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This is a revised version of the slides used in the
author’s presentation at the workshop, following a
correction from Professor Mochizuki during the
discussion session about the optimal shape of [IUT
IV, Th. 1.10]. The change concerns the implication
about the Siegel zero. The effect of it is that the
IUT papers do not imply no Siegel zero for
L-functions attached to the odd Dirichlet characters
χ mod q of Q, but only the weaker property that
no such L-function has a real zero > 1− c

q
1
6 log q

,

with an effective (computable) constant c > 0.

The author apologizes for misrepresenting [IUT IV,
1.10] in the original version.



The abc conjecture (Some notation.)

On P ∈ P1(Q̄) \ {0, 1,∞}, all ε > 0 satisfy

h(P) ≤ (1 + ε)
(
cond[0]+[1]+[∞](P) + d(P)

)
+Oε,(...[Q(P):Q]?)(1),

where: h = abs. logarithmic Weil height, d(P) =
abs. logarithmic root discriminant of the field Q(P),

cond[0]+[1]+[∞](P) :=
1

[Q(P) : Q]

∑
v

log |k(v)|

over all v ∈ Mfin
Q(P) having v(x) > 0, v(1/x) > 0 or

v(x − 1) > 0 (where P = [x : 1]).



The abc conjecture (A comparison.)

In the case of complex function fields, McQuillan,
Yamanoi and Chen have proved Vojta’s “1 + ε”
conjecture, that the analogous bound holds in
P1
B \ D for D/B any (not necessarily isotrivial)

divisor. This holds without a dependence on the
degree.

A question: What then is the structure of the error
term, in both inequalities? Should we expect the
complex function field Vojta conjectures to hold
with an O(1/ε), as is the expectation in the
arithmetic case, and that this would be essentially
optimal?
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The abc conjecture, in a form suggested
by IUT.

log Θ ≤ 1

l
log q ?

Let E/F be an elliptic curve, l ≥ 5 a prime level;
K = F (E [l ]); h(E/F ) the Faltings height of E over
F ; e the highest ramification index in F/Q.
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The abc conjecture, in a form suggested
by IUT.

(abcΘ) 2h(E/F ) ≤ [F : Q]

l
· 2h(E/F )

+
1

[K : Q]
log |DK/Q|+ Ehr(K/Q) + C ,

where, with ep/K the highest ramification index of p
in K ,

Ehr(K/Q) =
∑
p∈MQ

ep/K≥p−1

log ep/K (“high ramification”).
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The abc conjecture, in a form suggested
by IUT.

In our case (IUT), we have:

Ehr(K/Q) . #{primes p ≤ el ramifying in K}·log el ,

which by Chebyshev’s theorem is � el .

The optimal choice of l then gives a square root
error as F ranges through number fields of a fixed
degree.



Why would I formulate the abc hypothesis
like that?

I When h(E/F ) is depleted at 2 and ∞, and
under the appropriate “genericity” restrictions
on initial data (E/F split semistable, K/F a
large extension, l prime to the orders of the
q-parameters. . .), this is exactly what [IUT-IV,
Thm. 1.10] amounts to.



Why would I formulate the abc hypothesis
like that?

I This is a statement that shows explicitly the
role of arithmetic ramification in the structure
of the main as well as “error” terms.

I It suggests that a similar structure of the error
term could be present in generalizations of abc
(e.g. Vojta’s conjectures).

I This working hypothesis abcΘ, while not the
uniform abc conjecture, turns out strong
enough for Granville and Stark’s relation
banning the Landau-Siegel zero at an odd
Dirichlet character of Q.
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A note on X (2l)→ X (2) ∼= P1

This is indeed in the form of a refined Vojta
conjecture in the particular case of the complete
curve X (2l), which is of hyperbolic type precisely
under the l ≥ 5 assumption.



A reformulation on the modular curve, in
a special case

The link between the two versions is most naturally
made by taking the model Y (2) of P1 \ {0, 1,∞},
and noting 2hst(E ) ∼ 1

6h(jE ) ∼ h(λ).

