# Near Miss abc-Triples in Compactly Bounded Subsets 

Yuki Wada<br>Research Institute for Mathematical Science, Kyoto University

July 25, 2016

## Agenda of today's talk

Today's talk is divided into two sections:
(1) In $\S 1$, we state the background and the statement of the main result of today's talk.
(2) In $\S 2$, we survey the outline of the proof of the main result.

# $\S 1$ : Background and Statement of the Main Result 

## Definition of abc-triples

First, we review the definition of $a b c$-triples.
Definition
Let $a, b, c \in \mathbb{Z}$ such that

$$
\begin{gathered}
a+b+c=0 \\
a \neq 0, \quad b \neq 0, \quad c \neq 0 \\
(a, b)=1
\end{gathered}
$$

Then we shall say that $(a, b, c)$ is an abc-triple.

## Definition of $N$ and $\lambda$

Next, we introduce two important parameters associated to a given abc-triple.

Definition
Let $(a, b, c)$ be an abc-triple. Then we define $N_{(a, b, c)}$ and $\lambda_{(a, b, c)}$ associated to a given $a b c$-triple as follows:

$$
N_{(a, b, c)}:=\prod_{\substack{p \mid a b c, p \in \mathfrak{P r i m e s}}} p, \quad \lambda_{(a, b, c)}:=-\frac{b}{a} .
$$

## Examples of how to calculate $N$

We show some examples of how to calculate $N$.

$$
\begin{aligned}
(2,3,-5) & \Rightarrow N_{(2,3,-5)}=2 \cdot 3 \cdot 5=30, \\
(4,9,-13) & \Rightarrow N_{(4,9,-13)}=2 \cdot 3 \cdot 13=78 \\
(32,27,-59) & \Rightarrow N_{(32,27,-59)}=2 \cdot 3 \cdot 59=354,
\end{aligned}
$$

## $\lambda$ determines a natural bijection

Write $M$ for the set of $a b c$-triples. We define an equivalence relation on $M$ as follows:

$$
\begin{aligned}
&(a, b, c) \\
& \stackrel{\text { def }}{\Leftrightarrow}\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \\
& \Leftrightarrow(a, b, c)=\left(\epsilon a^{\prime}, \epsilon b^{\prime}, \epsilon c^{\prime}\right) \text { for some } \epsilon \in\{1,-1\} .
\end{aligned}
$$

By $M \ni(a, b, c) \mapsto \lambda_{(a, b, c)} \in \mathbb{Q} \backslash\{0,1\}$, we obtain a natural bijection

$$
M / \sim \stackrel{\cong}{\rightrightarrows} \mathbb{Q} \backslash\{0,1\}
$$

## $\lambda$ coincides with the quantity " $\lambda$ " of a Frey curve

An abc-triple $(a, b, c)$ determines an elliptic curve over $\mathbb{Q}$ as follows:

$$
(a, b, c) \Rightarrow y^{2}=x(x+a)(x-b)
$$

This is called a Frey curve.
$\lambda_{(a, b, c)}=-\frac{b}{a}$ coincides with the quantity " $\lambda$ " which appears in the Legendre form of this elliptic curve. The " $\lambda$ "'s which appear in the Legendre form are not uniquely determined, and, actually, the indeterminacy corresponds to permutations of $(a, b, c)$.

## Review of the abc Conjecture

We review the $a b c$ Conjecture.
Theorem (abc Conjecture)
For $\gamma \in \mathbb{R}_{>0}$, there exists a $C_{\gamma} \in \mathbb{R}_{>0}$ such that, for every abc-triple ( $a, b, c$ ), the following inequality holds:

$$
\max \{|a|,|b|,|c|\}<C_{\gamma} N_{(a, b, c)}^{1+\gamma}
$$

## Statement of Masser's theorem

Does the " $\gamma=0$ " version of the abc Conjecture hold? Masser's theorem asserts that the answer is NO.

