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Étale theta functions, mono-theta environments, and [IUTchI] §1-§3, II 1 / 43
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Construction of the Frobenioids (2) :

when v ̸∈ Vbad and v ∤ ∞

In this case, F
v
: pv -adic Frobenioid whose base

category is Dv := B(X−→v)
◦ and whose divisor

monoid is given by the composite

Dv → D⊢
v = B(SpecKv)

◦ → Mon

where the last functor is Spec L 7→ (O▷L /O
×
L )

pf .
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The Frobenioids Cv and C⊢
v

Set Cv := F
v
.

Define the submonoid ΦC⊢
v
of the monoid

Spec L 7→ (O▷L /O
×
L )

pf on D⊢
v as Spec L 7→ Z▷pv/Z

×
pv
.

⇝pv -adic Frobenioid C⊢
v whose base category is D⊢

v .

pv gives a characteristic splitting τ⊢v . Set

F⊢
v = (C⊢

v , τ
⊢
v ).
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The Frobenioid CΘ
v

Construct FΘ
v = (CΘ

v , τ
Θ
v ) just by adjoining the

formal symbol “logΘ” to F⊢
v .

We have an isom. F⊢
v
∼= FΘ

v .
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Reconstructibility

We can reconstruct

Dv , C⊢
v ,F⊢

v , CΘ
v ,FΘ

v

category theoretically from F
v
.
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Construction of the Frobenioids (3) :
when v |∞

X−→v = X−→K ⊗K Kv ⇝Aut-holomorphic space X−→v .

By definition, X−→v is a pair

X−→v = (X−→(Kv), (Authol(U))U)

where U runs over the connected open subsets of
X−→(Kv).
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AX−→v

Here

• we regard X−→(Kv) just as a topological space

• we regard Authol(U) as a subgroup of
Auttop(U)

X−→v ⇝AX−→v
: complex archimedean top. field (∼= C).
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Construction of F
v
, Cv

We set F
v
:= (Cv ,Dv , κv), where

• Cv : the archimedean Frobenioid given by
circular sectors centered at 0 in Kv , whose base
category is one-morphism cat. Spec(Kv).

• Dv = X−→v : Aut-hol. space.

• κv : O▷(Cv)(∼= O▷Kv
) ↪→ ADv

:= AX−→v
\ {0}.
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Construction of C⊢
v , τ

⊢
v

We set C⊢
v := Cv

R>0 ⊂ C× ⇝τ⊢v : characteristic splitting of C⊢
v .

D⊢
v : the “split topological monoid” determined by

ADv
.

F⊢
v := (C⊢

v ,D⊢
v , τ

⊢
v ).
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Construction of CΘ
v , τ

Θ
v and

Reconstructibility

Construct FΘ
v = (CΘ

v ,DΘ
v , τ

Θ
v ) just by adjoining the

formal symbol “logΘ” (Here DΘ
v = D⊢

v ).

One can reconstruct F⊢
v and FΘ

v algorithmically
from the datum F

v
.
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Next Slides

Let us go back to the bad local situation.
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The Model mod. N Mono Θ-environment

Recall: in the bad local situation, for an integer
N ≥ 1, the model mod. N Θ-environment

Mモ = (Πモ,Dモ, sΘΠモ)

is a triple of a topological group Πモ, a subgroup
Dモ of Out(Πモ), and a set sΘ

Πモ
of subgroups of Πモ

given as follows:
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The model mod. N mono Θ-environment
(continued)

• Πモ := Πtp
Y ⋉ µN , where Πtp

Y ↠ GK ⟲ µN .

• Dモ ⊂ Out(Πモ) : the subgroup generated by
the image of K× (under the composite K× →
H1(K , µN) → H1(Πtp

Y , µN) → Out(Πモ)) and

Gal(Y /X ) ∼= ℓZ.
• sΘ

Πモ
: the µN-conj. class of subgroups of Π

モ

given by the images of mod. N theta
sections.
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Mod. N-Theta Sections

Here mod. N-theta sections are homomorphisms
Πtp

Ÿ
↪→ Πモ obtained from the composite

Πtp

Ÿ

⊂−→ Πtp
Y

tautological−−−−−−→ Πモ

by twisting by the orbit of étale theta classes
η̈Θ,ℓZ×µ2 ⊂ H1(Πtp

Ÿ
, ℓ ·∆Θ).

