φ is a category

$$
\mathbb{F}_{\Phi}
$$

which objects are just objects of the category \mathcal{D} and morphisms $\phi: A \rightarrow B$ are triples

$$
\phi=\left(\phi_{\mathcal{D}}, \operatorname{Div}(\phi), \operatorname{deg}_{\mathrm{Fr}}(\phi)\right)
$$

where

- $\phi_{\mathcal{D}}: A \rightarrow B$ is a morphism of \mathcal{D},
- $\operatorname{Div}(\phi) \in \Phi(A)$ is the zero-divisor of ϕ,
- $\operatorname{deg}_{\mathrm{Fr}}(\phi) \in \mathbb{N}_{\geq 1}$ is the Frobenius degree of ϕ.

The composite of two morphisms

$$
\phi=\left(\phi_{\mathcal{D}}, Z_{\phi}, n_{\phi}\right): A \rightarrow B, \quad \psi=\left(\phi_{\mathcal{D}}, Z_{\psi}, n_{\psi}\right): B \rightarrow C
$$

is given as

$$
\psi \circ \phi=\left(\psi_{\mathcal{D}} \circ \phi_{\mathcal{D}}, \psi_{\mathcal{D}}^{*}\left(Z_{\psi}\right)+n_{\psi} \cdot Z_{\phi}, n_{\psi} \cdot n_{\phi}\right): A \rightarrow C .
$$

Example

Let's consider the elementary Frobenioid $\mathbb{F}_{\Phi_{M}}$ associated to the functor

$$
\begin{aligned}
\Phi_{M}:\{\bullet\} & \mathfrak{M o n} \\
& \longleftrightarrow \stackrel{M}{M}
\end{aligned}
$$

on the one-morphism category $\{\bullet\}$. We have

$$
\mathbb{F}_{M}:=\mathbb{F}_{\Phi_{M}} \cong M \rtimes \mathbb{N}_{\geq 1}
$$

Indeed, the monoid of morphisms consists of triples

$$
\left(\operatorname{id}_{\{\bullet\}}, a, n\right)
$$

where $a \in M$ and $n \in \mathbb{N}_{\geq 1}$.

The composition of $\left(\operatorname{id}_{\{\bullet\}}, a_{1}, n_{1}\right)$ and $\left(\operatorname{id}_{\{\bullet\}}, a_{2}, n_{2}\right)$ can be seen as a multiplication

$$
\left(a_{1}, n_{1}\right) \cdot\left(a_{2}, n_{2}\right)=\left(a_{1}+n_{1} \cdot a_{2}, n_{1} \cdot n_{2}\right)
$$

in the semi-direct product

$$
M \rtimes \mathbb{N}_{\geq 1}
$$

Definition (Pre-Frobenioid)

Let

$$
\Phi: \mathcal{D} \rightarrow \mathfrak{M o n}
$$

be a monoid on a connected, totally epimorphic category \mathcal{D}.

Let

$$
\mathcal{C}
$$

be a connected, totally-epimorphic category.

We say that \mathcal{C} is a pre-Frobenioid if we have a covariant functor

$$
\mathcal{C} \rightarrow \mathbb{F}_{\Phi}
$$

Model Frobenioids

Let's consider the following data

- \mathcal{D} a connected a totally epimorphic category
- $\Phi: \mathcal{D} \rightarrow \mathfrak{M o n}$ a divisorial monoid
- $\mathbb{B}: \mathcal{D} \rightarrow \mathfrak{M o n}$ a group-like monoid
- $\operatorname{Div}_{\mathbb{B}}: \mathbb{B} \rightarrow \Phi^{\mathrm{gP}}$ a homomorphism of monoids

Proposition

We have a well defined category \mathcal{C} constructed in the following way

- the objects of \mathcal{C} are pairs of the form

$$
\left(A_{\mathcal{D}}, \alpha\right)
$$

where $A_{\mathcal{D}} \in \mathrm{Ob}(\mathcal{D})$ and $\alpha \in \Phi\left(A_{\mathcal{D}}\right)^{\mathrm{gp}}$

- a morphism

$$
\phi:\left(A_{\mathcal{D}}, \alpha\right) \rightarrow\left(B_{\mathcal{D}}, \beta\right)
$$

is a collection of data

- $\operatorname{deg}_{\mathrm{Fr}}(\phi) \in \mathbb{N}_{\geq 1}$
- Base $(\phi): A_{\mathcal{D}} \rightarrow B_{\mathcal{D}}$
- $\operatorname{Div}(\phi) \in \Phi(A)$
- $u_{\phi} \in \mathbb{B}(A)$ such that

$$
\operatorname{deg}_{\mathrm{Fr}} \cdot \alpha+\operatorname{Div}(\phi)=\left(\Phi^{\mathrm{gp}}(\operatorname{Base}(\phi))\right)(\beta)+\operatorname{Div}_{\mathbb{B}}\left(u_{\phi}\right)
$$

