Étale theta functions, mono-theta environments, and [IUTchl] $\S1-\S3$, III

Seidai Yasuda

Osaka University

20 July, 2016 at RIMS, Kyoto University

Étale theta functions, mono-theta environments, and [IUTchI] §1-§3

Summary of the First and the Second Talk (1)

For an given initial Θ -datum

$$(\overline{F}/F, X_F, \ell, \underline{C}_K, \underline{\mathbb{V}}, \mathbb{V}_{\mathrm{mod}}^{\mathrm{bad}}, \underline{\epsilon})$$

and for $\underline{\textit{v}} \in \underline{\mathbb{V}}$, we constructed

$$\underline{\underline{\mathcal{F}}}_{\underline{\underline{\nu}}}, \mathcal{C}_{\underline{\underline{\nu}}}, \mathcal{C}_{\underline{\underline{\nu}}}^{\vdash}, \tau_{\underline{\underline{\nu}}}^{\vdash}, \mathcal{C}_{\underline{\underline{\nu}}}^{\Theta}, \tau_{\underline{\underline{\nu}}}^{\Theta}$$

where ...

Summary of the First and the Second Talk (2)

where

• $\underline{\underline{\mathcal{F}}}_{v}$: a Frobenioid when $\underline{v} \nmid \infty$ • $\mathcal{C}_{v}, \mathcal{C}_{v}^{\vdash}, \mathcal{C}_{v}^{\Theta}$: p_{v} -adic (resp. archimedean) Frobenioids if $\underline{v} \nmid \infty$ (resp. $\underline{v} \mid \infty$) (so its divisor monoid is monoprime). • τ^{\vdash}_{ν} , τ^{Θ}_{ν} : characteristic splittings (\doteqdot splitting of the inclusion of functors " $\mathcal{O}^{\times} \subset \mathcal{O}^{\rhd}$ ") of $\mathcal{C}^{\vdash}_{\nu}$, \mathcal{C}^{Θ}_{v}

Summary of the First and the Second Talk (3)

Main Bad Local Theorem 1. The canonical isomorphisms

$$(\ell \cdot \underline{\Delta}_{\Theta}) \otimes_{\mathbb{Z}} \mathbb{Z}/N\mathbb{Z} \xrightarrow{\cong} \mu_N(S) = \ell \cdot \mu_{\ell N}(S).$$

for (ℓ, N) -theta saturated objects S of $\underline{\mathcal{F}}$ are category theoretical with respect to $\underline{\mathcal{F}}$. **Main Theorem 2.** The mono- Θ environment \mathbb{M}^{\pm} is, up to isomorphisms, category theoretical with respect to $\underline{\mathcal{F}}$.

Global realified Frobenioid $\mathcal{C}_{\mathrm{mod}}^{\Vdash}$

 $\mathcal{C}_{\mathrm{mod}}^{\Vdash}$: the realification of the arithmetic Frobenioid given by F_{mod} and its trivial Galois ext. $F_{\mathrm{mod}}/F_{\mathrm{mod}}$. By definition,

• the base category of $\mathcal{C}_{mod}^{\Vdash}$ is the one-morphism cat. Spec \mathcal{F}_{mod} .

•
$$\Phi_{\mathcal{C}_{\mathrm{mod}}^{\Vdash}} = \bigoplus_{\nu \in \mathbb{V}_{\mathrm{mod}}} \Phi_{\mathcal{C}_{\mathrm{mod}}^{\Vdash},\nu}$$
 where
 $\Phi_{\mathcal{C}_{\mathrm{mod}}^{\vdash},\nu} = (\mathcal{O}_{F_{\mathrm{mod}},\nu}^{\triangleright}/\mathcal{O}_{F_{\mathrm{mod}},\nu}^{\times})^{\mathrm{pf}} \otimes \mathbb{R}_{\geq 0}$
• $\mathbb{B}_{\mathcal{C}_{\mathrm{mod}}^{\Vdash},\nu} = \mathbb{R} \cdot \mathrm{Image} \ \mathcal{F}_{\mathrm{mod}}^{\times} \subset \Phi_{\mathcal{C}_{\mathrm{mod}}^{\mathrm{lp}}}^{\mathrm{gp}}$

For every $\boldsymbol{\nu} \in \mathbb{V}_{\mathrm{mod}}$, we have a canonical isomorphism

$$\Phi_{\mathcal{C}_{\mathrm{mod}}, \Vdash, \nu} \cong \mathbb{R}_{\geq 0}, \ \log^{\vdash}_{\mathrm{mod}}(p_{\nu}) \mapsto 1,$$

where p_v is the residue characteristic at v (resp. π) if $v \nmid \infty$ (resp. $v \mid \infty$).