Recall Y (2)/C = H/Γ(2), with Γ(2) the kernel of
reduction mod 2 in the elliptic modular group
Γ(1) = PSL(2,Z). Like any Shimura variety, Y (2)
comes with its distinguished “special points,” giving
elliptic curves with CM. A point P ∈ Y (2)(F ) is
represented by an elliptic curve E/F with F -rational
2-torsion and a labeling of its points of order two.
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Reformulation on the modular curve: a
case of square root error

Let cond/F (P) := 1
[F :Q] log |NF/Q(fE/F )| the

logarithmic conductor and h/F (P) := h(E/F ), the
Faltings height function. As before, let dF the
logarithmic root discriminant of F . Then abcΘ

implies a semi-uniform abc conjecture:

2h/F (P) ≤ cond/F (P) + dF

+O
(
e
√

[F : Q](cond/F (P) + dF )
)
,

(e a bound on the abs. ramification indices of F ).



Reformulation on the modular curve: a
case of logarithmic error

Furthermore, if E/F has everywhere good reduction
then 2h(E/F ) ≤ dF + O(e + log dF + log [F : Q])
(absolute implied constant).

Why is this implied by abcΘ? Well, if E/F has
everywhere good reduction then, by
Néron-Ogg-Shafarevich, either p = l (with
log el/K � log l), or else ep/K ≤ e; hence, the Ehr

term is just � e + log l .
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Reformulation on the modular curve: a
case of logarithmic error

On the other hand, in general,

cond(E/K ) + dK = cond(E/F ) + dF + O(log l)

See Prop. 1.3 in [IUT-IV], as used in step (ii) on
page 24 of loc.cit., or Prop. 14.4.6 (and its proof)
in Bombieri and Gubler’s Heights in Diophantine
Geometry.

Now choose l ∼ [F : Q]dF in abcΘ.



Logarithmic error

The meaning of this is that when the conductor
vanishes the error term should be logarithmic, like it
is in Nevanlinna’s Second Main Theorem.



Special points

Let us look at what abcΘ reads at the CM points.
This is Granville and Stark’s argument in the
language of elliptic curves.

Consider for simplicity (and WLOG) −D a
fundamental discriminant and CM points with
End(E ) the maximal order OD in KD := Q(

√
−D).

Then, by class field theory, E is defined over HD ,
the Hilbert class field. HD/KD is unramified, hence
dHD

= dKD
= log

√
D. Take F to be the ray class

field mod 6 of KD . It turns out that E extends as
an abelian scheme over SpecOF .



An everywhere good reduction model

For classical CM theory gives a model

Y 2 = X 3 − 27γ2(τ)3X − 54γ3(τ)2

for E/C, where τ ∈ KD , and γ2, γ3 are familiar
(Weber’s) modular functions for Γ(6) satisfying
γ3

2 − γ2
3 = 1728. Shimura’s reciprocity law enforces

γ2(τ), γ3(τ) ∈ OF , while the relation shows that this
Weierstrass equation has unit discriminant. Now
F/HD is a bounded degree extension of ramification
limited to {2, 3}. Hence, dF = log

√
D + O(1), and

e = O(1).



Special points (continued)

Conclusion: abcΘ ⇒ 2h(E/F )� logD.

References: Thm. 5.1.2 in Schertz’s Complex
Multiplication, for Shimura reciprocity; the same
book for Weber’s functions γ2, γ3; and section 2 in
Granville and Stark’s paper ABC implies no “Siegel
zero”. . ., that I am presently paraphrasing.



h(E/F )� logD
But

2h(E/F ) = 2hst
Fal(E ) = log

√
D +

L′

L
(1, χD) + O(1),

by Kronecker’s limit formula!

The right hand side of
this formula gives easily an analytic expression of
the height, in this CM case, in terms of the zeros of
L(s, χD):

2hst(E ) =
∑
ρ

1

1− ρ
+ O(1) =

∑
ρ

Re
1

ρ
+ O(1).
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The Kronecker limit formula

Here this is averaged over Pic(OD), allowing for a
purely multiplicative proof, which is elementary
given the (logarithmic) equidistribution of the
primes of KD in ideal classes:

Express both sides, up to O(1), as the average of
πy/3− log y over the dilatations y of the fractional
ideals of Q(

√
−D) ⊂ C, and link them via the

factorization into prime ideals of the product of all
non-zero OD elements inside a disk of a growing
radius (by elaborating on Selberg’s proof of
Dirichlet’s theorem).



hst(E )� logD and no Siegel zero

By the formula

L′

L
(1, χD) + log

√
D =

∑
ρ

1

1− ρ
+ O(1),

the no Landau-Siegel zeros conjecture amounts
precisely to L′

L (1, χD)� logD.

Hence, the abcΘ hypothesis implies no Siegel zero
for the L-functions attached to odd Dirichlet
characters of Q.



