Étale theta functions, mono-theta environments, and [IUTchl] $\S1-\S3$, II

Seidai Yasuda

Osaka University

19 July, 2016 at RIMS, Kyoto University

Étale theta functions, mono-theta environments, and [IUTchI] §1-§3

Construction of the Frobenioids (2) : when $\underline{v} \notin \underline{\mathbb{V}}^{\text{bad}}$ and $\underline{v} \nmid \infty$

In this case, $\underline{\mathcal{F}}_{\underline{\nu}}$: $p_{\underline{\nu}}$ -adic Frobenioid whose base category is $\mathcal{D}_{\underline{\nu}} := B(\underline{X}_{\underline{\nu}})^{\circ}$ and whose divisor monoid is given by the composite

$$\mathcal{D}_{\underline{v}} o \mathcal{D}_{\underline{v}}^{\vdash} = B(\operatorname{Spec} K_{\underline{v}})^{\circ} o \mathfrak{Mon}$$

where the last functor is Spec $L \mapsto (\mathcal{O}_L^{\triangleright}/\mathcal{O}_L^{\times})^{\mathrm{pf}}$.

The Frobenioids $\mathcal{C}_{\underline{v}}$ and $\mathcal{C}_{\underline{v}}^{\vdash}$

Set
$$\mathcal{C}_{\underline{v}} := \underline{\mathcal{F}}_{\underline{v}}$$

Define the submonoid $\Phi_{\mathcal{C}_{\underline{\nu}}^{\vdash}}$ of the monoid $\operatorname{Spec} L \mapsto (\mathcal{O}_{L}^{\triangleright}/\mathcal{O}_{L}^{\times})^{\operatorname{pf}}$ on $\mathcal{D}_{\underline{\nu}}^{\vdash}$ as $\operatorname{Spec} L \mapsto \mathbb{Z}_{p_{\underline{\nu}}}^{\triangleright}/\mathbb{Z}_{p_{\underline{\nu}}}^{\times}$. $\rightsquigarrow p_{\underline{\nu}}$ -adic Frobenioid $\mathcal{C}_{\nu}^{\vdash}$ whose base category is $\mathcal{D}_{\nu}^{\vdash}$.

$$p_{\underline{\nu}}$$
 gives a characteristic splitting $\tau_{\underline{\nu}}^{\vdash}$. Set $\mathcal{F}_{\underline{\nu}}^{\vdash} = (\mathcal{C}_{\underline{\nu}}^{\vdash}, \tau_{\underline{\nu}}^{\vdash}).$

The Frobenioid $C_{\underline{v}}^{\Theta}$

Construct
$$\mathcal{F}^{\Theta}_{\underline{\nu}} = (\mathcal{C}^{\Theta}_{\underline{\nu}}, \tau^{\Theta}_{\underline{\nu}})$$
 just by adjoining the formal symbol "log $\underline{\Theta}$ " to $\mathcal{F}^{\vdash}_{\underline{\nu}}$.

We have an isom. $\mathcal{F}_{\underline{\nu}}^{\vdash} \cong \mathcal{F}_{\underline{\nu}}^{\Theta}$.

Reconstructibility

We can reconstruct

$$\mathcal{D}_{\underline{\nu}}, \mathcal{C}_{\underline{\nu}}^{\vdash}, \mathcal{F}_{\underline{\nu}}^{\vdash}, \mathcal{C}_{\underline{\nu}}^{\Theta}, \mathcal{F}_{\underline{\nu}}^{\Theta}$$

category theoretically from $\underline{\underline{\mathcal{F}}}_{\underline{\nu}}$.

Construction of the Frobenioids (3) : when $\underline{v}|\infty$

$$\underline{X}_{\underline{\nu}} = \underline{X}_{K} \otimes_{K} K_{\underline{\nu}} \rightsquigarrow \text{Aut-holomorphic space } \underline{X}_{\underline{\nu}}.$$

By definition, $\underline{\mathbb{X}}_{\underline{\nu}}$ is a pair $\underline{\mathbb{X}}_{\underline{\nu}} = (\underline{X}(K_{\underline{\nu}}), (\operatorname{Aut}_{\operatorname{hol}}(U))_U)$

where U runs over the connected open subsets of $\underline{X}(K_{\underline{v}})$.

