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Summary of the First and the Second Talk
(1)

For an given initial ©-datum

(F/F. Xe, £, Ceo V. V2 )

mod> &

and for v € V, we constructed
E .C,.C,,7y.C 1y

where ...
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Summary of the First and the Second Talk

(2)

where

o é\/ . a Frobenioid when v 1 oo

o Cg, Cl, C® : p,-adic (resp. archimedean)
Frobenioids if v oo (resp. v|oo) (so its divisor
monoid is monoprime).

o 7, 79 : characteristic splittings (= splitting of

the inclusion of functors “O* C O"") of Cy,
cy
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Summary of the First and the Second Talk

(3)

Main Bad Local Theorem 1. The canonical
isomorphisms

(0 Do) @2 Z/NZ = un(S) = € - pun(S).

for (¢, N)-theta saturated objects S of £ are
category theoretical with respect to £.
Main Theorem 2. The mono-© enviroment M™

is, up to isomorphisms, category theoretical with
respect to .F.
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Global realified Frobenioid C]'ﬂiod

C! . : the realification of the arithmetic Frobenioid
given by Fy0q and its trivial Galois ext. Foq/Fnod-
By definition,
o the base category of C!" . is the one-morphism
cat. Spec Fioq.

¢ O, = Ber,, O, where
q)c‘r'l_lod7 :( m0d7 / F Odvv)p ®R20
_ X gp
o ]BClEo V= R - Image F 4 C q)ClZod
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For every v € V 04, we have a canonical
isomorphism

Oc, v = Reg, loghoq(py) — 1,

where p, is the residue characteristic at v (resp. 7)
if v oo (resp. v|oo).
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Recall V. — V ,0q is bijective. Let v € V the unique
element that is mapped to v.

The restriction functor C,, : Cy 4 — (C))™ is equal
to the functor induced by

= 1f
Pv - q)cH— v —>¢25,

mod’

log}0a(Pv) TR (1Fm0d)V] loge (py)-
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Variant with ©
Por- = dpr -log(©), where log(©): formal symbol.
—a Froben|0|d Cly. with a natural equivalence

Crnod - Ctht o
We have “the natural restriction functor”

Co : Ciire — (CO)™ which is equal to the functor
mduced by pf ; Cbc&t — 1L

co:

1081m00(P0) - l0g(©)
[KF—lod] -loge(py) - log(©) if v : good
m logs (pv) - o8( ) if v bad
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mod an d 8(tht
Set

rnod (Crnod7 Prlme(cmod) i {S }vEVa {pv}veV)

and

Fhe = (Che, Prime(Clh) = V, {3 vew, {00} vev).

Then we have a natural isomorphism

[ ~ ~
mod — Utht-
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D-version

3’ ( m0d7 Prlme(DIFod) =V, {D;}ng, {pE}MGY)

Here
° Dmod - a copy of Cmod
o (RZy)v : Rxg constructed from D),

¢ p\/ qDD‘r'r_lod,v — (RI_ )

l0g noa(py) — P

|Og¢(pv)
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Reconstructibility

We have an algorithm reconstructing g}, and §h

from {Sf'r;od.
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©-Hodge Theater THT®

Let B
(F/F, Xp, 0, Cx,V, VP2 ¢)

mod>s &

be an initial ©-datum.

— I T® . ©-Hodge theater:

THTG — ({Tél}MEY7 T:glltlod)

Here T£V and 04 is as follows:
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e v{oo =>a cat. equiv. to £

o v|oo =a triple ('C,,D,, 'x,), where
o 1C, : a category isomorphic to C,
o D, : an Aut-hol. space isom. to
e 'k, 1 Kummer structure O”(1C,) — Aip,
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On mod
IF" 4 is a tuple

Jrgmod (Tcm0d7 Prlme(TCmod) = y? {TFQ}!GY7 {TpL}MGY)

such that
. TC'F : a cat. eqiv. to Cmod
o Pr1me(TCm0d) >~V : bijection
e From Tév we construct T}';, CIDECfF
o Tp,: ®icr = ¢§ng : isom. of top. monoids
and that
TS‘;Od and {S"r;Od are isomorphic.
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Reconstructability

We have an algorithm reconstructing §};. and 1§
from 1"

mod*
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©-link

Let THT®, *HT® : two ©-Hodge theaters

Then there exists an isomorphism T — 3!