Theorem (Masser)
Let $\delta \in\left(0, \frac{1}{2}\right), \quad N_{0} \in \mathbb{R}_{>0}$. Then there exists an abc-triple $(a, b, c)$ such that

$$
\begin{gathered}
N_{(a, b, c)}>N_{0} \\
|a b c| \geq N_{(a, b, c)}^{3} \exp \left(\left(\log N_{(a, b, c)}\right)^{\frac{1}{2}-\delta}\right) .
\end{gathered}
$$

Masser's result implies that the " $\gamma=0$ " version of the $a b c$ Conjecture does not hold

Let us observe that Masser's Theorem implies that the " $\gamma=0$ " version of the abc Conjecture does not hold.

Suppose that the " $\gamma=0$ " version of the $a b c$ Conjecture holds. Then, there exists a $C_{0} \in \mathbb{R}_{>0}$ such that, for every abc-triple $(a, b, c)$,

$$
\begin{equation*}
\max \{|a|,|b|,|c|\}<C_{0} N_{(a, b, c)} . \tag{1}
\end{equation*}
$$

In particular, for every abc-triple $(a, b, c)$,

$$
\begin{equation*}
|a b c|<C_{0}^{3} N_{(a, b, c)}^{3} . \tag{2}
\end{equation*}
$$

Fix $\delta, N_{0}$ such that

$$
\begin{equation*}
\exp \left(\left(\log N_{0}\right)^{\frac{1}{2}-\delta}\right)>C_{0}^{3} \tag{3}
\end{equation*}
$$

Masser's Theorem asserts that there exists an abc-triple ( $a^{\prime}, b^{\prime}, c^{\prime}$ ) such that

$$
\begin{equation*}
\left|a^{\prime} b^{\prime} c^{\prime}\right| \geq N_{\left(a^{\prime}, b^{\prime}, c^{\prime}\right)}^{3} \exp \left(\left(\log N_{0}\right)^{\frac{1}{2}-\delta}\right) \tag{4}
\end{equation*}
$$

It follows from the above inequalities that

$$
\begin{equation*}
\left|a^{\prime} b^{\prime} c^{\prime}\right| \geq C_{0}^{3} N_{\left(a^{\prime}, b^{\prime}, c^{\prime}\right)}^{3} \tag{5}
\end{equation*}
$$

This is a contradiction.
Since any infinite collection of abc-triples as in Masser's theorem for $N_{0} \rightarrow \infty$ yields a counterexample to the " $\gamma=0$ " version of the $a b c$ Conjecture, we shall refer to such abc-triples as near miss abc-triples.

## Definition of compactly bounded subsets

Before mentioning the Main Theorem, we define compactly bounded subsets.

## Definition

Let $r \in \mathbb{Q}, \varepsilon \in \mathbb{R}_{>0}$, and $\Sigma$ a finite subset of the set of valuations of $\mathbb{Q}$ which contains the unique archimedean valuation $\{\infty\}$ on $\mathbb{Q}$. Then we shall write

$$
K_{r, \varepsilon, \Sigma}:=\left\{r^{\prime} \in \mathbb{Q} \mid\left\|r^{\prime}-r\right\|_{v} \leq \varepsilon \text { for every } v \in \Sigma\right\} .
$$

We shall say that $K_{r, \varepsilon, \Sigma}$ is an $(r, \varepsilon, \Sigma)$-compactly bounded subset.

## Statement of the Main Theorem

Finally, we state the Main Theorem.
Theorem (W)
Let $\delta \in\left(0, \frac{1}{2}\right), \quad N_{0} \in \mathbb{R}_{>0}$ and $K_{r, \varepsilon, \Sigma}$ a given compactly bounded subset.
Then there exists an abc-triple ( $a, b, c$ ) such that

$$
\begin{gathered}
N_{(a, b, c)}>N_{0}, \\
|a b c| \geq N_{(a, b, c)}^{3} \exp \left(\left(\log \log N_{(a, b, c)}\right)^{\frac{1}{2}-\delta}\right), \\
\lambda_{(a, b, c)} \in K_{r, \varepsilon, \Sigma} .
\end{gathered}
$$

By a similar argument to the argument given above, we observe that the abc-triples of the Main Theorem may be thought of as near miss abc-triples.