Recall $\underline{\mathbb{V}} \to \mathbb{V}_{mod}$ is bijective. Let $\underline{\nu} \in \underline{\mathbb{V}}$ the unique element that is mapped to ν .

The restriction functor $\mathcal{C}_{\rho_{\underline{\nu}}} : \mathcal{C}_{\mathrm{mod}}^{\Vdash} \to (\mathcal{C}_{\underline{\nu}}^{\vdash})^{\mathrm{rlf}}$ is equal to the functor induced by

$$egin{aligned} &
ho_{\underline{
u}}: \Phi_{\mathcal{C}_{\mathrm{mod}}^{dash},
u} & \stackrel{\cong}{ o} \Phi_{\mathcal{C}_{\underline{
u}}^{dash}}^{\mathrm{rlf}}, \ & \log_{\mathrm{mod}}^{dash}(p_{
u}) \mapsto rac{1}{[\mathcal{K}_{\underline{
u}}: (\mathcal{F}_{\mathrm{mod}})_{
u}]} \log_{\Phi}(p_{\underline{
u}}). \end{aligned}$$

Variant with Θ

 $\Phi_{\mathcal{C}_{\mathrm{tht}}^{\Vdash}} = \Phi_{\mathcal{C}_{\mathrm{mod}}^{\Vdash}} \cdot \log(\underline{\Theta}), \text{ where } \log(\underline{\Theta}): \text{ formal symbol}.$ \Longrightarrow a Frobenioid $\mathcal{C}_{tht}^{\Vdash}$ with a natural equivalence $\mathcal{C}_{\mathrm{mod}}^{\Vdash} \cong \mathcal{C}_{\mathrm{tht}}^{\Vdash}$ We have "the natural restriction functor" $\mathcal{C}_{\rho_{\nu}^{\Theta}}: \mathcal{C}_{\text{tht}}^{\Vdash} \to (\mathcal{C}_{\nu}^{\Theta})^{\text{rlf}}$ which is equal to the functor induced by $\rho_{\underline{V}}^{\Theta}: \Phi_{\mathcal{C}_{\text{tbt}}^{\Vdash}} \to \Phi_{\mathcal{C}_{\underline{V}}^{\Theta}}^{\text{rlf}}$ $\log_{\mathrm{mod}}^{\Vdash}(p_v) \cdot \log(\underline{\Theta})$ $\mapsto \begin{cases} \frac{1}{[K_{\underline{\nu}}:F_{\mathrm{mod},\nu}]} \cdot \log_{\Phi}(p_{\underline{\nu}}) \cdot \log(\underline{\Theta}) & \text{ if } \underline{\nu} : \text{ good} \\ \frac{1}{[K_{\underline{\nu}}:F_{\mathrm{mod},\nu}]} \cdot \log_{\Phi}(p_{\underline{\nu}}) \cdot \frac{\log(\underline{\Theta}_{\underline{\nu}})}{\log(\underline{q}_{\underline{\nu}})} & \text{ if } \underline{\nu} \text{ bad} \end{cases}$

Étale theta functions, mono-theta environments, and [IUTchl] §1-§3

$$rac{\mathfrak{F}_{\mathrm{mod}}^{dash}}{\mathsf{Set}}$$
 and $rac{\mathfrak{F}_{\mathrm{tht}}^{dash}}{\mathsf{Set}}$

$$\mathfrak{F}_{\mathrm{mod}}^{\Vdash} = (\mathcal{C}_{\mathrm{mod}}^{\Vdash}, \operatorname{Prime}(\mathcal{C}_{\mathrm{mod}}^{\Vdash}) \xrightarrow{\cong} \underline{\mathbb{V}}, \{\mathfrak{F}_{\underline{\nu}}^{\vdash}\}_{\underline{\nu} \in \underline{\mathbb{V}}}, \{\rho_{\underline{\nu}}\}_{\underline{\nu} \in \underline{\mathbb{V}}})$$

and

$$\mathfrak{F}_{\mathrm{tht}}^{\Vdash} = (\mathcal{C}_{\mathrm{tht}}^{\Vdash}, \mathrm{Prime}(\mathcal{C}_{\mathrm{tht}}^{\Vdash}) \xrightarrow{\cong} \underline{\mathbb{V}}, \{\mathfrak{F}_{\underline{\nu}}^{\Theta}\}_{\underline{\nu} \in \underline{\mathbb{V}}}, \{\rho_{\underline{\nu}}^{\Theta}\}_{\underline{\nu} \in \underline{\mathbb{V}}}).$$