For given two morphisms $\phi\left(A_{\mathcal{D}}, \alpha\right) \rightarrow\left(B_{\mathcal{D}}, \beta\right), \psi:\left(B_{\mathcal{D}}, \beta\right) \rightarrow\left(C_{\mathcal{D}}, \gamma\right) \in \operatorname{Mor}(\mathcal{C})$ the composition data

$$
\psi \circ \phi=\left(\operatorname{deg}_{\mathrm{Fr}}(\psi \circ \phi), \operatorname{Base}(\psi \circ \phi), \operatorname{Div}(\psi \circ \phi), u_{\psi \circ \phi}\right)
$$

is defined as follows

- $\operatorname{deg}_{\mathrm{Fr}}(\psi \circ \phi)=\operatorname{deg}_{\mathrm{Fr}}(\psi) \cdot \operatorname{deg}_{\mathrm{Fr}}(\phi)$
- $\operatorname{Base}(\psi \circ \phi)=\operatorname{Base}(\psi) \circ \operatorname{Base}(\phi)$
- $\operatorname{Div}(\psi \circ \phi)=(\Phi(\operatorname{Base}(\phi)))(\operatorname{Div}(\psi))+\operatorname{deg}_{\mathrm{Fr}}(\psi) \cdot \operatorname{Div}(\phi)$
- $u_{\psi \circ \phi}=\mathbb{B}(\operatorname{Base}(\psi))\left(u_{\phi}\right)+\operatorname{deg}_{\mathrm{Fr}}(\psi) \cdot u_{\phi}$

There is a natural functor

$$
\mathcal{C} \rightarrow \mathbb{F}_{\Phi}
$$

given by

$$
\begin{gathered}
\left(A_{\mathcal{D}}, \alpha\right) \mapsto A_{\mathcal{D}} \\
\phi=\left(\operatorname{deg}_{\mathrm{Fr}}(\phi), \operatorname{Base}(\phi), \operatorname{Div}(\phi), u_{\phi}\right) \mapsto\left(\operatorname{Base}(\phi), \operatorname{Div}(\phi), \operatorname{deg}_{\mathrm{Fr}}(\phi)\right)
\end{gathered}
$$

so model Frobenioids are in particular pre-Frobenioids.

Example (Frobenioid of geometric origin)

V nice variety, K the function field and \widetilde{K} its Galois extension with $G:=\operatorname{Gal}(\widetilde{K} / K)$.

- $\mathcal{D}:=\mathcal{B}(G)^{0}$
- divisorial monoid
- group-like monoid

$$
\begin{aligned}
\mathbb{B}: & \underset{\mathcal{D} \longrightarrow \mathfrak{M o n}_{\text {on }}^{U}}{\stackrel{\sim}{L}} \stackrel{L}{L}^{\times}
\end{aligned}
$$

- homomorphism of monoids

We get a model Frobenioid $\mathcal{C}_{\widetilde{K} / K}$

which is exactly the Frobenioid of geometric origin described earlier.

Example (Frobenioid of arithmetic origin)

F a number field and \widetilde{F} its Galois extension with $G:=\operatorname{Gal}(\widetilde{F} / F)$.

- $\mathcal{D}:=\mathcal{B}(G)^{0}$
- divisorial monoid

$$
\Phi: \underset{\sim}{\mathcal{D}} \longrightarrow \bigoplus_{v \in \mathbb{V}(L)} \stackrel{\mathfrak{M}}{\text { on }}_{\stackrel{u}{L}} \quad \operatorname{ord}\left(\mathcal{O}_{v}^{\triangleright}\right)
$$

- group-like monoid

$$
\begin{aligned}
& \mathbb{B}: \mathcal{D} \longrightarrow \text { Mon }^{\text {on }} \\
& \stackrel{\Psi}{L} \longmapsto \stackrel{\cup}{L^{\times}}
\end{aligned}
$$

- homomorphism of monoids

$$
\begin{aligned}
\operatorname{Div}_{\mathbb{B}}: \underset{\sim}{\mathbb{B}} & \longrightarrow \Phi^{\mathrm{gp}} \\
L^{\times} & \longrightarrow \operatorname{PDiv}_{L}
\end{aligned}
$$

We get a model Frobenioid $\mathcal{C}_{\tilde{F}_{/ F}}$

which is the Frobenioid of arithmetic origin described earlier.

Plan for tomorrow

1. Torsor-theoretic approach to model Frobenioids.
2. Frobenioids in IUT.
3. The Main Theorem about reconstruction of the functor

$$
\mathcal{C} \rightarrow \mathbb{F}_{\Phi}
$$

that gives \mathcal{C} structure of a Frobenioid can be reconstructed from \mathcal{C} as a category.