 $\mathcal{A}_{\underline{\mathbb{X}}_{\underline{v}}}$

Here

- we regard $\underline{X}(K_{\underline{v}})$ just as a topological space
- we regard Aut_{hol}(U) as a subgroup of Aut_{top}(U)

 $\underline{X}_{\underline{\nu}} \rightsquigarrow \overline{\mathcal{A}}_{\underline{X}_{\underline{\nu}}}$: complex archimedean top. field ($\cong \mathbb{C}$).

Construction of
$$\underline{\underline{\mathcal{F}}}_{\underline{\underline{\nu}}}$$
, $\mathcal{C}_{\underline{\underline{\nu}}}$

We set
$$\underline{\underline{\mathcal{F}}}_{\nu} := (\mathcal{C}_{\underline{\nu}}, \mathcal{D}_{\underline{\nu}}, \kappa_{\underline{\nu}})$$
, where

 C_v: the archimedean Frobenioid given by circular sectors centered at 0 in K_v, whose base category is one-morphism cat. Spec(K_v).

•
$$\mathcal{D}_{\underline{\nu}} = \underline{\mathbb{X}}_{\underline{\nu}}$$
: Aut-hol. space.
• $\kappa_{\underline{\nu}} : \mathcal{O}^{\triangleright}(\mathcal{C}_{\underline{\nu}}) \cong \mathcal{O}_{K_{\underline{\nu}}}^{\triangleright} \hookrightarrow \mathcal{A}_{\mathcal{D}_{\underline{\nu}}} := \overline{\mathcal{A}}_{\underline{\mathbb{X}}_{\underline{\nu}}} \setminus \{0\}.$

Construction of
$$\mathcal{C}^{dash}_{\underline{v}}$$
, $au^{ash}_{\underline{v}}$

We set
$$\mathcal{C}_{\underline{\nu}}^{\vdash} := \mathcal{C}_{\underline{\nu}}$$

 $\mathbb{R}_{>0} \subset \mathbb{C}^{\times} \rightsquigarrow \tau_{\nu}^{\vdash}$: characteristic splitting of $\mathcal{C}_{\nu}^{\vdash}$.

 $\frac{\mathcal{D}_{\underline{v}}^{\vdash}}{\mathcal{A}_{\mathcal{D}_{v}}}.$ the "split topological monoid" determined by

$$\mathcal{F}_{\underline{\nu}}^{\vdash} := (\mathcal{C}_{\underline{\nu}}^{\vdash}, \mathcal{D}_{\underline{\nu}}^{\vdash}, \tau_{\underline{\nu}}^{\vdash}).$$

Construction of $C_{\underline{\nu}}^{\Theta}$, $\tau_{\underline{\nu}}^{\Theta}$ and Reconstructibility

- Construct $\mathcal{F}_{\underline{\nu}}^{\Theta} = (\mathcal{C}_{\underline{\nu}}^{\Theta}, \mathcal{D}_{\underline{\nu}}^{\Theta}, \tau_{\underline{\nu}}^{\Theta})$ just by adjoining the formal symbol "log Θ " (Here $\mathcal{D}_{\nu}^{\Theta} = \mathcal{D}_{\nu}^{\vdash}$).
- One can reconstruct $\mathcal{F}_{\underline{\nu}}^{\vdash}$ and $\mathcal{F}_{\underline{\nu}}^{\Theta}$ algorithmically from the datum $\underline{\underline{\mathcal{F}}}_{\underline{\nu}}$.

Let us go back to the bad local situation.