Then we have a natural isomorphism

$$\mathfrak{F}_{\mathrm{mod}}^{dash}\cong\mathfrak{F}_{\mathrm{tht}}^{dash}.$$

\mathcal{D} -version

$$\mathfrak{F}_{\mathcal{D}}^{\Vdash} = (\mathcal{D}_{\mathrm{mod}}^{\Vdash}, \mathrm{Prime}(\mathcal{D}_{\mathrm{mod}}^{\Vdash}) \cong \underline{\mathbb{V}}, \{\mathcal{D}_{\underline{\nu}}^{\vdash}\}_{\underline{\nu} \in \underline{\mathbb{V}}}, \{\rho_{\underline{\nu}}^{\mathcal{D}}\}_{\underline{\nu} \in \underline{\mathbb{V}}})$$

Here

•
$$\mathcal{D}_{\mathrm{mod}}^{\Vdash}$$
: a copy of $\mathcal{C}_{\mathrm{mod}}^{\Vdash}$
• $(\mathbb{R}_{\geq 0}^{\vdash})_{\underline{\nu}}$: $\mathbb{R}_{\geq 0}$ constructed from $\mathcal{D}_{\underline{\nu}}^{\vdash}$
• $\rho_{\underline{\nu}}^{\mathcal{D}}$: $\Phi_{\mathcal{D}_{\mathrm{mod},\nu}^{\Vdash}} \to (\mathbb{R}_{\geq 0}^{\vdash})_{\underline{\nu}}$,
 $\log_{\mathrm{mod}}^{\mathcal{D}}(p_{\underline{\nu}}) \mapsto \frac{1}{[K_{\underline{\nu}}:F_{\mathrm{mod},\nu}]}\log_{\Phi}(p_{\underline{\nu}})$.

Reconstructibility

We have an algorithm reconstructing $\mathfrak{F}_{\mathrm{tht}}^{\Vdash}$ and $\mathfrak{F}_{\mathcal{D}}^{\vdash}$ from $\mathfrak{F}_{\mathrm{mod}}^{\Vdash}.$

Θ -Hodge Theater $^{\dagger}\mathcal{HT}^{\Theta}$

Let $(\overline{F}/F, X_F, \ell, \underline{C}_K, \underline{\mathbb{V}}, \mathbb{V}_{\mathrm{mod}}^{\mathrm{bad}}, \underline{\epsilon})$

be an initial Θ-datum.

$$\Longrightarrow^{\dagger} \mathcal{HT}^{\Theta}$$
 : Θ -Hodge theater:

$${}^{\dagger}\mathcal{HT}^{\Theta} = (\{{}^{\dagger}\underline{\underline{\mathcal{F}}}_{\underline{\underline{\nu}}}\}_{\underline{\underline{\nu}}\in\underline{\mathbb{V}}},{}^{\dagger}\mathfrak{F}_{\mathrm{mod}}^{\Vdash})$$

Here
$$^{\dagger}\underline{\mathcal{F}}_{_{m{
u}}}$$
 and $^{\dagger}\mathfrak{F}_{\mathrm{mod}}$ is as follows:

On $^{\dagger}\underline{\underline{\mathcal{F}}}_{\underline{\underline{\nu}}}$

[†]
$$\underline{\mathcal{F}}_{\underline{\nu}}$$
 is
• $\underline{\nu} \nmid \infty \Longrightarrow$ a cat. equiv. to $\underline{\mathcal{F}}_{\underline{\nu}}$
• $\underline{\nu} \mid \infty \Longrightarrow$ a triple ([†] $\mathcal{C}_{\underline{\nu}}$, [†] $\mathcal{D}_{\underline{\nu}}$, [†] $\kappa_{\underline{\nu}}$), where
• [†] $\mathcal{C}_{\underline{\nu}}$: a category isomorphic to $\mathcal{C}_{\underline{\nu}}$
• [†] $\mathcal{D}_{\underline{\nu}}$: an Aut-hol. space isom. to $\underline{\mathbb{X}}$
• [†] $\kappa_{\underline{\nu}}$: Kummer structure $\mathcal{O}^{\triangleright}(^{\dagger}\mathcal{C}_{\underline{\nu}}) \hookrightarrow \mathcal{A}_{\dagger \mathcal{D}_{\underline{\nu}}}$

$$\mathsf{On} \stackrel{\dagger}{\mathfrak{F}^{Dash}_{\mathrm{mod}}}_{\stackrel{\dagger}{\mathfrak{F}^{Dash}_{\mathrm{mod}}}}$$
 is a tuple

$$^{\dagger}\mathfrak{F}_{\mathrm{mod}}^{\Vdash} = (^{\dagger}\mathcal{C}_{\mathrm{mod}}^{\Vdash}, \mathrm{Prime}(^{\dagger}\mathcal{C}_{\mathrm{mod}}^{\Vdash}) \cong \underline{\mathbb{V}}, \{^{\dagger}\mathcal{F}_{\underline{\nu}}^{\vdash}\}_{\underline{\nu}\in\underline{\mathbb{V}}}, \{^{\dagger}\rho_{\underline{\nu}}\}_{\underline{\nu}\in\underline{\mathbb{V}}})$$

such that

•
$${}^{\dagger}\mathcal{C}_{\mathrm{mod}}^{\Vdash}$$
 : a cat. eqiv. to $\mathcal{C}_{\mathrm{mod}}^{\Vdash}$

