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I. General Introduction

A. The Exterior Galois Representation of a Hyperbolic Curve:

Let p be a prime number. Let K be a finite extension of Qp. Let XK be a hyperbolic
curve over K (i.e., XK is obtained by removing r points from a smooth, proper, geomet-
rically connected curve of genus g, and 2g − 2 + r > 0). Let ΓK be the absolute Galois
group of K. Let ΠXK

def= π1(XK) be the fundamental group of XK (for some choice of
base-point). Then if ΔX

def= π1(XK) is the geometric fundamental group of K, we have an
exact sequence

1 → ΔX → ΠXK
→ ΓK → 1

which induces an exterior Galois representation

ρX : ΓK → Out(ΔX)

(In fact, conversely, the above exact sequence can be recovered from the pair (ΔX , ρX)).
Similarly, if Δ(p)

X is the pro-p completion of ΔX , we have a “pro-p” version of the above
exact sequence (1 → Δ(p)

X → Π(p)
XK

→ ΓK → 1), and a pro-p exterior Galois representation

ρ
(p)
X : ΓK → Out(Δ(p)

X ).

Of course, one can form ρX , ρ
(p)
X even when 2g−2+ r ≤ 0. If 2g−2+ r < 0, then ρX ,

ρ
(p)
X are uninteresting. If 2g − 2 + r (i.e., essentially the case of elliptic curves), ρX , ρ

(p)
X

have already been extensively studied. Thus, here we would like to study the hyperbolic
case (i.e., when 2g − 2 + r > 0).
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B. Intrinsic Hodge Theory (“IHT”):

Once one decides that one wants to study the exterior Galois representation ρX ,
one important question is what should one try to prove about it. The theory of the
Galois representations defined by Tate modules of abelian varieties (and more generally,
p-adic étale cohomology of smooth varieties) provides at least an approximate answer:
one wants to study the Hodge Theory of such Galois representations. Here by “Hodge
theory,” we mean a theory giving some sort of equivalence (or at least establishing an
intimate relationship between) étale topological data (i.e., π1’s, étale cohomology, etc.) and
algebro-geometric data (i.e., data like differentials, cohomology groups of coherent sheaves,
morphisms between varieties, etc., that exists in the purely algebro-geometric category).
For instance, p-adic Hodge theory, which relates p-adic étale cohomology groups to de
Rham cohomology is clearly a prime example of such a theory.

In the case of ρX , however, because one is dealing with a highly nonabelian object
such as ΔX , it is not immediately clear what the appropriate Hodge theory should be. One
approach is to consider nonabelian Hodge theory, which typically means looking at (étale
topological) spaces of representations of ΔX into an algebraic group G and relating them
to (algebro-geometric) spaces of G-bundles with connections on XK . Although this sort of
theory may of interest in its own right, however, there is something fundamentally different
about considering this sort of theory relative to understanding XK and considering, for
instance, the Hodge theory of the Tate module of an elliptic curve. It is difficult to
summarize this difference in a single sentence, but the rest of this General Introduction
will be devoted to trying to explain what we feel is the true hyperbolic analogue of the
Hodge theory of the Tate module of an elliptic curve – namely, “intrinsic Hodge theory.”

Roughly speaking, by “intrinsic Hodge theory,” we mean a Hodge theory (as defined
above) such that the sort of data that appears on the algebro-geometric side is data that is
just enough (not too much or too little) to capture the curve XK and/or its moduli. In the
case of the nonabelian Hodge theory referred to in the preceding paragraph, what comes
out on the algebro-geometric side, namely, spaces of G-bundles with connection cannot be
described as capturing precisely the curve XK or its moduli.

C. The IHT of Hyperbolic Curves over C: Physical and Modular Aspects:

Perhaps the best way to get a feel for what we mean by “IHT” is to consider the case
of hyperbolic curves over C, which are better understood classically than p-adic hyperbolic
curves. Thus, let XC be a hyperbolic curve over C. Let ΔX be its topological fundamental
group. Then, forgetting the modern formalism of “Hodge theory” for a moment, the essence
of the intrinsic Hodge theory of XC is the classical Köbe uniformization

˜XC
∼= H

of the universal covering space ˜XC of XC by the upper half-plane H. There are many
useful alternative ways to rephrase this uniformization, as follows:
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(1) the canonical representation ρX : ΔX → PSL2(R) = Aut(H) defined
by the uniformization;

(2) the hyperbolic metric μX on XC obtained by pulling back the standard
hyperbolic metric 1

y2 (dx2 + dy2) on H;

(3) the indigenous bundle (terminology of Gunning) (P → XC,∇P ) con-
structed as follows: We let ΔX act on ˜XC×P1

C by means of the natural
action on the first factor and ρX on the second factor. Taking the
quotient of this product by ΔX then gives rise to a natural algebraic
P1-bundle P → XC, equipped with a connection ∇P , and a section
σ : XC → P (induced by the section ˜XC → ˜XC × P1

C given by the
uniformization mapping ˜XC

∼= H ⊆ P1
C). Moreover, if one differen-

tiates the section σ by means of ∇P , one obtains a Kodaira-Spencer
mapping τXC → σ∗τP/XC

which is an isomorphism. This sort of data
(P → XC,∇P ) (i.e., such that there exists a σ whose Kodaira-Spencer
morphism is an isomorphism) is called an indigenous bundle. Lots of
indigenous bundles exist on XC, but the one just constructed from the
upper half-plane uniformization – called canonical – is a particularly
special one.