Étale theta functions, mono-theta environments, and [IUTchI] §1-§3

The Model mod. N Mono Θ -environment

Recall: in the bad local situation, for an integer $N \ge 1$, the **model mod.** $N \ominus$ -environment

$$\mathbb{M}^{\mathfrak{T}} = (\Pi^{\mathfrak{T}}, \mathcal{D}^{\mathfrak{T}}, \boldsymbol{s}_{\Pi^{\mathfrak{T}}}^{\Theta})$$

is a triple of a topological group Π^{\pm} , a subgroup \mathcal{D}^{\pm} of $\operatorname{Out}(\Pi^{\pm})$, and a set $s_{\Pi^{\pm}}^{\Theta}$ of subgroups of Π^{\pm} given as follows:

The model mod. N mono Θ -environment (continued)

- Π[€] := <u>Π</u>^{tp}_{<u>Y</u>} × μ_N, where <u>Π</u>^{tp}_{<u>Y</u>} → G_K μ_N.
 D[€] ⊂ Out(Π[€]) : the subgroup generated by the image of K[×] (under the composite K[×] → H¹(K, μ_N) → H¹(<u>Π</u>^{tp}_{<u>Y</u>}, μ_N) → Out(Π[€])) and Gal(<u>Y/X</u>) ≅ ℓ<u>Z</u>.
- s^Θ_{Π[€]}: the μ_N-conj. class of subgroups of Π[€] given by the images of mod. N theta sections.

Mod. N-Theta Sections

Here mod. *N*-theta sections are homomorphisms $\underline{\Pi}_{\underline{\underline{Y}}}^{\mathrm{tp}} \hookrightarrow \Pi^{\pm}$ obtained from the composite

$$\underline{\Pi}^{\operatorname{tp}}_{\underline{\overset{}}{\underline{Y}}} \xrightarrow{\subset} \underline{\Pi}^{\operatorname{tp}}_{\underline{\overset{}}{\underline{Y}}} \xrightarrow{\operatorname{tautological}} \Pi^{\underset{}{\underbrace{\mp}}}$$

by twisting by the orbit of étale theta classes $\underline{\ddot{\mu}}^{\Theta,\ell\underline{\mathbb{Z}}\times\mu_2} \subset H^1(\underline{\Pi}^{\mathrm{tp}}_{\underline{\check{Y}}},\ell \cdot \underline{\Delta}_{\Theta}).$

Main Bad Local Theorems

Main Bad Local Theorem 1. We can reconstruct category theoretically the canonical isomorphism

$$\mu_{\mathsf{N}} \cong \underline{\Delta}_{\Theta} \otimes_{\mathbb{Z}} \mathbb{Z}/\mathsf{N}\mathbb{Z}$$

from $\underline{\mathcal{F}}$.

Main Bad Local Theorem 2. We can reconstruct $\mathbb{M}^{\mathfrak{T}}$ (up to isom.) category theoretically from $\underline{\mathcal{F}}$.

Geometry of the Divisor Monoid of $\underline{\mathcal{F}}$

Let (B, α) be an object of $\underline{\mathcal{F}}$. $M = \Phi(B)$.

M is a perfection of the monoid of effective divisors on $\mathfrak{B}^{\rm ell}$ supported on the union of the cusps and the special fiber.

 \implies *M* is decomposed as the direct sum of the cuspidal part and the non-cuspidal part, i.e., the part supported on the special fiber.

Next Slides

For example, when $B = \ddot{Y}$, the divisor of zeros of $\ddot{\Theta}$ belongs to the cuspidal part, and the divisor of poles of $\ddot{\Theta}$ belongs to the non-cuspidal part

One can describe this decomposition monoid-theoretically using $(M, \Phi^{\text{bs-fld}}(B))$. A main idea is the following observation: an effective divisor with finite support is non-cuspidal iff it is bounded by the divisor of a costant function. A detailed explanation will be given in the next slides.

Cuspidal and Non-cuspidal Elements

 $a \in M$: primary element.

- *a* is non-cuspidal iff a + b = c, $\exists b \in M$, $\exists c \in \Phi^{\text{bs-fid}}(B)$.
- *a* is cuspidal iff *b* is not non-cuspidal.
- $a \in M$: an element.
 - a is non-cuspidal (resp. cuspidal) iff any primary
 b ∈ M satisfying na = b + c for some n ≥ 1
 and c ∈ M is non-cuspidal (resp. cuspidal).