What could be said from just the
S -depleted form of abcΘ, and from [IUT
IV, 1.10]?

For S ⊂ MQ a finite set of places, let h(S) be the
S-depleted (Faltings) height, devoid of all

components lying over S , and designate as abc
(S)
Θ

the corresponding (weaker) hypothesis for this
height. As noted before, Thm. 1.10 of [IUT-IV] is

“essentially” abc
{2,∞}
Θ . (We will return at the end

with some technical indications on the meaning of
“essentially.”)



Reducing to a depleted form

By Mochizuki’s “arithmetic analytic continuation

via Belyi correspondences” [AECGP], abc
(S)
Θ for any

S yields the non-uniform (degree dependent) form
of the abc conjecture:

abc
(S)
Θ ⇒ ∀ε > 0, P ∈ P1(Q̄) \ {0, 1,∞},

h(P) ≤ (1 + ε) · (d(P) + cond[0]+[1]+[∞](P))

+Oε,[Q(P):Q],|S |(1).

The proof in [AECGP] is phrased as an indirect
argument, by contradiction. It turns out that this
argument can be made direct and effective.



Effectivity

The following is outlined in the ArXiv preprint
[Effectivity]. (Though we shall see that we may
sometimes do better, by relaxing Mochizuki’s
compact boundedness condition.)

Dimitrov V.: Effectivity in Mochizuki’s
work on the abc-conjecture,
ArXiV:1601.03572v1.



Effectivity
Theorem
There are computable functions
c : N× (0, 1)→ (0, 1), B ,C : N× (0, 1)× N→ R
such that the following is true.
Suppose A : N× (0, 1)→ R is a function such that,
for all d and ε, all E/F meeting [F : Q] ≤ d and
|jE |v ≤ B(d , ε, |S |) for all v ∈ S fulfil
2h(E/F ) ≤ (1 + ε)(dF + cond(E/F )) + A(d , ε).
Then, for all d and ε, all E/F with [F : Q] ≤ d
fulfil

2h(E/F ) ≤ (1 + ε)(dF + cond(E/F ))

+2A(150dbε−2c, c(d , ε, |S |)) + C (d , ε, |S |).



Belyi correspondences
The involvement in IUT of the l-division field
K = F (E [l ]) of an elliptic curve, with its attendant
constructions like q = q1/2l , makes inherent in the

theory one particular Belyi map: the covering
fl : Y (2l)→ Y (2) ∼= P1 \ {0, 1,∞}. We could
easily formulate a version of abcΘ for an arbitrary
Belyi map f (then the role of l is taken place by the
minimum over f −1{0, 1,∞} of the ramification
indices of f ), but any other choice means giving up
the elliptic curve, its theta functions, its associated
hyperbolic orbicurves, the fundamental groups and
anabelian transport — in short, everything that
makes up IUT.



Belyi correspondences: switching dessins

In [AECGP] and in [Effectivity], the dessins are
changed not by morphisms but by correspondences:
diagrams

C
π

��

f

  

P1 P1,

with π, f non-constant morphisms branched only on
{0, 1,∞}.



Belyi correspondences: switching dessins

C
π

��

f

  

P1 P1,

π should be a basic map having high ramification
indices, say ≥ n, at all points in π−1{0, 1,∞}. The
conceptually simplest choice is the
fl : Y (2l)→ Y (2) above, and from the point of
view of equations and computations, the simplest
choice is the function xn on the Fermat curve
Cn : xn + y n = 1.



The mechanics of a Belyi correspondence

For any diagram π, f : C → P1 as before (defined
over Q), and any point P ∈ P1(Q̄) of degree d ,
take a lift Q ∈ π−1(P) and follow f (Q) ∈ P1(Q̄).
By Riemann-Hurwitz, with an effective “O(1)” in
terms of equations for C and π,
hKC

(Q) ≥ (1− 3/n)h(P) + Oπ(1). By a
computation of differents using Chevalley-Weil,
Riemann-Hurwitz for E = f ∗([0] + [1] + [∞])red

gives. . .



The mechanics of a Belyi correspondence

hKC
(Q) = h(f (Q))− hE (Q) + Of (1)

≤abc (1 + ε)(d(Q) + condE (Q))− hE (Q) + Oε,f (1)

≤ (1 + ε)d(Q) + εhE (Q) + Oε,f (1),

if abc can be applied to f (Q). The second term is
�deg f εhKC

(Q) and so harmless if ε�deg f 1.

The argument here goes back to Elkies and Vojta.