If one wants to formalize things according to the definition of “Hodge theory” given above,
two natural approaches are the following:

The Physical Picture: One can physically recover the algebraic curve
XC (algebro-geometric data) from the π1-theoretic (i.e., topological)
datum ρX via the following well-known double-coset recipe:

Im(ρX)\PSL2(R)/PSO2

.

The Modular Picture: Let Mg,r be the moduli stack of hyperbolic
curves of type (g, r) over C. Then over Mg,r, there is a natural stack
S → Mg,r of hyperbolic curves equipped with an indigenous bundle.
Moreover, S has the natural structure of ΩMg,r

-torsor over Mg,r. (In
fact, this torsor is the Hodge-theoretic first Chern class of a certain line
bundle that can be written down explicitly.) The canonical indigenous
bundle constructed above defines a real analytic section sH : Mg,r → S.

Moreover, if m ∈ M def= Mg,r, then by localizing at m, we see that sH

defines a morphism of holomorphic germs Mm × Mc
m → Sm (where

Mc is the complex conjugate stack to M). Restricting this morphism
to m ∈ Mm, and letting Qm be the (3g − 3 + r)-dimensional (over C)
affine space which is the fiber of S → M at m, we see that we get an
anti-holomorphic morphism
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β : Mm → Qm

which turns out to be an embedding. In fact, this morphism extends
(uniquely) to all of ˜M (the universal covering space of M) to define an
anti-holomorphic uniformization ˜M ↪→ Qm which is usually referred to
as the Bers embedding. Thus, in summary, the theory just discussed
relates the π1-theoretic ρX to the algebro-geometric Mm by showing
how ρX defines canonical coordinates on Mm.

The intrinsic Hodge theory of p-adic hyperbolic curves to be discussed in the rest of this
lecture can be regarded as the generalization to the p-adic case of the physical and modular
aspects of the intrinsic Hodge theory of hyperbolic curves over C discussed above.

D. The IHT of Abelian Varieties:

Since the intrinsic Hodge theory of abelian varieties has already been p-adicized, it is
useful to recall what happens for abelian varieties. Namely, one has the following:

The Physical Picture: Over C, one has the uniformization of an (al-
gebraic) abelian variety AC by TA,e/π1(AC) (where TA,e is the tangent
space to AC at the origin). In the p-adic case, there are several can-
didates for an analogue. One is the Tate conjecture (Faltings’ theorem
– see [Falt]), which states that if A and B are abelian varieties over a
number field F with p-adic Tate modules Tp(A) and Tp(B), respectively,
then the natural morphism

HomF (A, B) ⊗Z Zp → HomΓF
(Tp(A), Tp(B))

is bijective. Another candidate is the result that states that for an
abelian variety A over a local p-adic field K (i.e., a finite extension
of Qp), the K-valued points A(K) (algebro-geometric data) may be
recovered from the full (i.e., ̂Z-flat) Tate module T (A) as the kernel of

H1(ΓK , T (A)) → H1(ΓK , T (A) ⊗
Ẑ

Cp)

(see [BK], §3). Both of these analogues are related to the result that we
obtain for p-adic hyperbolic curves.

The Modular Picture: Over C, this is given by the uniformization of
(Ag)C (the moduli stack of principally polarized abelian varieties over
C) by the Siegel upper half-plane. In the p-adic case, over (Aord

g )Zp
(the
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moduli stack of principally polarized abelian varieties with ordinary mod
p reduction over Zp), one has the Serre-Tate theory (see, e.g., [Mess]) of
canonical coordinates and canonical liftings.

II. The IHT of p-adic Hyperbolic Curves: the Modular Picture

We begin with the modular picture, since this was discovered first (see [Mzk1], [Mzk2],
[Mzk3]). First observe that the notion of an indigenous bundle, being entirely algebraic,
exists over Z[ 12 ]. Thus, for instance, in characteristic p (where p is odd), we can consider
nilpotent indigenous bundles, i.e., indigenous bundles whose p-curvature forms a nilpotent
matrix. This gives rise to a stack N g,r of stable curves (of type (g, r)) equipped with
nilpotent indigenous bundles. Moreover, the natural morphism

N g,r → (Mg,r)Fp

is finite and flat of degree p3g−3+r. We denote by N ord

g,r ⊆ N g,r the ordinary locus, i.e.,

the locus of points of N g,r that are étale over (Mg,r)Fp
. Since N ord

g,r → (Mg,r)Fp
is étale,

it lifts uniquely to an étale morphism (N ord

g,r )Zp
→ (Mg,r)Zp

, where (N ord

g,r )Zp
is a formal

p-adic stack.