## Comparison with Masser's theorem

Theorem (Masser)
Let $\delta \in\left(0, \frac{1}{2}\right), \quad N_{0} \in \mathbb{R}_{>0}$. Then there exists an abc-triple $(a, b, c)$ such that

$$
\begin{gathered}
N_{(a, b, c)}>N_{0}, \\
|a b c| \geq N_{(a, b, c)}^{3} \exp \left(\left(\log N_{(a, b, c)}\right)^{\frac{1}{2}-\delta}\right) .
\end{gathered}
$$

## §2: Outline of the proof of the Main Theorem

## Definition of functions related to prime numbers

We define various functions related to prime numbers.
Definition
Let $n \in \mathbb{Z} \backslash\{0\}, x, y \in \mathbb{R}_{\geq 2}$.

- If $n \neq \pm 1$, then we denote the largest prime number dividing $n$ by $\operatorname{LPN}(n)$. If $n= \pm 1$, then we set $\operatorname{LPN}(n):=1$.
- $\pi(x):=\sharp\left\{x^{\prime} \in \mathfrak{P r i m e s} \mid x^{\prime} \leq x\right\}$.
- $\theta(x):=\sum_{\mathfrak{P r i m e s} \ni p \leq x} \log p$.
- $\Psi(x, y):=\sharp\left\{x^{\prime} \in \mathbb{Z} \mid 2 \leq x^{\prime} \leq x, \quad \operatorname{LPN}\left(x^{\prime}\right) \leq y\right\}$.

The function $\Psi(x, y)$ plays a key roll in the proof of the Main Theorem.

## Estimates of $\pi(x)$ and $\theta(x)$

These estimates are well known consequences of the Prime Number Theorem.

Lemma (Prime Number Theorem)
Let $x \in \mathbb{R}_{\geq 2}$. Then the following estimates hold:

$$
\begin{gathered}
\pi(x)=\frac{x}{\log x}+\frac{x}{(\log x)^{2}}+O\left(\frac{x}{(\log x)^{3}}\right), \\
\theta(x)=x+O\left(\frac{x}{(\log x)^{2}}\right) .
\end{gathered}
$$

## Estimate of $\Psi(x, y)$

By estimating the number of lattice points in a region of Euclidean space by the volume of the region, Ennola obtained the following lemma.

## Lemma (Ennola)

Let $i \in \mathbb{Z}_{\geq 1}$. We denote the $i$-th smallest prime number by $p_{i}$. Let $x \in \mathbb{R}_{>0}, y \in \mathbb{R}_{\geq 2}$. Then the following inequality holds:

$$
\frac{(\log x)^{\pi(y)}}{\pi(y)!\cdot\left(\prod_{i=1}^{\pi(y)} \log p_{i}\right)}<\psi(x, y)+1
$$

$$
\leq \frac{(\log x)^{\pi(y)}}{\pi(y)!\cdot\left(\prod_{i=1}^{\pi(y)} \log p_{i}\right)}\left(1+\sum_{i=1}^{\pi(y)} \frac{\log p_{i}}{\log x}\right)^{\pi(y)} .
$$

When $y=(\log x)^{\frac{1}{2}}$, by applying the preceding lemmas, we obtain a better estimate of $\Psi(x, y)$.

Lemma
Let $x \in \mathbb{R}_{>\exp (4)}$. Then the following estimate holds:

$$
\Psi\left(x,(\log x)^{\frac{1}{2}}\right)=\exp \left((\log x)^{\frac{1}{2}}+4 \frac{(\log x)^{\frac{1}{2}}}{\log \log x}+O\left(\frac{(\log x)^{\frac{1}{2}}}{(\log \log x)^{2}}\right)\right)
$$

This estimate plays a key roll in the proof of the Main Theorem.

## Proof of the Main Theorem: notation

- $\Sigma_{f}:=\Sigma \backslash\{\infty\}$
- $q$ : a prime number such that $q>N_{0}$ and $\|q\|_{v}=1$ for $v \in \Sigma_{f}$
- $x$ : a (sufficiently large) positive real number
- $y:=(\log x)^{\frac{1}{2}}$
- I: a positive integer such that $q^{\prime} \approx \Psi(x, y)$


## Proof of the Main Theorem: plan

First, we shall prove that we obtain a pair of positive integers $(d, e)$ such that

- $\operatorname{LPN}(d), \operatorname{LPN}(e) \leq y$,
- $d-e$ is divided by the $l$-th power of $q$.