So the full poly-isomorphism is non-empty.

The inverse of this full poly-isomorphism is called a

O-link from "HT® to ¥HT®,
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©-link poly-isomorphism
The poly-isomorphism

TDI— ~ iDI—
Yooy X

given by the composite

D

< T
112

D

<®

~ iph

poly

is called the ©-link poly-isomorphism.
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©-link poly-isomorphism

The poly-isomorphism

X ~Y X
OTCk — Oick
v poly v

given by the composite

tc®

X ~Y X ~Y X
OTCI— — ter
v v poly v

is called the ©-link poly-isomorphism.
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Next Slides

In the next slides, we will introduce several
terminology concerning special kinds of rational
functions on curves related to Cr,__,

We assume that an initial ©-datum
(F/F, X, 0, C, Y, V24 €)

Is given.
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r~-coric Functions and Kummer Theory

Let us consider Cg,_, over Fpq.

Let

o L: either Fyoq or Fiod,v for some v € Vi,q
e Lc : the function field of (; = C¢,, ®F, ., L
e Lc: an algebraic closure of L¢

An element of L or Lc is called a function.
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Critical Points

M C L¢ : finite subextension of L¢

— Zy — ‘CL|*(%J ]P)D

(|CL|* : the compactification of the coarse scheme
of CL)

We say that a closed point of Zy; is critical (resp.
strictly critical) if its image in |C.|* comes from a
2-torsion point (resp. a non-zero 2-torsion point) of
Er.
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k-coric functions

Let f € Lc.
We say that f is k-coric if either f is a root of
unity or the following conditions are satisfied:

e f has a (possibly multiple) pole at an only one
point and zeros at least two points

e f does not have a pole or zero at the critical
points

e The values of f at the strict critical points are
roots of unity
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Some variants

Let f € Lc. We say that
o f: k-coricif f" € L¢ and f": k-coric for
some n > 1.

o f: kXx-coric if cf: , k-coric for some c € L
(resp. c € O]) when L = F,q (resp. when

L= Fmod,v)-
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L c(k-sol)

Suppose L = Fyoq. Fsor : the maximal solvable
extension of F,.q inside Lc.

f € Lc is called k-solvable if cf is . k-coric for
some c € F,.
o Lc(k-sol) C Lc : subfield gen. by L¢, and
k-solvable elements, i.e., the subfield gen. by

Lc, Fyo, and the power roots of k-coric
elements.

e Lc(Cx) C Lc : subfield gen. by Lc and the
images of F(j) - Lc-linear embeddings of the
function field of C, into Lc.

Etale theta functions, mono-theta environments, and [IUTchl] §1-§3



Etale theta functions, mono-theta environr ents, and [IlUTchl] §1-§3, 11l

Action of Gal(Lc(Cy)/F(ue)Lc) on
L(:(QK) : Lc(/{—Sol)

Let Gal(Lc(Cx)/F(pe)Lc) act on
Lc(Cx) - Le(k-sol) via the isomorphism

Gal(Lc(Cx)/F(pe)Lc)
= Gal(Lc(Ck) - Le(k-sol)/F(pe) - Le(k-sol))

Note: Lc and F() - Lc(k-sol) are lin. disj. over
F(pe) - Le.
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r-solvable Open Subgroup

H c Gal(L¢/Lc(k-s0l)) : a subgroup.
We say that H is k-solvable open subgroup if
o H<1Gal(Lc/Lc(k-s0l)) : open and normal
e H< Gal(Lc/Lc) open and normal s.t.
H = Hn Gal(Lc/Lc(k-s0l))
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Aut k-sol Out k-sol

Aut“'SOI((ELaI(ZC/Lc(ﬁ—sol))) C
Aut(Gal(L¢/Lc(k-sol)) subgroup of automorphisms
fixing every k-solvable open subgroups.