Étale theta functions, mono-theta environments, and [IUTchI] §1-§3, II 14 / 43
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Main Bad Local Theorems

Main Bad Local Theorem 1. We can reconstruct
category theoretically the canonical isomorphism

µN
∼= ∆Θ ⊗Z Z/NZ

from F .

Main Bad Local Theorem 2. We can reconstruct
Mモ (up to isom.) category theoretically from F .

Étale theta functions, mono-theta environments, and [IUTchI] §1-§3, II 15 / 43
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Geometry of the Divisor Monoid of F

Let (B , α) be an object of F . M = Φ(B).

M is a perfection of the monoid of effective divisors
on Bell supported on the union of the cusps and the
special fiber.
=⇒M is decomposed as the direct sum of the
cuspidal part and the non-cuspidal part, i.e., the
part supported on the special fiber.
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Next Slides

For example, when B = Ÿ , the divisor of zeros of Θ̈
belongs to the cuspidal part, and the divisor of poles
of Θ̈ belongs to the non-cuspidal part

One can describe this decomposition
monoid-theoretically using (M ,Φbs−fld(B)). A main
idea is the following observation: an effective divisor
with finite support is non-cuspidal iff it is bounded
by the divisor of a costant function. A detailed
explanation will be given in the next slides.
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Cuspidal and Non-cuspidal Elements

a ∈ M : primary element.

• a is non-cuspidal iff a + b = c , ∃b ∈ M ,
∃c ∈ Φbs−fld(B).

• a is cuspidal iff b is not non-cuspidal.

a ∈ M : an element.

• a is non-cuspidal (resp. cuspidal) iff any primary
b ∈ M satisfying na = b + c for some n ≥ 1
and c ∈ M is non-cuspidal (resp. cuspidal).
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Cupsidal Pre-steps

Recall: a morphism f of F is a pre-step iff the
functor F → FΦ maps f to (∼=, ∗, 1).

A pre-step f of F is called non-cuspidal (resp.
cuspidal) iff f 7→ (∼=, ∗, 1) with ∗: cuspidal (resp.
non-cuspidal).
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Category Theoreticity

One can reconstruct the non-cuspidal (resp.
cuspidal) pre-steps category theoretically from F .

For any object (B , α) of F , one can reconstruct the
non-cuspidal (resp. cuspidal) elements of Φ(M)
category theoretically from (F , (B , α)).
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Category Theoreticity of A⊚ = (Ÿ , 0)

Set A⊚ = (Abs
⊚ , 0) ∈ Obj(F), where A⊚ = Ÿ .

One can reconstruct Abs
⊚ (up to isom.) category

theoretically from F .

Theorem One can reconstruct A⊚ (up to isom.)
category theoretically from F .
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ΨΦ
A⊚

Ψ : F → F : an auto-equivalence of cat.

Category theoreticity of A⊚ =⇒Ψ(A⊚)
∃ ∼= A⊚.

Category theoreticity of Φ =⇒Φ(A⊚)
∃ ∼= Φ(Ψ(A⊚)).

Composition =⇒ΨΦ
A⊚ : Φ(A⊚)

∼=−→ Φ(A⊚).
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Category Theoreticity of the Geometry of
Divisors

Proposition. ΨΦ
A⊚ preserves the followings:

• the cuspidal elements

• the surjection
Prime(Φ(A⊚))

cusp ↠ Prime(Φ(A⊚))
ncsp

• Prime(Φ(A⊚))
ncsp ∼= Z up to translates, ±1

• divΘ̈ ∈ Φ(A⊚)
gp up to translates, ±1
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Main Idea of Proof

Consider the rational funcctions such as

(t − qE )(t − q−1
E )

(t − 1)2

⇝they provide divisors ∼ 0 with small supports.