Cupsidal Pre-steps

Recall: a morphism f of $\underline{\underline{\mathcal{F}}}$ is a pre-step iff the functor $\underline{\underline{\mathcal{F}}} \to \mathbb{F}_{\Phi}$ maps f to $(\cong, *, 1)$.

A pre-step f of $\underline{\mathcal{F}}$ is called **non-cuspidal** (resp. **cuspidal**) iff $f \mapsto (\cong, *, 1)$ with *: cuspidal (resp. non-cuspidal).

Category Theoreticity

One can reconstruct the non-cuspidal (resp. cuspidal) pre-steps category theoretically from $\underline{\mathcal{F}}$.

For any object (B, α) of $\underline{\mathcal{F}}$, one can reconstruct the non-cuspidal (resp. cuspidal) elements of $\Phi(M)$ category theoretically from $(\underline{\mathcal{F}}, (B, \alpha))$.

Category Theoreticity of $A_{\odot} = (\underline{\ddot{Y}}, 0)$

Set
$$A_{\odot} = (A_{\odot}^{\mathrm{bs}}, 0) \in \mathrm{Obj}(\underline{\underline{\mathcal{F}}})$$
, where $A_{\odot} = \underline{\underline{\ddot{Y}}}$.

One can reconstruct A^{bs}_{\odot} (up to isom.) category theoretically from $\underline{\underline{\mathcal{F}}}$.

Theorem One can reconstruct A_{\odot} (up to isom.) category theoretically from $\underline{\mathcal{F}}$.

$$\Psi: \underline{\underline{\mathcal{F}}} \to \underline{\underline{\mathcal{F}}}$$
: an auto-equivalence of cat.

Category theoreticity of $A_{\odot} \Longrightarrow \Psi(A_{\odot})^{\exists} \cong A_{\odot}$. Category theoreticity of $\Phi \Longrightarrow \Phi(A_{\odot})^{\exists} \cong \Phi(\Psi(A_{\odot}))$.

$$\mathsf{Composition} \Longrightarrow \Psi^{\Phi}_{\mathcal{A}_{\odot}} : \Phi(\mathcal{A}_{\odot}) \xrightarrow{\cong} \Phi(\mathcal{A}_{\odot}).$$

Category Theoreticity of the Geometry of Divisors

Proposition. $\Psi^{\Phi}_{A_{\odot}}$ preserves the followings:

- the cuspidal elements
- the surjection $\operatorname{Prime}(\Phi(A_{\odot}))^{\operatorname{cusp}} \twoheadrightarrow \operatorname{Prime}(\Phi(A_{\odot}))^{\operatorname{ncsp}}$
- $\operatorname{Prime}(\Phi(A_{\odot}))^{\operatorname{ncsp}}\cong\mathbb{Z}$ up to translates, ± 1
- ${
 m div}\ddot{\Theta}\in \Phi({\it A}_{\odot})^{
 m gp}$ up to translates, ± 1

Main Idea of Proof

Consider the rational funcctions such as

$$rac{(t-q_E)(t-q_E^{-1})}{(t-1)^2}$$

 \rightsquigarrow they provide divisors \sim 0 with small supports.

Intersection theory \implies non-existence of a non-zero divisor \sim 0 with smaller support.

Main Idea of Proof (continued)

 \rightsquigarrow The Frobenioid structure can recover the map $\operatorname{Prime}(\Phi(A_{\odot}))^{\operatorname{cusp}} \twoheadrightarrow \operatorname{Prime}(\Phi(A_{\odot}))^{\operatorname{ncsp}}$ and the pairs of two adjacent non-cuspidal components.