Out™°(Gal(L¢/Lc(k-sol)))
AT/ Le(resoD)
' Inn(Gal(L¢/Lc(k-sol)))
C Out(Gal(L¢/Lc(k-s0l)))
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Discrete analogue of the proposition in the next
topic

—>Gal(Lc/Lc(k-s0l)) is center-free.

—>the diagram

Gal(Lc/Lc) — Aut”"SOl(Gal(zc/LC(/@—SOI)))

l |

Gal(LC(k-sol)/Lc) —— Out™°Y(Gal(L¢/Lc(k-s0l)))

IS cartesian.
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Next Slides

In the next slides, we will give a survey of §2 of
[IUT-I]. The theme is

profinite conjugates vs. tempered (or
discrete) conjugates

for abstract or fundamental groups.
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Commensurably Terminal
For
e G : Hausdorff topological group
e HC G : closed subgroup
set

Ce(H) = {g € G| gHg 'NH is of finite index both in H

and call it the commensurator of H in G. This is
a subgroup of G.

We say that H is commensurably terminal in G if
Ce(H) = H.
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Notation

Now let K : a CDVF of mixed char. (0, p), with a
finite residue field k.

We use the following (standard) notation:
e Ok : the ring of integers
e K : an alg. closure of K
o k : the residue field of K
o Gk := Gal(K/K)
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Notation

Suppose that we are given
X /K : a hyperbolic curve with stable red. over
Ok.

We use the following notation

e X : the stable model of X

o X : the special fiber

o AT = Xy Ry k
letY : a non-empty set of prime numbers (e.g.,
5. = Primes : the set of prime numbers).
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Fundamental groups

. ﬁX . the pro—f fundamental group of X

e Ax : the pro—f fundamental group of Xi

o N 5 -tempered quotient of 'P(X)

o AP : Y-tempered quotient of m"(X;)

We have ﬂg? — ﬁx, AE? — AX which give

isomorphisms from the pro-X completions of the
domains to the codomains.
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Dual Semi-graph

Semi-graph : a generalization of the notion of
(unoriented) graph

The only difference : a semi-graph allows open
edges

X ~~the dual semi-graph Gy

Gx is obtained from the usual dual graph of X by
adjoining the open edges corresponding to the
boundary points (=: the cusps)
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The Category Associated to a Semi-graph

To a semi-graph G, one can associate the small
category Cat(G) as follows:

Objects : the vertices and the edges of G,

Non-id. morphisms : e — v when v is an endpoint
of e
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Anabelioid

Connected anabelioid : a category equivalent to
B(G) for some profinite group G.

For two connected anabelioids G, H, a morphism
(resp. an isomorphism) G — H is an exact functor
(resp. an equivalence of categories) H — G.
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Semi-graph of anabelioids

A semi-graph of anabelioids is a pair of a
semi-graph G and a functor from Cat(G) to the
category of anabelioids.

In concrete terms, a semi-graph of anabelioids is

a quadruple G = (G, (Gv)v, (Ge)e, (Ge =+ Gv)(ev))

that consists of the following data:
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Content of G

e G : a semi-graph

(G,)y : a family of conn. anabelioids indexed
by the vertices v of G

(Ge)e : a family of conn. anabelioids indexed by
the edges e of G

a morphism G, — G, of connected anabelioids

is given for each pair (e, v) s.t. v is an
endpoint of e
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The Semi-graph of Anabelioids Associated
to X

let ¥ C¥:a non-empty subset with p &€ ¥..

X (and X) ~~a semi-graph of anabelioids G
(well-defined up to “isomorphisms”).

G = (G7 (gv)w (ge)ea (ge — gv)(e,v))p where

G : the dual semi-graph of X.

To define the second component let

U, : the component of A% corresponding to v, with
nodes and cusps removed.
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Semi-graph of Anabelioids of Pro-X
PSC-type

e G, : the connected anabelioid of finite étale
> -cover of U,, tamely ramified at the
boundaries.

e G. : a copy of the ababelioid of finite étale
Y -cover of Spec k((t)), tamely ramified at
t=0.

e Go — G, : given by the inertia subgroup at e

A semi-graph of anabelioid obtained in this way (for

some K and a hyperbolic X) is called pro-x
PSC-type.