Intersection theory =⇒non-existence of a non-zero
divisor ∼ 0 with smaller support.
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Étale theta functions, mono-theta environments, and [IUTchI] §1-§3, II

Main Idea of Proof (continued)

⇝The Frobenioid structure can recover the map
Prime(Φ(A⊚))

cusp ↠ Prime(Φ(A⊚))
ncsp and the

pairs of two adjacent non-cuspidal components.
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Étale Theta Function in the
Frobenioid-theoretic setting

Let N : an integer ≥ 1.
Recall: we constructed YℓN , ŸℓN , ZℓN .
A Description over K :

• YℓN,K : the composite of YK → XK and
[ℓN] : XK → XK

• ŸℓN,K = Y2ℓN,K

• ZℓN,K : obtained from YℓN,K by killing the
∆Θ ⊗Z Z/ℓNZ-part from the fundamental
group of YℓN ,K
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From now on assume N : odd.
YℓN , ŸℓN , ZℓN : stable models of YℓN , ŸℓN , ZℓN .
Recall: we constructed

• sℓN ∈ Γ(ZℓN ,LℓN |ZℓN
) : ”the zeros Θ1/ℓN”

• τℓN ∈ Γ(Ÿ,LℓN |ŸℓN
) : ”the poles of Θ1/ℓN”

Z̈ℓN : the composite of ZℓN and ŸℓN ⇝

sℓN |Z̈ℓN
, τℓN |Z̈ℓN

: OZ̈ℓN
↪→ LℓN |Z̈ℓN

.

We regard these as objects of F and denote them
by “sℓN”, “τℓN”. They are pre-steps.
We will deal with (“sℓN”, “τℓN”) by constructing a
theory called bi-Kummer theory.
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Kummer theory vs. bi-Kummer theory

We would like to introduce Kummer theory into the
world of Frobenioids.

An example. X : a connected regular noetherian
scheme, 1/N ∈ Γ(X ,OX ). f : a meromorphic
function on X , invertible on U ⊂ X .

Usual Kummer theory: f ⇝πet
1 (U) ⟲ f 1/N

⇝κf ∈ H1(πet
1 (U), µN).
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bi-Kummer theory: decompose div f as

div f = D+ − D−,

with D+, D−: effective, having disjoint supports
(=⇒D+ and D− are linearly equiv).

Interpret f as a commutative diagram

OX
⊂−−→ OX (D+)∥∥∥ ∼=

y×f

OX
⊂−−→ OX (D−).

bi-Kummer theory describes κf in this framework.
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General bi-Kummer theory

Let F → FΦ be a Frobenioid satisfying certain
technical conditions, such that D = B tp(Π)◦[D] for
some Π, D. Let A⊚ be a “Frobenius-trivial” object
s.t. Abs

⊚ = Base(A⊚) is “Galois”.
Note. Our (F ,A⊚) satisfies the conditions.

F÷ : the localization of F w.r.t. pre-steps.
=⇒F÷ has a natural structure of Frobenioid.
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Fraction Pair
A ∈ Obj(F), f ∈ O×(A÷).
(right) fraction pair for f is a pair

s⊓, s⊔ : A → B

of pre-steps s.t.

• Base(s⊓) = Base(s⊔)

• s⊓ ◦ (s⊔)−1 = f

• Div(s⊓) and Div(s⊔) have disjoint supports

Div(s⊓) : “divisor of zeros of f ”,
Div(s⊓) : “divisor of poles of f ”.
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Terminology

A ∈ Obj(F) is Galois iff Abs ∈ Obj(D) is Galois.

When A: Galois,
HAbs := Image(H⊚ ↪→ Π↠ AutD(A

bs)), where
H⊚◁Π : the normal subgroup corresponding to A⊚.
HA = HAbs ∩ Image(AutF(A) → AutD(A

bs)).

A : H⊚-ample iff HA = HAbs.
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(N ,H⊚, f )-saturated object

For

• A : a Galois and HA-ample object of F
• N ≥ 1 : an integer

• f ∈ O×(A÷)HA

One can define the notion “(N ,H⊚, f )-saturated”
which is a property of A.
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Let us consider a fraction pair when A = A⊚:

• f ∈ O×(A÷
⊚),

• s⊓, s⊔ : A⊚ → B⊚ : fraction pair for f .

