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INTRODUCTION

The Anabelian Geometry of Grothendieck:

Let X be a connected scheme. Then one can associate (after Grothendieck) to X
its algebraic fundamental group π1(X). This group π1(X) is a profinite group which is
uniquely determined (up to inner automorphisms) by the property that the category of
finite, discrete sets equipped with a continuous π1(X)-action is equivalent to the category
of finite étale coverings of X. Moreover, the assignment X �→ π1(X) is a functor from the
category of connected schemes (and morphisms of schemes) to the category of profinite
topological groups and continuous outer homomorphisms (i.e., continuous homomorphisms
of topological groups, where we identify any two homomorphisms that can be obtained from
one another by composition with an inner automorphism).

Now let K be a field. Let ΓK be the absolute Galois group of K. Then π1(Spec(K))
may be identified with ΓK . Let XK be a variety (i.e., a geometrically integral separated
scheme of finite type) over K. Then the structure morphism XK → Spec(K) defines a
natural augmentation π1(XK) → ΓK . The kernel of this morphism π1(XK) → ΓK is a
closed normal subgroup of π1(XK) – called the geometric fundamental group of XK –
which may be identified with π1(XK) (where XK

def= XK ⊗K K). If, moreover, one fixes
a prime number p, then one can form the maximal pro-p quotient π1(XK)(p) of π1(XK).
Since the quotient π1(XK) → π1(XK)(p) is characteristic, it follows that the kernel of this
quotient is, in fact, a normal subgroup of π1(XK). The quotient of π1(XK) by this normal
subgroup will be denoted ΠXK

. Thus, ΠXK
inherits a natural augmentation ΠXK

→ ΓK

from that of π1(XK).

Now let us consider the assignment

π1(−)K : {XK → Spec(K)} �→ {π1(XK) → ΓK}

This assignment defines a functor from the category CK of K-varieties (whose morphisms
are K-linear morphisms of varieties) to the category GK whose objects are profinite topo-
logical groups equipped with an augmentation to ΓK , and whose morphisms are continu-
ous outer homomorphisms of topological groups that lie over ΓK . It was the intuition of
Grothendieck (see [Groth]) that:
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For certain types of K, if one replaces CK and GK by “certain appro-
priate” subcategories C′

K and G′
K (such that π1(−)K still maps C′

K into
G′

K), then π1(−)K should be fully faithful.

Here, the “certain appropriate” subcategories C′
K for which this piece of intuition was to

hold true were tentatively assigned the appellation anabelian, while the piece of intuition
itself came to be referred to as Grothendieck’s Conjecture of Anabelian Geometry (or, sim-
ply, the “Grothendieck Conjecture,” for short). Roughly speaking, the sorts of varieties
that were thought to be likely to be “anabelian” were varieties that are “sufficiently hyper-
bolic.” (Note that, as one can see in the case of curves, hyperbolic varieties tend to have
highly nonabelian fundamental groups, hence the term “anabelian.” In higher dimensions,
however, things are not so simple – see, e.g., [IN].)

A variant of the above “profinite” Grothendieck Conjecture is the following “pro-
p” Grothendieck Conjecture: Namely, instead of considering π1(−)K , one considers the
functor that assigns to the K-variety XK the augmented group ΠXK

→ ΓK . The “pro-p”
Grothendieck Conjecture then asserts that, in certain situations, this functor should be
fully faithful. The present paper is concerned with proving various versions of the profinite
and pro-p Grothendieck Conjectures under various conditions.

Statement of the Main Results:

Let p be a prime number. Let K be a sub-p-adic field (cf. Definition 15.4 (i)), i.e., a
subfield of a finitely generated field extension of Qp. In this paper, we prove a pro-p version
of the Grothendieck Conjecture (Theorem A) for dominant morphisms between “smooth
pro-varieties” and “hyperbolic pro-curves” over K. (Here, by a “smooth pro-variety”
(respectively, “hyperbolic pro-curve”) over K, we mean a K-scheme which can be written
as a projective limit of smooth varieties (respectively, hyperbolic curves) over K in which
the transition morphisms are birational – cf. Definitions 15.4 (ii) and 16.4.) We then give
various versions of Theorem A (namely, Theorems A′ and A′′) for truncated fundamental
groups. From Theorem A, we also derive a profinite version of the Grothendieck Conjecture
(Theorem B) for morphisms between function fields (of arbitrary dimension) over K. Next,
we apply Theorem A to prove the “injectivity part” (Theorem C) of the pro-p “Section
Conjecture.” Finally, in an Appendix, we derive from Theorem A an isomorphism version
of the Grothendieck Conjecture for certain hyperbolic surfaces (Theorem D).