Étale Theta Function in the Frobenioid-theoretic setting

Let N: an integer ≥ 1 . Recall: we constructed $Y_{\ell N}$, $\ddot{Y}_{\ell N}$, $Z_{\ell N}$. A Description over \overline{K} :

• $Y_{\ell N,\overline{K}}$: the composite of $Y_{\overline{K}} \to X_{\overline{K}}$ and $[\ell N] : X_{\overline{K}} \to X_{\overline{K}}$

•
$$\ddot{Y}_{\ell N,\overline{K}} = Y_{2\ell N,\overline{K}}$$

• $Z_{\ell N,\overline{K}}$: obtained from $Y_{\ell N,\overline{K}}$ by killing the $\underline{\Delta}_{\Theta} \otimes_{\mathbb{Z}} \mathbb{Z}/\ell N\mathbb{Z}$ -part from the fundamental group of $Y_{\ell_N,\overline{K}}$

From now on assume N: odd. $\mathfrak{Y}_{\ell N}, \mathfrak{Y}_{\ell N}, \mathfrak{Z}_{\ell N}$: stable models of $Y_{\ell N}, \ddot{Y}_{\ell N}, Z_{\ell N}$. Recall: we constructed

•
$$s_{\ell N} \in \Gamma(\mathfrak{Z}_{\ell N}, \mathcal{L}_{\ell N}|_{\mathfrak{Z}_{\ell N}})$$
: "the zeros $\Theta^{1/\ell N}$ "
• $\tau_{\ell N} \in \Gamma(\mathfrak{Y}, \mathcal{L}_{\ell N}|_{\mathfrak{Y}_{\ell N}})$: "the poles of $\Theta^{1/\ell N}$ "
 $Z_{\ell N}$: the composite of $Z_{\ell N}$ and $Y_{\ell N} \rightsquigarrow$

$$s_{\ell N}|_{\mathfrak{Z}_{\ell N}}, \tau_{\ell N}|_{\mathfrak{Z}_{\ell N}}: \mathcal{O}_{\mathfrak{Z}_{\ell N}} \hookrightarrow \mathcal{L}_{\ell N}|_{\mathfrak{Z}_{\ell N}}.$$

We regard these as objects of $\underline{\mathcal{F}}$ and denote them by " $s_{\ell N}$ ", " $\tau_{\ell N}$ ". They are pre-steps. We will deal with (" $s_{\ell N}$ ", " $\tau_{\ell N}$ ") by constructing a theory called bi-Kummer theory.

Kummer theory vs. bi-Kummer theory

We would like to introduce Kummer theory into the world of Frobenioids.

An example. X: a connected regular noetherian scheme, $1/N \in \Gamma(X, \mathcal{O}_X)$. f: a meromorphic function on X, invertible on $U \subset X$.

Usual Kummer theory: $f \rightsquigarrow \pi_1^{\text{et}}(U) \circlearrowleft f^{1/N}$ $\rightsquigarrow \kappa_f \in H^1(\pi_1^{\text{et}}(U), \mu_N).$ bi-Kummer theory: decompose $\operatorname{div} f$ as

$$\operatorname{div} f = D_+ - D_-,$$

with D_+ , D_- : effective, having disjoint supports ($\Longrightarrow D_+$ and D_- are linearly equiv).

Interpret f as a commutative diagram

$$\begin{array}{cccc} \mathcal{O}_X & \stackrel{\subset}{\longrightarrow} & \mathcal{O}_X(D_+) \\ \\ \parallel & & \cong \downarrow \times f \\ \mathcal{O}_X & \stackrel{\subset}{\longrightarrow} & \mathcal{O}_X(D_-). \end{array}$$

bi-Kummer theory describes κ_f in this framework.

Étale theta functions, mono-theta environments, and [IUTchI] §1-§3

General bi-Kummer theory

Let $\mathcal{F} \to \mathbb{F}_{\Phi}$ be a Frobenioid satisfying certain technical conditions, such that $\mathcal{D} = B^{\mathrm{tp}}(\Pi)^{\circ}[D]$ for some Π , D. Let A_{\odot} be a "Frobenius-trivial" object s.t. $A_{\odot}^{\mathrm{bs}} = \mathrm{Base}(A_{\odot})$ is "Galois". Note. Our $(\underline{\mathcal{F}}, A_{\odot})$ satisfies the conditions.

 \mathcal{F}^{\div} : the localization of \mathcal{F} w.r.t. pre-steps. $\Longrightarrow \mathcal{F}^{\div}$ has a natural structure of Frobenioid.