Then

• (s⊓, s⊔) is unique up to isomorphisms

• For any N ≥ 1, one can construct an “N-th
root of (s⊓, s⊔)”

• N-th root of (s⊓, s⊔) is unique up to
“isomorphisms”

Étale theta functions, mono-theta environments, and [IUTchI] §1-§3, II 34 / 43
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N-th root of (s⊓, s⊔)

N-th root of (s⊓, s⊔) is a pair (s⊓N , s
⊔
N) of pre-steps

s⊓N , s
⊔
N : AN → BN

satisfying

• Base(s⊓N) = Base(s⊔N)

• AN : (N ,H⊚, f |AN
)-saturated

and ...
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... and

• ∃α : AN → A, ∃β : BN → B isometries of
Frobenius degree N s.t. α is “of base
Frobenius type” and

AN
s⊓N−−→ BN

α

y yβ

A⊚
s⊓N−−→ B⊚

and

AN
s⊔N−−→ BN

α

y yβ

A⊚
s⊔N−−→ B⊚

are commutative
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Bi-Kummer Roots

Definition of (s⊓N , s
⊔
N) implies that AN is

Frobenius-trivial.
⇝Can lift HAN

⊂ AutC(AN)/O×(AN) to an action
of HAN

on AN .

This actions is transported via s⊓N , s
⊔
N to the actions

s⊓gpN , s⊔gpN of HBN
on BN .

(s⊓gpN , s⊔gpN ) is called a bi-Kummer N-th root of
(s⊓, s⊔).

Étale theta functions, mono-theta environments, and [IUTchI] §1-§3, II 37 / 43
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Relation with the Kummer Class

f has a N-th root in O×(A÷
N)

⇝κf ∈ H1(HAN
, µN(AN)) : the Kummer class of

f .

s⊓gpN · (s⊔gpN )−1 gives an element in
κf |BN

∈ H1(HBN
, µN(BN)) is equal to the Kummer

class of f .
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Category theoreticity of bi-Kummer Data
Theorem

(1) For (F → D,Abs
⊚ ,A, f ∈ O×(A÷)), the

followings are categorical:
• the property “A is
(N ,H⊚, f )-saturated”,

• the Kummer class
κf ∈ H1(HA, µN(A)) when A is
(N ,N⊚, f )-saturated

(2) For (F → D,Abs
⊚ ,BN), the bi-Kummer

N-th root (s⊓gpN , s⊔gpN ) is categorical up to
diagonal conjugation by O×(BN) and the
conjugation by µN(BN)× µN(BN).
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When F = F
Proposition. Suppose that F = F . Then

• (“sℓN”, “τℓN”) is a ℓN-th root of a fraction pair
of “Θ̈”.

• The group actions “sℓN”,“τℓN” are the same as
the action given by the theory bi-Kummer
roots.

• The Kummer class given by the bi-Kummer
ℓN-th roots corresponds to the class of η̈Θ

modulo ℓN via the natural isomorphism
µℓN

∼= ∆Θ ⊗ Z/ℓNZ.
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(ℓ,N)-theta Saturated Object

Let S ∈ Obj(F) ⇝(ℓ∆Θ)S : a subquotient of

AutD(S
bs).

We say that S is (ℓ,N)-theta saturated if

♯µℓN(S) = ℓN and ♯(ℓ∆Θ)S ⊗Z Z/NZ = N .

S : (ℓ,N)-theta saturated =⇒S → X is of
sufficently high level to produce the following
isomorphism:
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The Kummer Class of Θ̈ Relates Two
Cyclotomes of Diffrent Origins

S : (ℓ,N)-theta saturated
=⇒the Kummer class in the above proposition gives
an isom.

(ℓ ·∆Θ)⊗Z Z/NZ
∼=−→ µN(S) = ℓ · µℓN(S). (0.1)
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Main Bad Local Theorems

Main Theorem 1. One can reconstruct the
(ℓ,N)-theta saturated objects category theoretically
from F .
Moreover, for any given (ℓ,N)-theta object S of F ,
one can reconstruct the isomorphism (0.1) above.
Theorem. One can reconstruct, up to µℓ and
translations by elements in Z, the ℓ-th roots of
Θ-function of standard type.
Main Theorem 2. We can reconstruct an
isomorph of Mモ category theoretically from F .
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