Notation: If K is a field and XK is a K-scheme, we denote by Πprf
XK

def= π1(XK) the
fundamental group of XK (for some choice of base-point), and by ΓK the absolute Galois
group of K. Then we have a natural morphism Πprf

XK
→ ΓK whose kernel is the geometric

fundamental group Δprf
X ⊆ Πprf

XK
. Let ΔX be the maximal pro-p quotient of Δprf

X . Then
the kernel of Δprf

X → ΔX is a normal subgroup of Πprf
XK

, so by forming the quotient of Πprf
XK

by this normal subgroup, we obtain a group ΠXK
, together with a morphism ΠXK

→ ΓK

whose kernel is ΔX . Next, if Δ is a topological group, we let: Δ{0} def= Δ; for i ≥ 1,

Δ{i} def= [Δ{i− 1}, Δ{i− 1}] (here we mean “the closed subgroup generated by the purely
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group-theoretic commutator subgroup”). In the specific case of fundamental groups, let
us write “Πi” (respectively, “Δi”) for Π/Δ{i} (respectively, Δ/Δ{i}).

Our first main theorem is the following:

Theorem A. Let p be a prime number. Let K be sub-p-adic (cf. Definition 15.4
(i)). Let XK be a smooth pro-variety over K. Let YK be a hyperbolic pro-curve over
K. Let Homdom

K (XK , YK) be the set of dominant K-morphisms from XK to YK. Let
Homopen

ΓK
(ΠXK

,ΠYK
) (respectively, Homopen

ΓK
(Πprf

XK
,Πprf

YK
)), be the set of open, continuous

group homomorphisms ΠXK
→ ΠYK

(respectively, Πprf
XK

→ Πprf
YK

) over ΓK , considered up
to composition with an inner automorphism arising from ΔY (respectively, Δprf

Y ). Then
the natural maps

Homdom
K (XK , YK) → Homopen

ΓK
(Πprf

XK
,Πprf

YK
)

→ Homopen
ΓK

(ΠXK
,ΠYK

)

are bijective.

This Theorem is given as Theorem 16.5 (cf. also the Remark following Theorem 16.5) in
the text. It is from Theorem A that all of the other major results of this paper are derived.

We remark that:

(1) In fact, really, the main portion of Theorem A is the bijectivity of the
first and third Hom’s. That is to say, the bijectivity of the first and
second Hom’s follows formally from the bijectivity of the first and third
Hom’s. See the Remark following Theorem 16.5 for more details.

(2) The notion of a “smooth pro-variety” (respectively, “hyperbolic pro-
curve”) has as special cases: (i) a smooth variety (respectively, hyper-
bolic curve) over K; (ii) the spectrum of a function field of arbitrary
dimension (respectively, function field of dimension one) over K.

(3) There exists a substantial body of people who, when they speak of
“the Grothendieck Conjecture” (respectively, “the pro-p Grothendieck
Conjecture”), refer to the following rather specific statement (which
is a special case of the general philosophy discussed in the preceding
subsection): If K is a finitely generated extension of Q, and XK and
YK are either hyperbolic curves over K or the spectra of one-dimensional
function fields over K, then the isomorphisms of XK with YK are in
natural bijective correspondence with the outer isomorphisms over ΓK of
Πprf

XK
(respectively, ΠXK

) with Πprf
YK

(respectively, ΠYK
). This statement

is manifestly a special case of the profinite version – see (1) above –
(respectively, pro-p version, i.e., version as stated above) of Theorem A.
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We also have truncated versions of Theorem A (Theorems 18.1 and 18.2 in the text):

Theorem A′. Let K be sub-p-adic. Let XK be a smooth variety over K. Let YK be a
hyperbolic curve over K. Let n ≥ 5. Then every continuous open homomorphism

θ : Πn
XK

→ Πn
YK

over ΓK induces a dominant morphism μ : XK → YK whose induced morphism on fun-
damental groups coincides (up to composition with an inner automorphism arising from
ΔYK

) with the morphism Δn−3
XK

→ Δn−3
YK

defined by considering θ “modulo Δ{n − 3}.”

Theorem A′′. Let K be sub-p-adic. Let XK be a smooth pro-variety over K. Let YK

be a hyperbolic pro-curve over K. Let n′
0 be the minimum transcendence degree over Qp

of all finitely generated field extensions of Qp that contain K. Let n′′
0 be the transcendence

degree over K of the function field of XK . Let n0
def= n′

0 + 2(n′′
0 − 1) + 1.

Let n ≥ 3n0 + 5. Then every continuous open homomorphism

θ : Πn
XK

→ Πn
YK

over ΓK induces a dominant morphism μ : XK → YK whose induced morphism on
fundamental groups coincides (up to composition with an inner automorphism arising
from ΔYK

) with the morphism Δn−3−3n0
XK

→ Δn−3−3n0
YK

defined by considering θ “mod-
ulo Δ{n − 3 − 3n0}.”