Fraction Pair

$$A \in \text{Obj}(\mathcal{F}), f \in \mathcal{O}^{\times}(A^{\div}).$$

(right) fraction pair for f is a pair

$$s^{\sqcap},s^{\sqcup}: A
ightarrow B$$

of pre-steps s.t.

•
$$\operatorname{Base}(s^{\sqcap}) = \operatorname{Base}(s^{\sqcup})$$

•
$$s^{\sqcap} \circ (s^{\sqcup})^{-1} = f$$

• $\operatorname{Div}(s^{\sqcap})$ and $\operatorname{Div}(s^{\sqcup})$ have disjoint supports

$$\operatorname{Div}(s^{\sqcap})$$
: "divisor of zeros of f ",
 $\operatorname{Div}(s^{\sqcap})$: "divisor of poles of f ".

 $A \in \mathrm{Obj}(\mathcal{F})$ is **Galois** iff $A^{\mathrm{bs}} \in \mathrm{Obj}(\mathcal{D})$ is Galois.

When A: Galois,

$$H_{A^{\mathrm{bs}}} := \mathrm{Image}(H_{\odot} \hookrightarrow \Pi \twoheadrightarrow \mathrm{Aut}_{\mathcal{D}}(A^{\mathrm{bs}}))$$
, where
 $H_{\odot} \lhd \Pi$: the normal subgroup corresponding to A_{\odot} .
 $H_{A} = H_{A^{\mathrm{bs}}} \cap \mathrm{Image}(\mathrm{Aut}_{\mathcal{F}}(A) \to \mathrm{Aut}_{\mathcal{D}}(A^{\mathrm{bs}}))$.

A : H_{\odot} -ample iff $H_A = H_{A^{bs}}$.

(N, H_{\odot}, f) -saturated object

For

- A : a Galois and H_A -ample object of $\mathcal F$
- N ≥ 1 : an integer
- $f \in \mathcal{O}^{\times}(A^{\div})^{H_A}$

One can define the notion " (N, H_{\odot}, f) -saturated" which is a property of A.

Let us consider a fraction pair when $A = A_{\odot}$:

•
$$f \in \mathcal{O}^{\times}(A_{\odot}^{\div})$$
,
• $s^{\Box}, s^{\sqcup} : A_{\odot} \to B_{\odot}$: fraction pair for f .
Then

- (s^{\sqcap}, s^{\sqcup}) is unique up to isomorphisms
- For any N ≥ 1, one can construct an "N-th root of (s[¬], s[⊥])"
- *N*-th root of (s[¬], s[⊥]) is unique up to "isomorphisms"

N-th root of
$$(s^{\sqcap}, s^{\sqcup})$$

N-th root of
$$(s^{\sqcap}, s^{\sqcup})$$
 is a pair $(s^{\sqcap}_N, s^{\sqcup}_N)$ of pre-steps
 $s^{\sqcap}_N, s^{\sqcup}_N : A_N \to B_N$

satisfying

•
$$\operatorname{Base}(s_N^{\sqcap}) = \operatorname{Base}(s_N^{\sqcup})$$

• A_N : $(N, H_{\odot}, f|_{A_N})$ -saturated
and ...

... and

• $\exists \alpha : A_N \to A, \exists \beta : B_N \to B$ isometries of Frobenius degree N s.t. α is "of base Frobenius type" and

are commutative

Bi-Kummer Roots

Definition of $(s_N^{\sqcap}, s_N^{\sqcup})$ implies that A_N is Frobenius-trivial. \sim Can lift $H_{A_N} \subset \operatorname{Aut}_{\mathcal{C}}(A_N)/\mathcal{O}^{\times}(A_N)$ to an action of H_{A_N} on A_N .

This actions is transported via s_N^{\Box} , s_N^{\Box} to the actions $s_N^{\Box gp}$, $s_N^{\Box gp}$ of H_{B_N} on B_N .

$$(s_N^{\sqcap gp}, s_N^{\sqcup gp})$$
 is called a **bi-Kummer** *N*-**th root** of (s^{\sqcap}, s^{\sqcup}) .