•
$$\operatorname{Prime}(^{\dagger}\mathcal{C}_{\mathrm{mod}}^{\Vdash}) \cong \underline{\mathbb{V}}$$
 : bijection

• From
$$^{\dagger}\underline{\mathcal{F}}_{\underline{\nu}}$$
 we construct $^{\dagger}\mathcal{F}_{\underline{\nu}}^{\vdash}$, $\Phi_{^{\dagger}\mathcal{C}_{\nu}^{\vdash}}^{\mathrm{rlf}}$

•
$$^{\dagger}\rho_{\underline{\nu}}: \Phi_{^{\dagger}\mathcal{C}_{\mathrm{mod},\nu}^{\mathbb{H}}} \xrightarrow{\cong} \Phi_{^{\dagger}\mathcal{C}_{\underline{\nu}}^{\mathbb{H}}}^{\mathrm{rlf}}: \text{ isom. of top. monoids}$$

and that

$$^{\dagger} \mathfrak{F}^{dash}_{\mathrm{mod}}$$
 and $\mathfrak{F}^{dash}_{\mathrm{mod}}$ are isomorphic.

tale theta functions, mono-theta environments, and [IUTchI] 1-33

Reconstructability

We have an algorithm reconstructing ${}^{\dagger}\mathfrak{F}_{\rm tht}^{\Vdash}$ and ${}^{\dagger}\mathfrak{F}_{\mathcal{D}}^{\vdash}$ from ${}^{\dagger}\mathfrak{F}_{\rm mod}^{\vdash}$.

Θ-link

Let ${}^{\dagger}\mathcal{HT}^{\Theta}$, ${}^{\ddagger}\mathcal{HT}^{\Theta}$: two Θ -Hodge theaters

Then there exists an isomorphism ${}^{\dagger}\mathfrak{F}_{mod}^{\Vdash} \xrightarrow{\cong} {}^{\ddagger}\mathfrak{F}_{tht}^{\Vdash}$. So the full poly-isomorphism is non-empty.

The inverse of this full poly-isomorphism is called a Θ -link from ${}^{\dagger}\mathcal{HT}^{\Theta}$ to ${}^{\ddagger}\mathcal{HT}^{\Theta}$.

```
The poly-isomorphism
```

$${}^{\dagger}\mathcal{D}^{\vdash}_{\underline{\nu}} \cong {}^{\ddagger}\mathcal{D}^{\vdash}_{\underline{\nu}}$$

given by the composite

$${^{\dagger}\mathcal{D}}_{\underline{\nu}}^{\vdash} \mathop{\cong}\limits_{\mathrm{poly}} {^{\ddagger}\mathcal{D}}_{\underline{\nu}}^{\Theta} \cong {^{\ddagger}\mathcal{D}}_{\underline{\nu}}^{\vdash}$$

is called the Θ -link poly-isomorphism.

The poly-isomorphism

$$\mathcal{O}_{^{\dagger}\mathcal{C}_{\underline{
u}}^{\vdash}}^{ imes} \mathop{\cong}\limits_{\mathrm{poly}} \mathcal{O}_{^{\ddagger}\mathcal{C}_{\underline{
u}}^{\vdash}}^{ imes}$$

given by the composite

$$\mathcal{O}_{\dagger\mathcal{C}_{\underline{\nu}}^{\vdash}}^{\times}\cong\mathcal{O}_{\dagger\mathcal{C}_{\underline{\nu}}^{\Theta}}^{\times}\underset{\mathrm{poly}}{\cong}\mathcal{O}_{\dagger\mathcal{C}_{\underline{\nu}}^{\vdash}}^{\times}$$

is called the Θ -link poly-isomorphism.

Next Slides

In the next slides, we will introduce several terminology concerning special kinds of rational functions on curves related to $C_{F_{mod}}$.

We assume that an initial Θ -datum

$$(\overline{F}/F, X_F, \ell, \underline{C}_K, \underline{\mathbb{V}}, \mathbb{V}_{\mathrm{mod}}^{\mathrm{bad}}, \underline{\epsilon})$$

is given.

κ -coric Functions and Kummer Theory

Let us consider $C_{F_{\text{mod}}}$ over F_{mod} .

Let

- L : either $\mathcal{F}_{\mathrm{mod}}$ or $\mathcal{F}_{\mathrm{mod}, v}$ for some $v \in \mathbb{V}_{\mathrm{mod}}$
- L_C : the function field of $C_L = C_{F_{\mathrm{mod}}} \otimes_{F_{\mathrm{mod}}} L$
- \overline{L}_C : an algebraic closure of L_C

An element of L_C or \overline{L}_C is called a function.