Our second main theorem (Theorem 17.1 in the text) is the following:

Theorem B. Let p be a prime number. Let K be sub-p-adic. Let L and M be
function fields of arbitrary dimension over K. (In particular, we assume that K is alge-
braically closed in L and M .) Let HomK(Spec(L),Spec(M)) be the set of K-morphisms
from M to L. Let Homopen

ΓK
(ΓL,ΓM ) be the set of open, continuous group homomorphisms

ΓL → ΓM over ΓK , considered up to composition with an inner automorphism arising
from Ker(ΓM → ΓK). Then the natural map

HomK(Spec(L),Spec(M)) → Homopen
ΓK

(ΓL,ΓM )

is bijective.

Note that in characteristic zero, this generalizes the results of [Pop1], [Pop2], where a
similar result to Theorem B is obtained, except that the morphisms ΓL → ΓM are required
to be isomorphisms, and K is required to be finitely generated over Q.
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Our third main theorem (Theorem 19.1 in the text) is the following:

Theorem C. Let p be a prime number. Let K be sub-p-adic. Let XK be a hyperbolic
curve over K. Let XK(K) be the set of K-valued points of XK . Let Sect(ΓK ,ΠXK

) be
the set of sections ΓK → ΠXK

of ΠXK
→ ΓK , considered up to composition with an inner

automorphism arising from ΔX . Then the natural map

XK(K) → Sect(ΓK ,ΠXK
)

is injective.

Finally, in the Appendix, we use Theorem A to derive the following result:

Theorem D. Let p be a prime number. Let K be sub-p-adic. Let XK and YK be
hyperbolically fibred surfaces (see Definition a2.1 in the Appendix for a precise definition
of this term) over K. Let IsomK(XK , YK) be the set of K-isomorphisms (in the category
of K-schemes) between XK and YK . Let IsomΓK(Πprf

XK
,Πprf

YK
) be the set of continuous

group isomorphisms Πprf
XK

→ Πprf
YK

over ΓK, considered up to composition with an inner
automorphism arising from Δprf

Y . Then the natural map

IsomK(XK , YK) → IsomΓK (Πprf
XK

,Πprf
YK

)

is bijective.

Recent Work on the Grothendieck Conjecture:

In this subsection, we would like to take a brief look at recent work on the Grothendieck
Conjecture. We will concentrate only on major and recent (since the early 1980’s) develop-
ments that relate to the present paper, and we make no pretense of giving a complete history
of work on the Grothendieck Conjecture. Before beginning, it is worth pointing out that
until the appearance of the present paper (and its earlier version [Mzk2]), it was widely
assumed that the base field “K” that appears in the Grothendieck Conjecture should be
assumed to be finitely generated over Q. It is not clear precisely why this came to be as-
sumed by most people working in the field, but one possible cause is that the Grothendieck
Conjecture appears to have originated as an alternative approach to diophantine geometry
([Groth], [Pop3]). Thus, if one’s ultimate aim is applications to diophantine geometry, it
is quite natural only to look at global fields (i.e., finitely generated extensions of Q), and
not at p-adic local fields, for instance.

Another reason for the fixation on finitely generated extensions of Q appears to have
been that many people conceived of the Grothendieck Conjecture as an anabelian version
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of the Tate Conjecture (Faltings’ theorem – see [Falt3]) for abelian varieties over number
fields. In fact, this point of view became so deeply engrained that it gave rise to a tendency
for people to try to prove the Grothendieck Conjecture for hyperbolic curves over number
fields by deducing it from the Tate Conjecture for abelian varieties over number fields (see,
e.g., [Naka3]).

In fact, even important early work – such as [Naka1] on the Grothendieck Conjecture
for genus zero hyperbolic curves over number fields, or [Pop1], [Pop2] which treat the
birational case – which does not try to deduce the Grothendieck Conjecture from the
Tate Conjecture still had a distinctly global flavor, and relied extensively on essentially
global techniques. These global techniques ultimately proved to be rather irrelevant to the
proof of the main results of the present paper. Nevertheless, what was important (from
the point of view of the author) about the work of H. Nakamura was that it established a
host of basic techniques for studying the outer Galois action on the (nonabelian) geometric
fundamental group of a hyperbolic curve, which was unknown territory to most arithmetic
geometers, who were only familiar with the Galois action on the abelian fundamental group
of an abelian variety. It was this culture of basic techniques (due to H. Nakamura) which
permitted the subsequent development of more powerful approaches to the Grothendieck
Conjecture itself, as discussed below.