Etale theta functions, mono-theta environments, and [IUTchl] §1-§3




Etale theta functions, mono-theta environments, and [IUTchl] §

Category B(G)

Let G : a semi-graph of anabelioids whose
underlying graph is non-empty and connected.
~~the category B(G) is constructed as follows:
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Pro-> Fundamental Group of G

Regard G as a functor Cat(G) — (anabelioids).
E : the category of pairs (x, S) of

x € Obj(Cat(G)) and S € Obj(Gx). A morphism
from (x,S) to (y, T) is pair of f : x — y and an
isomorphism S = f*T in B(Gy).

Then B(G) is a category of sections to the natural
projection £ — Cat(G).

=—>B(G) is a conn. anabelioid. Using this we can

define a profinite fundamental group 71(G) and a

pro- ¥ fundamental group ﬂg
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Tempered Fundamental Group of G

If moreover G satsifies certain additional properties,
one can define a tempered fundamental group I_Itgp

with a natural inclusion I'Itgp — ﬁg by constructing a
certain category B'?(G) with B(G) C B'™(G).

This is the case when C is asAsociateAd with X', and

we have natural surjections Ax — [lg and
tp tp
Ay —Tlg.
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Proposition.

Let
e G : a semi-graph of anabelioids of pro-X

PSC-type
e NC ﬂtgp : compact subgroup, A # {1}
Then any v € [g satisfying
YWt ng

is in fact an element of I'Itgp.
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A Consequence

Suppose that G is a semi-graph of anabelioids
associated with X’ and X. Let

e G : the underlying semi-graph
e HC G : asub semi-graph

e H : the semi-graph of anabelioids obtained by
restricting G to ‘H

We set

tp . At tb AN A o n
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Facts

e The closure of AE?H in Ax is equal to Ax
o We have Ax g NAY = AP,

e Suppose ¥ - >\ {p} or £ = Primes.
:AX is sI|m and using this one can
construct ﬂ X H and I'IXH from AXH, AX,H.
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Corollary.

Let the notation be as above. Then

e The subgroup AE?H C AE? and the subgroup
AXH C AX are commensurably terminal.

e Suppose ¥ & ) _\{p} or S = Primes
(:>I_ItpIHI and My m). Then the subgroup

ﬂ xu C FI and the subgroup I'IXH - HX are
commensurably terminal.
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Applications of the Proposition

Using the proposition above, one can prove several
important propeties of the inclusions

t C N
Aﬁ—)AX

L

t C A
I"I)? — I_IX-
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Properties (1) (2)

Property (1). A C Agf © a pro-X compact
subgroup, A # {1}. Then any v € lNx satisfying

YNty
is in fact an element of I'Ig?.

Property (2). A is commensurably terminal in
Ax, and I'Ig? is commensurably terminal in [1x.
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Property (3)

In this page we assume that S = Primes.
Property (3) Let x be a closed point or a cusp of
X, D, C I'Ig%D a decomposition group at x (=D is
also a decomposition group at x in [Mx). Then
e any ﬁx—conjugate of D, contained in I'IE? is a
decomposition group at x in I'IE?
e any ﬁx—conjugate of I'Ig? containing D, is equal
to MY
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Property (4)

In this page we assume that Y = Primes.
Property (4) Let x be a cusp of X, I, C N an
inertia group at x (=1, is also an inertia group at
x in Tx). Then
e any ﬁx—conjugate of I, contained in I'Ig? is an
inertia group at x in I'Ig?.

e any ﬁx—conjugate of ﬂg? containing D, is equal
tp
to Iy
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Discrete Analogue of the Proposition

Theorem F : a group, a H C F : subgroup s.t.
e F=m(Z(C)) for some hyperbolic curve Z/C
e H : non-abelian
(=F C F : the profinite completion). Then any
v € F satisfying

'yH*y_l CF

is in fact an element of F.
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Discrete Analogue of the Proposition
(continued)

One can generalize the statement to the case when
H # {1} by replacing the conclusion "y € F" with
the following weaker statement:
v € F- Nz(HnN G) for any subgroup G C F of
finite index.
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