“Compact boundedness”

We are left with insuring that abc is applicable to

f (Q). This follows from abc
{2,∞}
Θ — and hence, by

additional standard arguments, from [IUT IV, 1.10],
— if we arrange for the Galois orbit of f (Q) to be
bounded away from the cusps [0] + [1] + [∞] at the
places 2 and ∞.



This is constructive

The Galois orbit has size at most d deg π (view it as
a random subset of cardinal d deg π in P1(Q̄)), so if
we just take any 2d deg π + 1 Belyi maps having
pairwise disjoint critical loci, the pigeonhole principle
implies that for all choices of P of degree d , the
Galois orbit of Q(∈ π−1(P)) will be bounded away
from the critical locus of one of these maps, at both
places 2 and ∞. Then, at 2 and ∞, the Galois orbit
of f (Q) is bounded away from the cusps of Y (2).



This is constructive

Everything is completely effective, and quite easy to
follow if we use the Fermat curve x l + y l = 1, the
map π = x l , and the standard presentation of a
rational function f on that curve as a uniquely
determined element of
Q(x) + y ·Q(x) + · · ·+ y l−1 ·Q(x).



Disjoint critical loci

Mochizuki proves in [Noncritical Belyi maps] that
the Belyi opens form a basis for Zariski topology on
any curve. Another proof is presented in [Scherr Z.,
Zieve M.: Separated Belyi maps, Math. Res. Lett.,
vol. 21, 2014]. Both are effective; see also section 2
of [Effective], for the precise meaning of this. Hence
we may place a computable, indeed explicit bound
N(l , d) for which we can ascertain 2dl2 + 1 Belyi
maps on x l + y l = 1 having pairwise disjoint critical
loci, and such that all polynomials involved in the
presentations these Belyi maps have degrees and
heights less than N(l , d).



Effective, but inefficient

The problem with this algorithmic procedure is that
it is terribly inefficient, due to the successive
compositions in Belyi’s algorithm that are needed to
reduce critical values from Q̄ to Q. These make
even the constant N(4, 1), which is the smallest
non-trivial case, gigantic — on the order of 40!
(forty factorial). Note that this is a bound on
logarithmic heights. May we do better?

(Anyway this is not of much interest at the present
stage. Effectivity is interesting as a theoretical
point, for the proofs of Roth’s and Faltings’s
theorems are inherently ineffective.)
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Relaxing the boundedness condition

This is not clear to me if we insist on bounding all
the local heights at 2 and ∞ (attaining, that is,
compact boundedness). The compact boundedness
condition is much too expensive, for the set of all
Belyi covers (being in correspondence with the open
subgroups of the fundamental group of
P1 \ {0, 1,∞}) has a strong finiteness property for
bounded degree, making it clear that the degrees of
our requisite maps must be somewhat large (and
must go to infinity as we need arbitrarily many
maps to reach the 1 + ε exponent and higher degree
points).



Relaxing the boundedness condition

However, all that is needed from “compact
boundedness” is that the 2- and ∞-portions of the
height h(E/F ) are negligibly small in comparison
with the global height h(E/F ). In certain
situations, as we shall exploit next for large degree
d , this is much easier to arrange.



Lower bounds on class numbers, from

abc
(S)
Θ

We have seen already that IUT implies effective
Roth and Faltings theorems. Let me focus here only
on the remaining most significant theoretical
implication. As we have seen, hypothesis abcΘ

forbids Siegel zeros at odd characters of Q. Does

that persist with abc
(S)
Θ and IUT?



Lower bounds on class numbers, from
[IUT IV, 1.10]

The implication here is weaker, due to the
Archimedean depletion of the height in IUT.
However, it still leads to a strong effective
implication, the point now being precisely the
effectivity.



Lower bounds on class numbers, from
[IUT IV, 1.10]

Theorem
[IUT IV, 1.10] implies a computable C <∞ such
that L′

L (1, χ) < Cq1/6 log q for all odd Dirichlet
characters χ mod q.
In other words, IUT theory implies an effective lower
bound hQ(

√
−D) � (D/ logD)1/3 on the class

number of the quadratic imaginary field of
discriminant −D < 0.



Preparation for the proof: Habegger’s
theorem

In a recent paper

Habegger P.: Singular moduli that are
algebraic units, Algebra and Number
Theory, vol. 9, no. 7 (2015),
pp. 1515–1524,

Philip Habegger obtained a modular analog of
Siegel’s finiteness theorem on integral points: For
any algebraic α ∈ Q̄, there are only finitely many
CM elliptic curves E/Q̄ such that 1/(jE − α) ∈ Z̄ is
an algebraic integer.