Next, we define an abc-triple $(a, b, c):=(d,-e,-(d-e))$. Then

$$
N_{(a, b, c)} \leq\left(\prod_{\substack{p \in \mathfrak{P r i m e s}, p \leq y}} p\right) \frac{c}{q^{I-1}}
$$

Now we prove the Main Theorem. The proof of the Main Theorem is divided into 4 steps.

## Step 1

It follows from the Box Principle that there exists a pair of positive integers $\left(d_{1}, e_{1}\right)$ such that

$$
\begin{gathered}
\operatorname{LPN}\left(d_{1}\right) \leq y, \quad \operatorname{LPN}\left(e_{1}\right) \leq y, \\
q^{\prime} \mid d_{1}-e_{1} \\
d_{1} \leq x, \quad e_{1} \leq x \\
\frac{e_{1}}{d_{1}} \in K_{1, \varepsilon, \Sigma}
\end{gathered}
$$

## Step 2

It follows from the Chinese Remainder Theorem that there exists a pair of positive integers $\left(d_{2}, e_{2}\right)$ such that

$$
\begin{gathered}
\operatorname{LPN}\left(d_{2}\right) \leq y, \quad \operatorname{LPN}\left(e_{2}\right) \leq y, \\
q^{\prime} \mid d_{2}-e_{2}, \\
\left.d_{2} \leq x, \quad e_{2} \leq \exp \left(\exp \left(3(\log x)^{\frac{1}{2}}\right)\right)\right), \\
\frac{e_{2}}{d_{2}} \in K_{r, \varepsilon, \Sigma_{f}} .
\end{gathered}
$$

## Step 3

By using pairs of positive integers $\left(d_{1}, e_{1}\right)$ and $\left(d_{2}, e_{2}\right)$ obtained in Step 1 and Step 2, we shall create a new pair of positive integers $\left(d_{3}, e_{3}\right)$ such that

$$
\begin{gathered}
\operatorname{LPN}\left(d_{3}\right) \leq y, \quad \operatorname{LPN}\left(e_{3}\right) \leq y, \\
q^{\prime} \mid d_{3}-e_{3} \\
d_{3} \leq x^{x^{1+\delta}}, \quad e_{3} \leq x^{x^{1+\delta}} \\
\frac{e_{3}}{d_{3}} \in K_{r, \varepsilon, \Sigma} .
\end{gathered}
$$

## Outline of the proof of Step 3

There exists an $\alpha \in \mathbb{Z}$ such that

$$
\frac{e_{2}}{d_{2}}\left(\frac{e_{1}}{d_{1}}\right)^{\alpha} \in(r-\varepsilon, r+\varepsilon)
$$

This property, together with certain estimates at the nonarchimedean valuations, that

$$
\frac{e_{2}}{d_{2}}\left(\frac{e_{1}}{d_{1}}\right)^{\alpha} \in K_{r, \varepsilon, \Sigma}
$$

We define $\left(d_{3}, e_{3}\right):=\left(d_{2} d_{1}^{\alpha}, e_{2} e_{1}^{\alpha}\right)$. The pair of positive integers $\left(d_{3}, e_{3}\right)$ satisfies the conditions of the preceding slide.

## Step 4

We define an abc-triple $(a, b, c):=\left(d_{3},-e_{3},-\left(d_{3}-e_{3}\right)\right)$. Then it follows that

$$
\begin{gathered}
N_{(a, b, c)}>N_{0} \\
|a b c| \geq N_{(a, b, c)}^{3} \exp \left(\left(\log \log N_{(a, b, c)}\right)^{\frac{1}{2}-\delta}\right), \\
\lambda_{(a, b, c)} \in K_{r, \varepsilon, \Sigma} .
\end{gathered}
$$

Now we survey the outline of the proof that the second condition holds.