Critical Points

 $M \subset \overline{L}_{C}$: finite subextension of L_{C} $\iff Z_{M} \rightarrow |C_{L}|^{*} (\cong \mathbb{P}_{L}^{1})$ $(|C_{L}|^{*}$: the compactification of the coarse scheme of C_{L}).

We say that a closed point of Z_M is **critical** (resp. **strictly critical**) if its image in $|C_L|^*$ comes from a 2-torsion point (resp. a non-zero 2-torsion point) of E_F .

κ -coric functions

Let $f \in L_C$. We say that f is κ -**coric** if either f is a root of unity or the following conditions are satisfied:

- *f* has a (possibly multiple) pole at an only one point and zeros at least two points
- *f* does not have a pole or zero at the critical points
- The values of *f* at the strict critical points are roots of unity

Some variants

Let $f \in \overline{L}_C$. We say that

- f : ∞κ-coric if fⁿ ∈ L_C and fⁿ: κ-coric for some n ≥ 1.
- $f : {}_{\infty}\kappa \times -\text{coric}$ if $cf : {}_{\infty}\kappa -\text{coric}$ for some $c \in \overline{L}^{\times}$ (resp. $c \in \mathcal{O}_{L}^{\times}$) when $L = F_{\text{mod}}$ (resp. when $L = F_{\text{mod},v}$).

$L_{C}(\kappa-\mathrm{sol})$

Suppose $L = F_{\text{mod}}$. F_{sol} : the maximal solvable extension of F_{mod} inside \overline{L}_C . $f \in \overline{L}_C$ is called κ -solvable if cf is $_{\infty}\kappa$ -coric for some $c \in F_{\text{sol}}^{\times}$.

- L_C(κ-sol) ⊂ L_C : subfield gen. by L_C, and κ-solvable elements, i.e., the subfield gen. by L_C, F_{sol}, and the power roots of κ-coric elements.
- L_C(<u>C</u>_K) ⊂ L
 _C: subfield gen. by L_C and the images of F(μ_ℓ) · L_C-linear embeddings of the function field of <u>C</u>_K into L
 _C.

Action of
$$\operatorname{Gal}(L_C(\underline{C}_K)/F(\mu_\ell)L_C)$$
 on $L_C(\underline{C}_K) \cdot L_C(\kappa\text{-sol})$

Let $\operatorname{Gal}(L_C(\underline{C}_{\kappa})/F(\mu_{\ell})L_C)$ act on $L_C(\underline{C}_{\kappa}) \cdot L_C(\kappa$ -sol) via the isomorphism

$$\operatorname{Gal}(L_{\mathcal{C}}(\underline{C}_{\mathcal{K}})/F(\mu_{\ell})L_{\mathcal{C}}))$$

$$\cong \operatorname{Gal}(L_{\mathcal{C}}(\underline{C}_{\mathcal{K}}) \cdot L_{\mathcal{C}}(\kappa\operatorname{-sol})/F(\mu_{\ell}) \cdot L_{\mathcal{C}}(\kappa\operatorname{-sol}))$$

Note: \overline{L}_C and $F(\mu_\ell) \cdot L_C(\kappa$ -sol) are lin. disj. over $F(\mu_\ell) \cdot L_C$.

κ -solvable Open Subgroup

$H \subset \operatorname{Gal}(\overline{L}_C/L_C(\kappa\operatorname{-sol}))$: a subgroup. We say that H is κ -solvable open subgroup if

- $H \lhd \operatorname{Gal}(\overline{L}_{\mathcal{C}}/L_{\mathcal{C}}(\kappa\operatorname{-sol}))$: open and normal
- ${}^{\exists}\widetilde{H} \lhd \operatorname{Gal}(\overline{L}_C/L_C)$ open and normal s.t. $H = \widetilde{H} \cap \operatorname{Gal}(\overline{L}_C/L_C(\kappa\text{-sol}))$

 $\operatorname{Aut}^{\kappa\operatorname{-sol}}$, $\operatorname{Out}^{\kappa\operatorname{-sol}}$

Aut<sup>$$\kappa$$
-sol</sup>(Gal($\overline{L}_C/L_C(\kappa$ -sol))) \subset
Aut(Gal($\overline{L}_C/L_C(\kappa$ -sol)) subgroup of automorphisms
fixing every κ -solvable open subgroups.

$$\begin{aligned} &\operatorname{Out}^{\kappa\operatorname{-sol}}(\operatorname{Gal}(\overline{L}_{\mathcal{C}}/L_{\mathcal{C}}(\kappa\operatorname{-sol}))) \\ &:= \frac{\operatorname{Aut}^{\kappa\operatorname{-sol}}(\operatorname{Gal}(\overline{L}_{\mathcal{C}}/L_{\mathcal{C}}(\kappa\operatorname{-sol})))}{\operatorname{Inn}(\operatorname{Gal}(\overline{L}_{\mathcal{C}}/L_{\mathcal{C}}(\kappa\operatorname{-sol})))} \\ &\subset \operatorname{Out}(\operatorname{Gal}(\overline{L}_{\mathcal{C}}/L_{\mathcal{C}}(\kappa\operatorname{-sol}))) \end{aligned}$$

Discrete analogue of the proposition in the next topic $Col(\overline{L} / L / L)$ is contain free.