Over N def= (N g,r)ord
Zp

, one has the following ordinary theory ([Mzk1]): First, there is
a natural Frobenius lifting

ΦN : N → N

(analogous to the Frobenius lifting

ΦA : (Aord
g )Zp

→ (Aord
g )Zp

of Serre-Tate theory given by mapping an abelian variety A (with ordinary reduction
modulo p) to the quotient of A by the multiplicative part of the kernel of p · : A → A).
Just as in Serre-Tate theory, there are unique multiplicative canonical coordinates fixed by
ΦN , as well as a notion of canonical liftings. Finally, if SN → N is the pull-back to N of
the torsor of indigenous bundles over Mg,r, then there is a canonical section N → SN (cf.
“sH” in the complex case) that corresponds to a unique Frobenius-invariant indigenous
bundle.

In fact, N g,r consists (in general) of irreducible components which are not generically
ordinary. The degree of the ordinary (and nonordinary) locus of N g,r over (Mg,r)Fp

can
be computed (at least, in principle) by means of a complicated combinatorial algorithm
([Mzk3]). Moreover, in general there exist irreducible components whose generic points
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correspond to dormant indigenous bundles (indigenous bundles whose p-curvatures are
identically zero) and spiked indigenous bundles (indigenous bundles whose p-curvatures
have zeroes, but are not identically zero). Roughly speaking, these loci also admit theories
with Frobenius liftings, etc. analogous to the ordinary theory of the preceding paragraph,
but instead of multiplicative canonical coordinates (i.e., local uniformizations by products
of Gm), in the generalized ordinary theory ([Mzk2]), one gets local uniformizations by more
general sorts of Lubin-Tate groups, or twisted (fiber) products of Lubin-Tate groups in the
dormant and spiked cases. This sort of generalized ordinary theory is a phenomenon
essentially without analogue in the case of hyperbolic curves over C or p-adic abelian
varieties.

III. The IHT of p-adic Hyperbolic Curves: the Physical Picture

The physical side of the intrinsic Hodge theory of a p-adic hyperbolic curve consists
of the following Theorem (roughly conjectured by Grothendieck in a letter to Faltings):
First, some terminology: If K is a field, we shall refer to a K-scheme SK as a smooth pro-
variety (respectively, hyperbolic pro-curve) over K if SK can be written as the projective
limit of a projective system of smooth varieties (respectively, hyperbolic curves) over K in
which the transition morphisms are all birational. Note that the notion of a “smooth pro-
variety” (respectively, “hyperbolic pro-curve”) has as special cases: (i) a smooth variety
(respectively, hyperbolic curve) over K; (ii) the spectrum of a function field of arbitrary
dimension (respectively, function field of dimension one) over K. Then we have the fol-
lowing π1-theoretic recipe for recovering the nonconstant SK-valued points (where SK is a
smooth pro-variety over K) of a hyperbolic pro-curve XK ([Mzk5]):

Theorem: Let p be a prime number. Let K be a subfield of a finitely generated field
extension of Qp. Let XK be a hyperbolic pro-curve over K. Then for any smooth pro-
variety SK over K, the natural map

XK(SK)nonconst → Homopen
ΓK

(Π(p)
SK

, Π(p)
XK

)

is bijective. (Here Homopen
ΓK

(Π(p)
SK

, Π(p)
XK

) denotes the set of open, continuous group homo-

morphisms Π(p)
SK

→ Π(p)
XK

over ΓK , considered up to composition with an inner homomor-

phism arising from Δ(p)
X .)

Note that although this result is formally analogous to the Tate conjecture for abelian
varieties over a number field (especially if one takes SK also to be a hyperbolic pro-curve),
one major difference is that the above Theorem is valid over local fields, whereas the Tate
conjecture fails over local fields.

One also has the following application (unrelated to curves) of the above Theorem:
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Corollary: Let p be a prime number. Let K be a subfield of a finitely generated field
extension of Qp. Let L and M be function fields of arbitrary dimension over K. Then the
natural map

HomK(Spec(L), Spec(M)) → Homopen
ΓK

(ΓL, ΓM )

is bijective. (Here, Homopen
ΓK

(ΓL, ΓM ) is the set of open, continuous group homomorphisms
ΓL → ΓM over ΓK , considered up to composition with an inner homomorphism arising
from Ker(ΓM → ΓK).)

Note that in characteristic zero, this generalizes the result of [Pop], where a similar result
to this Corollary is obtained, except that the morphisms ΓL → ΓM , Spec(L) → Spec(M)
are required to be isomorphisms, and K is required to be finitely generated over Q.
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