## Outline of the estimate $N_{(a, b, c)}$

$$
\begin{align*}
N_{(a, b, c)}= & \left(\prod_{\substack{p \in \mathfrak{Y r i m e s}, p \mid a b}} p\right)\left(\prod_{\substack{p \in \mathfrak{P r i m i c s}, p \mid c c}} p\right)  \tag{1}\\
& \leq \exp (\theta(y)) \frac{|c|}{q^{I-1}}, \tag{2}
\end{align*}
$$

that is,

$$
\begin{equation*}
|c| \geq \frac{N_{(a, b, c)}}{q} q^{\prime} \exp (-\theta(y)) . \tag{3}
\end{equation*}
$$

Let us estimate $q^{l} \exp (-\theta(y))$.

$$
\begin{align*}
q^{\prime} \exp (-\theta(y)) \approx & \psi\left(x,(\log x)^{\frac{1}{2}}\right) \exp \left(-\theta\left((\log x)^{\frac{1}{2}}\right)\right.  \tag{4}\\
= & \exp \left((\log x)^{\frac{1}{2}}+4 \frac{(\log x)^{\frac{1}{2}}}{\log \log x}+O\left(\frac{(\log x)^{\frac{1}{2}}}{(\log \log x)^{2}}\right)\right) \\
& \cdot \exp \left(-(\log x)^{\frac{1}{2}}+O\left(\frac{(\log x)^{\frac{1}{2}}}{(\log \log x)^{2}}\right)\right)  \tag{5}\\
= & \exp \left(4 \frac{(\log x)^{\frac{1}{2}}}{\log \log x}+O\left(\frac{(\log x)^{\frac{1}{2}}}{\log \log x}\right)\right) . \tag{6}
\end{align*}
$$

Here we apply the estimates of the previous lemmas

$$
\begin{gather*}
\Psi\left(x,(\log x)^{\frac{1}{2}}\right)=\exp \left((\log x)^{\frac{1}{2}}+4 \frac{(\log x)^{\frac{1}{2}}}{\log \log x}+O\left(\frac{(\log x)^{\frac{1}{2}}}{\log \log x}\right)\right)  \tag{7}\\
\theta(x)=x+O\left(\frac{x}{(\log x)^{2}}\right) \tag{8}
\end{gather*}
$$

Since $d_{3} \leq x^{x^{1+\delta}}, \quad e_{3} \leq x^{x^{1+\delta}}$, it follows that

$$
\begin{equation*}
N_{(a, b, c)} \leq|a b c| \leq 2 x^{3 x^{1+\delta}} \tag{9}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\log \log N_{(a, b, c)}=O(\log x) . \tag{10}
\end{equation*}
$$

Thus, it follows that

$$
\begin{equation*}
|c| \geq N_{(a, b, c)} \exp \left(\left(\log \log N_{(a, b, c)}\right)^{\frac{1}{2}-\delta}\right) \tag{11}
\end{equation*}
$$

which easily implies that

$$
\begin{equation*}
|a b c| \geq N_{(a, b, c)}^{3} \exp \left(\left(\log \log N_{(a, b, c)}\right)^{\frac{1}{2}-\delta}\right) \tag{12}
\end{equation*}
$$

## Thank you for your attention!

## Review of the Main Theorem and Masser's result

Theorem (W)
Let $\delta \in\left(0, \frac{1}{2}\right), \quad N_{0} \in \mathbb{R}_{>0}$ and $K_{r, \varepsilon, \Sigma}$ a given compactly bounded subset. Then there exists an abc-triple $(a, b, c)$ such that

$$
\begin{gathered}
N_{(a, b, c)}>N_{0}, \\
|a b c| \geq N_{(a, b, c)}^{3} \exp \left(\left(\log \log N_{(a, b, c)}\right)^{\frac{1}{2}-\delta}\right), \\
\lambda_{(a, b, c)} \in K_{r, \varepsilon, \Sigma} .
\end{gathered}
$$

Theorem (Masser)
Let $\delta \in\left(0, \frac{1}{2}\right), \quad N_{0} \in \mathbb{R}_{>0}$. Then there exists an abc-triple $(a, b, c)$ such that

$$
\begin{gathered}
N_{(a, b, c)}>N_{0}, \\
|a b c| \geq N_{(a, b, c)}^{3} \exp \left(\left(\log N_{(a, b, c)}\right)^{\frac{1}{2}-\delta}\right) .
\end{gathered}
$$