 \Longrightarrow Gal $(\overline{L}_C/L_C(\kappa$ -sol)) is center-free. \Longrightarrow the diagram

Next Slides

In the next slides, we will give a survey of §2 of [IUT-I]. The theme is profinite conjugates vs. tempered (or discrete) conjugates for abstract or fundamental groups.

Commensurably Terminal

For

- G : Hausdorff topological group
- $H \subset G$: closed subgroup

set

$$C_G(H) = \{g \in G \mid gHg^{-1} \cap H \text{ is of finite index both in } H\}$$

and call it the **commensurator** of H in G. This is a subgroup of G.

We say that *H* is **commensurably terminal** in *G* if $C_G(H) = H$.

Étale theta functions, mono-theta environments, and [IUTchI] §1-§3

Notation

Now let K: a CDVF of mixed char. (0, p), with a finite residue field k.

We use the following (standard) notation:

- $\mathcal{O}_{\mathcal{K}}$: the ring of integers
- \overline{K} : an alg. closure of K
- \overline{k} : the residue field of \overline{K}

•
$$G_K := \operatorname{Gal}(\overline{K}/K)$$

Notation

Suppose that we are given X/K: a hyperbolic curve with stable red. over \mathcal{O}_K .

We use the following notation

- \mathcal{X} : the stable model of X
- \mathcal{X}_k : the special fiber

•
$$\mathcal{X}_{\overline{k}} := \mathcal{X}_k \otimes_k \overline{k}$$

Let $\widehat{\Sigma}$: a non-empty set of prime numbers (e.g., $\widehat{\Sigma} = \mathfrak{Primes}$: the set of prime numbers).

Fundamental groups

- $\widehat{\Pi}_X$: the pro- $\widehat{\Sigma}$ fundamental group of X
- $\widehat{\Delta}_X$: the pro- $\widehat{\Sigma}$ fundamental group of $X_{\overline{k}}$
- Π_X^{tp} : $\widehat{\Sigma}$ -tempered quotient of $\pi_1^{\mathrm{tp}}(X)$
- Δ_X^{tp} : $\widehat{\Sigma}$ -tempered quotient of $\pi_1^{\text{tp}}(X_{\overline{k}})$

We have $\Pi_X^{\mathrm{tp}} \hookrightarrow \widehat{\Pi}_X$, $\Delta_X^{\mathrm{tp}} \hookrightarrow \widehat{\Delta}_X$ which give isomorphisms from the pro- $\widehat{\Sigma}$ completions of the domains to the codomains.

Dual Semi-graph

Semi-graph : a generalization of the notion of (unoriented) graph The only difference : a semi-graph allows open edges

 $\mathcal{X} \rightsquigarrow$ the **dual semi-graph** $\mathbb{G}_{\mathcal{X}}$ $\mathbb{G}_{\mathcal{X}}$ is obtained from the usual dual graph of $\mathcal{X}_{\overline{k}}$ by adjoining the open edges corresponding to the boundary points (=: the cusps)

The Category Associated to a Semi-graph

To a semi-graph \mathbb{G} , one can associate the small category $Cat(\mathbb{G})$ as follows:

Objects : the vertices and the edges of \mathbb{G} , Non-id. morphisms : $e \rightarrow v$ when v is an endpoint of e

Anabelioid

Connected anabelioid : a category equivalent to B(G) for some profinite group G.

For two connected anabelioids \mathcal{G} , \mathcal{H} , a morphism (resp. an isomorphism) $\mathcal{G} \to \mathcal{H}$ is an exact functor (resp. an equivalence of categories) $\mathcal{H} \to \mathcal{G}$.

Semi-graph of anabelioids

A semi-graph of anabelioids is a pair of a semi-graph \mathbb{G} and a functor from $Cat(\mathbb{G})$ to the category of anabelioids.