Habegger’s modular Siegel theorem

His proof has two main ingredients: Duke’s
ineffective hyperbolic equidistribution of CM points
on the modular surface H/Γ(2) (which we shall not
require), and an effective diophantine
approximations result with two elliptic logarithms.
The former shows that not too many conjugates of
jE lie near α, and the latter, that none of these
conjugates is too close to α. The second of these
will suffice for us, and we shall apply it in exactly
the same way as in Habegger’s paper.



Linear forms in two elliptic logarithms

We will use the diophantine approximations result of
David and Hirata-Kohno, in exactly the same way
that it is used by Habegger (see Lemma 6 there):
Let v be a place of Q̄ and α any fixed algebraic
point. Then all conjugates j(τ) of jE (assuming
j(τ) 6= α) satisfy

− log |j(τ)− α|v ≤ c(α) logD,

where c(α) depends effectively on degα and h(α).



Linear forms in two elliptic logarithms

The paper of David and Hirata-Kohno is [Linear
forms in elliptic logarithms, J. Reine angew. Math.
628 (2009), pp. 37–89]. This is applied to the
periods of the elliptic curve of invariant α ∈ Q̄,
using that τ is algebraic (a quadratic integer). Here
the CM hypothesis is used crucially.
The relevant portions of [Habegger] here are
Lemma 3, Lemma 6 and the calculation in the
penultimate paragraph of the paper.



A dessin switch

We shall work on the modular covering
Y (10)→ Y (2), so that we have ramification indices
≥ 4 at all three cusps (meaning we may take n = 4
in our previous discussion).

We have one Belyi map π = f10 : X (10)→ X (2).
Construct a second one ψ : X (10)→ P1 ∼= X (2)
whose critical locus is disjoint from that of π. This
can be done with an effective bound on the heights
of all points in π(f −1{0, 1,∞}).



A dessin switch

We have seen that there exists a number field F/Q
of degree [F : Q] ∼ hQ(

√
−D) (the class number) and

of bounded absolute ramification indices
(e = O(1)), such that dF = log

√
D + O(1) and E

has everywhere good reduction over F . These
properties are preserved as we adjoin the 10-torsion
to F (because E/F has everywhere good
reduction), hence we may assume the 10-torsion of
E is rational over F .



A dessin switch

Choose one of the points of order 10 and consider
the associated points P ∈ Y (2)(F ) and
Q ∈ Y (10)(F ). Then replace P with
f (Q) ∈ Y (2)(F ).

Apply now [IUT IV, 1.10] to f (Q) ∈ Y (2)(F ), with

a choice of l � max
(√

hQ(
√
−D) · logD, (logD)2

)
.

This choice is insured, effectively, by the arguments
of [AECGP]; see the closing technical remarks for
some indication.



The comparison

[IUT IV, 1.10] gives:

h{2,∞}(f (Q))� logD +
√
hQ(
√
−D) · logD

On the other hand, h(f (Q))�
√
D/hQ(

√
−D),

because the same holds for h(P) by looking at the
highest lying CM point (corresponding to the
principal ideal class).

The implied constants here are effective.



Applying the theorem of David and
Hirata-Kohno

The following is thus sufficient to conclude. Indeed,
an O(D1/7) version suffices.
Lemma: h(f (Q))− h{2,∞}(f (Q)) = O(logD),
with effective implied constant.

Proof. It suffices to prove that all conjugates Qσ

satisfy
log |j(f (Qσ))|v � logD,

for v ∈ {2,∞}. This follows from applying David
and Hirata-Kohno’s theorem as α runs through the
finite set j(π(f −1{0, 1,∞})) ⊂ Y (1)(Q̄) = Q̄.



Applying the theorem of David and
Hirata-Kohno

Informally, the theorem of David and Hirata-Kohno
shows that Q is not too near to the critical locus of
f . Then f (Q) is not too near to any of the cusps 0,
1 and ∞.

Since the theory of logarithmic linear forms is
effective, the implied constant of this estimate is
effective.

We note that the requisite O(D1/7) estimate is
already accessible through the early literature on
linear forms in two elliptic logarithms.
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Informally, the theorem of David and Hirata-Kohno
shows that Q is not too near to the critical locus of
f . Then f (Q) is not too near to any of the cusps 0,
1 and ∞.