Relation with the Kummer Class

f has a N-th root in
$$\mathcal{O}^{\times}(A_N^{\div})$$

 $\rightsquigarrow \kappa_f \in H^1(H_{A_N}, \mu_N(A_N))$: the Kummer class of f .

$$s_N^{\sqcap \operatorname{pp}} \cdot (s_N^{\sqcup \operatorname{pp}})^{-1}$$
 gives an element in $\kappa_f|_{B_N} \in H^1(H_{B_N}, \mu_N(B_N))$ is equal to the Kummer class of f .

Category theoreticity of bi-Kummer Data Theorem (1) For $(\mathcal{F} \to \mathcal{D}, A^{\mathrm{bs}}_{\otimes}, A, f \in \mathcal{O}^{\times}(A^{\div}))$, the followings are categorical: • the property "A is (N, H_{\odot}, f) -saturated", the Kummer class $\kappa_f \in H^1(H_A, \mu_N(A))$ when A is (N, N_{\odot}, f) -saturated (2) For $(\mathcal{F} \to \mathcal{D}, A^{\mathrm{bs}}_{\otimes}, B_N)$, the bi-Kummer *N*-th root $(s_N^{\exists gp}, s_N^{\exists gp})$ is categorical up to diagonal conjugation by $\mathcal{O}^{\times}(B_N)$ and the conjugation by $\mu_N(B_N) \times \mu_N(B_N)$.

Étale theta functions, mono-theta environments, and [IUTchI] §1-§3

When
$$\mathcal{F} = \underline{\mathcal{F}}$$

Proposition. Suppose that $\mathcal{F} = \underline{\mathcal{F}}$. Then

- ("s_{ℓN}", "τ_{ℓN}") is a ℓN-th root of a fraction pair of "Θ".
- The group actions " $s_{\ell N}$ ", " $\tau_{\ell N}$ " are the same as the action given by the theory bi-Kummer roots.
- The Kummer class given by the bi-Kummer ℓN -th roots corresponds to the class of $\underline{\ddot{\mu}}^{\Theta}$ modulo ℓN via the natural isomorphism $\mu_{\ell N} \cong \underline{\Delta}_{\Theta} \otimes \mathbb{Z}/\ell N\mathbb{Z}.$

(ℓ, N) -theta Saturated Object

Let $S \in \text{Obj}(\underline{\mathcal{F}}) \rightsquigarrow (\ell \underline{\Delta}_{\Theta})_{S}$: a subquotient of $\text{Aut}_{\mathcal{D}}(S^{\text{bs}})$.

We say that S is (ℓ, N) -theta saturated if

 $\sharp \mu_{\ell N}(S) = \ell N \text{ and } \sharp (\ell \Delta_{\Theta})_S \otimes_{\mathbb{Z}} \mathbb{Z}/N\mathbb{Z} = N.$

 $S : (\ell, N)$ -theta saturated $\Longrightarrow S \rightarrow \underline{X}$ is of sufficiently high level to produce the following isomorphism:

The Kummer Class of Θ Relates Two Cyclotomes of Diffrent Origins

 $S : (\ell, N)$ -theta saturated \implies the Kummer class in the above proposition gives an isom.

$$(\ell \cdot \underline{\Delta}_{\Theta}) \otimes_{\mathbb{Z}} \mathbb{Z}/N\mathbb{Z} \xrightarrow{\cong} \mu_N(S) = \ell \cdot \mu_{\ell N}(S).$$
 (0.1)

Main Bad Local Theorems

Main Theorem 1. One can reconstruct the (ℓ, N) -theta saturated objects category theoretically from $\underline{\mathcal{F}}$. Moreover, for any given (ℓ, N) -theta object S of $\underline{\mathcal{F}}$, one can reconstruct the isomorphism (0.1) above. **Theorem.** One can reconstruct, up to μ_{ℓ} and translations by elements in \mathbb{Z} , the ℓ -th roots of Θ -function of standard type. Main Theorem 2. We can reconstruct an isomorph of \mathbb{M}^{\pm} category theoretically from $\underline{\mathcal{F}}$.