In concrete terms, a **semi-graph of anabelioids** is a quadruple $\mathcal{G} = (\mathbb{G}, (\mathcal{G}_v)_v, (\mathcal{G}_e)_e, (\mathcal{G}_e \to \mathcal{G}_v)_{(e,v)})$ that consists of the following data:

Content of \mathbb{G}

- $\bullet \ \mathbb{G}$: a semi-graph
- (G_v)_v : a family of conn. anabelioids indexed by the vertices v of G
- (G_e)_e : a family of conn. anabelioids indexed by the edges e of G
- a morphism G_e → G_v of connected anabelioids is given for each pair (e, v) s.t. v is an endpoint of e

The Semi-graph of Anabelioids Associated to X Let $\Sigma \subset \widehat{\Sigma}$: a non-empty subset with $p \notin \Sigma$.

 \mathcal{X} (and Σ) \rightsquigarrow a semi-graph of anabelioids \mathcal{G} (well-defined up to "isomorphisms").

 $\mathcal{G} = (\mathbb{G}, (\mathcal{G}_v)_v, (\mathcal{G}_e)_e, (\mathcal{G}_e o \mathcal{G}_v)_{(e,v)}),$ where

 \mathbb{G} : the dual semi-graph of \mathcal{X} . To define the second component let U_v : the component of $\mathcal{X}_{\overline{k}}$ corresponding to v, with nodes and cusps removed.

Étale theta functions, mono-theta environments, and [IUTchI] §1-§3

Semi-graph of Anabelioids of $Pro-\Sigma$ PSC-type

- *G_v* : the connected anabelioid of finite étale Σ-cover of *U_v*, tamely ramified at the boundaries.
- G_e: a copy of the ababelioid of finite étale Σ-cover of Spec k̄((t)), tamely ramified at t = 0.

• $\mathcal{G}_e \to \mathcal{G}_v$: given by the inertia subgroup at eA semi-graph of anabelioid obtained in this way (for some K and a hyperbolic X) is called **pro**- Σ **PSC-type**.

Category $B(\mathcal{G})$

Let \mathcal{G} : a semi-graph of anabelioids whose underlying graph is non-empty and connected. \sim the category $B(\mathcal{G})$ is constructed as follows:

$\operatorname{Pro}-\widehat{\Sigma}$ Fundamental Group of \mathcal{G}

Regard \mathcal{G} as a functor $\operatorname{Cat}(\mathbb{G}) \to (\text{anabelioids})$. \mathcal{E} : the category of pairs (x, S) of $x \in \operatorname{Obj}(\operatorname{Cat}(\mathbb{G}))$ and $S \in \operatorname{Obj}(\mathcal{G}_x)$. A morphism from (x, S) to (y, T) is pair of $f : x \to y$ and an isomorphism $S \cong f^*T$ in $B(\mathcal{G}_x)$.

Then $B(\mathcal{G})$ is a category of sections to the natural projection $\mathcal{E} \to \operatorname{Cat}(\mathbb{G})$.

 $\Longrightarrow B(\mathcal{G})$ is a conn. anabelioid. Using this we can define a profinite fundamental group $\widehat{\pi}_1(\mathcal{G})$ and a pro- $\widehat{\Sigma}$ fundamental group $\widehat{\Pi}_{\mathcal{G}}$.

Tempered Fundamental Group of $\mathcal G$

If moreover \mathcal{G} satsifies certain additional properties, one can define a tempered fundamental group $\Pi_{\mathcal{G}}^{\mathrm{tp}}$ with a natural inclusion $\Pi_{\mathcal{G}}^{\mathrm{tp}} \hookrightarrow \widehat{\Pi}_{\mathcal{G}}$ by constructing a certain category $B^{\mathrm{tp}}(\mathcal{G})$ with $B(\mathcal{G}) \subset B^{\mathrm{tp}}(\mathcal{G})$.

This is the case when \mathcal{C} is associated with \mathcal{X} , and we have natural surjections $\widehat{\Delta}_X \twoheadrightarrow \widehat{\Pi}_{\mathcal{G}}$ and $\Delta_X^{\mathrm{tp}} \twoheadrightarrow \Pi_{\mathcal{G}}^{\mathrm{tp}}$.

Proposition.

Let

- \mathcal{G} : a semi-graph of anabelioids of pro- Σ PSC-type
- $\Lambda \subset \Pi_{\mathcal{G}}^{\mathrm{tp}}$: compact subgroup, $\Lambda \neq \{1\}$ Then any $\gamma \in \widehat{\Pi}_{\mathcal{G}}$ satisfying

$$\gamma \Lambda \gamma^{-1} \subset \Pi_{\mathcal{G}}^{\mathrm{tp}}$$

is in fact an element of $\Pi_{\mathcal{G}}^{\mathrm{tp}}$.