Since the theory of logarithmic linear forms is
effective, the implied constant of this estimate is
effective.

We note that the requisite O(D1/7) estimate is
already accessible through the early literature on
linear forms in two elliptic logarithms.



Securing the choice of l and Vbad
mod

It remains to secure a choice of
l �

√
hQ(
√
−D) · logD that meets the hypothesis on

initial data in IUT I, applied to f (Q) ∈ Y (2)(F ), for
a suitable choice of Vbad

mod.

This is done by following [AECGP, Theorem 3.8 (b)]
and [IUT IV, Cor. 2.2], replacing in loc.cit.
assumptions of archimedeanly bounded moduli with
the input h∞(f (Q))� logD on the Archimedean
part of the height, that we obtained from David and
Hirata-Kohno’s theorem.



Technical notes on securing the choice of l
and Vbad

mod

We are using the new elliptic curve E ′/F of
jE ′ = j(f (Q)). There is a bounded degree extension
F ′/F over which E ′ has split semistable reduction.
From David and Hirata-Kohno’s theorem we have
seen that the {2,∞}-part of the stable Faltings
height of E ′ satisfies h{2,∞}(E

′/F ′) ≤ C · logD,
with an effective constant C <∞.



Technical notes on securing the choice of l
and Vbad

mod

For each prime l consider Ul the set of places
v - 2,∞ of F ′ at which E ′ has a Gm reduction with
l dividing the order of the q-parameter. If hS
denotes the S-part of the height, it is easily verified
that h(E ′/F ′) · log h(E ′/F ′)�

∑
l hUl

(E ′/F ′),
where the log h is used as an upper bound on the
maximum number of prime factors in the order of a
q-parameter.



Technical notes on securing the choice of l
and Vbad

mod

Noting that log h(E ′/F ′)� logD (effectively), it
follows from the last point that there are primes

l � max
(√

hQ(
√
−D) · logD, (logD)2

)
(1)

meeting hUl
(E ′/F ′) ≤ h(E ′/F ′)/4. Assuming as we

may that h(E ′/F ′) ≥ 4C · logD, we know also that
h{2,∞}(E

′/F ′) ≤ h(E ′/F ′)/4. Hence

hUl∪{2,∞}(E
′/F ′) ≤ h(E ′/F ′)/2. (2)



Technical notes on securing the choice of l
and Vbad

mod

Choose this l , and Vbad
mod the places v /∈ Ul , v - 2,∞

of F at which E ′ has a Gm reduction. By (2), the
argument of [AECGP, Lemma 3.5] applies as soon
as D � 1, showing that E ′/F ′ has no l-cyclic
subgroup. Then the large Galois image in Aut(E [l ])
follows as in [AECGP], while (1) was the bound
that we employed in the above argument.



May we hope to work Archimedeanly?

Restricting to the case of everywhere good
reduction E/F , everything is Archimedean and
classical. The Archimedean case was once taken as
a prototype for the p-adic theory. Could we hope to
work directly with the Archimedean places, without
having to change to E ′/F ′?



May we hope to work Archimedeanly, and
especially with CM?

The CM case as discussed before is particularly
interesting; it has of course rich connections with
algebraic and analytic number theory. Though of
course it forbids the SL2 hypothesis on the Galois
image, we could still insure a transitive Galois action
on E [l ]. And if the CM features, instead of helping,
are inherently antagonistic to the anabelian
methods, we may easily find a polynomial dessin
switch that removes the CM while retaining integral
moduli.



A remark on the Archimedean analog of
multiplicative subspaces

Since plane lattices could be more intuitive to
visualize, let me mention the following regarding the
Archimedean situation.

Assuming E/F has everywhere good reduction, then
as noted before, the Faltings height h(E/F ) equals,
up to O(1), the average of πy/3− log y , where
y ≥ 1 ranges over the dilatations y = Im(τ),
τ = ω2/ω1, of the complex period lattices of the
conjugate elliptic curves.



A remark on the Archimedean analog of
multiplicative subspaces

A degree-l isogeny E → E/C has the effect of
stretching the dilatations by at most a factor of l ,
but usually, by the isogeny formula, the dilatations
of E/C are much smaller. The places where the
dilatation becomes l · y are the analogs of the
primes where C is a multiplicative subspace. When
Gal(K/F ) is transitive on E [l ], we would start with
any C and choose the section V : VF → VK to
attain the highest possible dilatation l · y above each
place of F . Since we aim for an inequality, we could
as well regard V as a completely arbitrary choice.