A Consequence

Suppose that ${\cal G}$ is a semi-graph of anabelioids associated with ${\cal X}$ and $\Sigma.$ Let

- \mathbb{G} : the underlying semi-graph
- $\mathbb{H} \subset \mathbb{G}$: a sub semi-graph
- ${\cal H}$: the semi-graph of anabelioids obtained by restricting ${\cal G}$ to ${\cal H}$

We set

$$\Delta_{X,\mathbb{H}}^{\mathrm{tp}} := \Delta_X^{\mathrm{tp}} \times_{\Pi_{\mathcal{G}}^{\mathrm{tp}}} \Pi_{\mathcal{H}}^{\mathrm{tp}}, \ \widehat{\Delta}_{X,\mathbb{H}} \widehat{\Delta}_X \times_{\widehat{\Pi}_{\mathcal{G}}} \widehat{\Pi}_{\mathcal{H}}.$$

Facts

The closure of Δ^{tp}_{X,H} in Â_X is equal to Â_{X,H}
We have Â_{X,H} ∩ Δ^{tp}_X = Δ^{tp}_{X,H}
Suppose Σ ⊊ Σ \ {p} or Σ = 𝔅times. ⇒Â_X is slim, and using this one can construct Π^{tp}_{X,H} and Â_{X,H} from Δ^{tp}_{X,H}, Â_{X,H}.

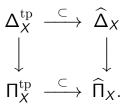
Corollary.

Let the notation be as above. Then

- The subgroup $\Delta_{X,\mathbb{H}}^{\mathrm{tp}} \subset \Delta_X^{\mathrm{tp}}$ and the subgroup $\widehat{\Delta}_{X,\mathbb{H}} \subset \widehat{\Delta}_X$ are commensurably terminal.
- Suppose $\Sigma \subsetneq \widehat{\Sigma} \setminus \{p\}$ or $\widehat{\Sigma} = \mathfrak{Primes}$ $(\Longrightarrow \Pi_{X,\mathbb{H}}^{\mathrm{tp}} \text{ and } \widehat{\Pi}_{X,\mathbb{H}})$. Then the subgroup $\Pi_{X,\mathbb{H}}^{\mathrm{tp}} \subset \Pi_X^{\mathrm{tp}}$ and the subgroup $\widehat{\Pi}_{X,\mathbb{H}} \subset \widehat{\Pi}_X$ are commensurably terminal.

Applications of the Proposition

Using the proposition above, one can prove several important propeties of the inclusions



Properties (1) (2)

Property (1). $\Lambda \subset \Delta_X^{\text{tp}}$: a pro- Σ compact subgroup, $\Lambda \neq \{1\}$. Then any $\gamma \in \widehat{\Pi}_X$ satisfying

$$\gamma \Lambda \gamma^{-1} \subset \Pi_X^{\mathrm{tp}}$$

is in fact an element of Π_X^{tp} .

Property (2). Δ_X^{tp} is commensurably terminal in $\widehat{\Delta}_X$, and Π_X^{tp} is commensurably terminal in $\widehat{\Pi}_X$.

Property (3)

In this page we assume that $\widehat{\Sigma} = \mathfrak{Primes}$. **Property (3)** Let x be a closed point or a cusp of X, $D_x \subset \Pi_X^{\mathrm{tp}}$ a decomposition group at $x \iff D_x$ is also a decomposition group at x in $\widehat{\Pi}_X$). Then

- any $\widehat{\Pi}_X$ -conjugate of D_x contained in Π_X^{tp} is a decomposition group at x in Π_X^{tp}
- any $\widehat{\Pi}_X$ -conjugate of Π_X^{tp} containing D_x is equal to Π_X^{tp}

Property (4)

In this page we assume that $\widehat{\Sigma} = \mathfrak{Primes}$. **Property (4)** Let x be a cusp of X, $I_x \subset \Pi_X^{\mathrm{tp}}$ an inertia group at $x \iff I_x$ is also an inertia group at x in $\widehat{\Pi}_X$). Then

- any $\widehat{\Pi}_X$ -conjugate of I_x contained in Π_X^{tp} is an inertia group at x in Π_X^{tp} .
- any $\widehat{\Pi}_X$ -conjugate of Π_X^{tp} containing D_x is equal to Π_X^{tp}

Discrete Analogue of the Proposition

Theorem F : a group, a $H \subset F$: subgroup s.t.

- $F \cong \pi_1(Z(\mathbb{C}))$ for some hyperbolic curve Z/\mathbb{C}
- *H* : non-abelian
- $(\Longrightarrow F \subset \widehat{F}$: the profinite completion). Then any $\gamma \in \widehat{F}$ satisfying

$$\gamma H \gamma^{-1} \subset F$$

is in fact an element of F.

Discrete Analogue of the Proposition (continued)

One can generalize the statement to the case when $H \neq \{1\}$ by replacing the conclusion " $\gamma \in F$ " with the following weaker statement:

 $\gamma \in F \cdot N_{\widehat{F}}(H \cap G)$ for any subgroup $G \subset F$ of finite index.