The next important development (in early 1995) was the work of A. Tamagawa
([Tama]) in which it was shown that the isomorphism class of any affine hyperbolic curve
over an absolutely finitely generated field is functorially determined by the outer Galois ac-
tion on its profinite geometric fundamental group. (In fact, by a relatively straightforward
argument ([Mzk1]), it is possible to remove the “affineness” hypothesis in Tamagawa’s
result, at least in characteristic zero.) Unlike the results of the present paper, Tamagawa’s
result holds in positive characteristic as well as in characteristic zero. Moreover, Tama-
gawa’s ideas on characterizing those sections of π1(XK) → ΓK (where XK is a hyperbolic
curve over a field K) that arise from geometric points of XK played a pivotal role in inspir-
ing the author to prove the results of the present paper. Concretely speaking, the influence
of these ideas of Tamagawa can be seen in the argument of Section 9 of the present paper.

Finally, we turn to discussing the results of the present paper in a historical context.
As observed previously, the results of the present paper are (unlike Tamagawa’s results)
only valid in characteristic zero. On the other hand, the main advances of Theorem A of
the present paper relative to [Tama] are as follows:

(1) The hyperbolic curves involved are allowed to be proper. In fact, we
even allow what we call hyperbolic pro-curves.

(2) Instead of dealing with profinite geometric fundamental groups, we
deal with pro-p geometric fundamental groups. Pro-p results tend to
be stronger than profinite results in the sense that profinite results usu-
ally follow immediately from pro-p results (see the Remark following
Theorem 16.5 for more details).

(3) Instead of just considering isomorphisms, we allow arbitrary dominant
morphisms between the varieties involved.
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(4) The variety “on the left” (in the “Hom(−,−)” of Theorem A) is allowed
to be higher-dimensional, and need not even be hyperbolic.

(5) The base field can be any subfield of a finitely generated extension of
Qp, whereas for Tamagawa (in characteristic zero) the base field must
be a finitely generated extension of Q.

From the point of view of the author, (5) is the most fundamental and important advance
as it is associated with the fact that the techniques of the present paper are fundamentally
different from those of both Nakamura and Tamagawa in that they are couched in the
world of p-adic Hodge theory. That is to say, the proof of Theorem A may be regarded
as an application of the theory of [Falt1] and [BK]. It is precisely the use of these p-adic
techniques that allowed the author to prove a result which was much stronger (in the above
five senses) than the result of [Tama] (in characteristic zero) or [Mzk1]. Moreover, it is the
opinion of the author that:

The reason that it took so long for Theorem A to be discovered was the
overwhelming prejudice of most people in the field that the Grothendieck
Conjecture for hyperbolic curves is an essentially global result, akin to
the Tate Conjecture for abelian varieties over number fields. In fact,
however, it is much more natural to regard the Grothendieck Conjecture
for hyperbolic curves as an essentially local, p-adic result that belongs
to that branch of arithmetic geometry known as p-adic Hodge theory.

Moreover, it is the feeling of the author that, more than the technical details of the state-
ment of Theorem A, it is this fact – i.e., that the Grothendieck Conjecture for hyperbolic
curves is best understood not as a global, number-theoretic result, but rather as a result in
p-adic Hodge theory – that is the central discovery of this paper.

The Structure of the Proof:

First, we remark that most of the paper (Sections 1 through 14) is devoted to proving
the following technical result:

(∗)tech Suppose that K is a finite extension of Qp. Let XK and YK

be proper hyperbolic curves over K. Let UK be the spectrum of the
function field of XK. Then every continuous surjective homomorphism
θ : ΠUK

→ ΠYK
over ΓK arises from some geometric morphism UK →

YK .

Section 15 is devoted to the rather standard technicalities necessary to generalize (∗)tech
to the case where K is any subfield of a finitely generated extension of Qp. Section 16
is devoted to carrying out a standard “cutting by hyperplane sections argument” which
allows one to replace UK by a higher-dimensional smooth pro-variety (which thus completes
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the proof of Theorem A). Section 17 is devoted to an induction argument used to derive
Theorem B from Theorem A. Section 18 discusses how the techniques used to prove
Theorem A in fact also give rise to the truncated versions Theorem A′ and Theorem
A′′. Finally, Section 19 reviews a standard argument (already present in the work of H.
Nakamura) which allows one to derive Theorem C from Theorem A. Thus, the rest of this
subsection will be devoted to outlining the proof of (∗)tech in Sections 1 through 14.

In order to simplify the discussion, let us consider first the following slightly modified
version of (∗)tech:

(∗)prop Suppose that K is a finite extension of Qp. Let XK and YK

be proper hyperbolic curves over K. Then every continuous surjective
homomorphism θ : ΠXK

→ ΠYK
over ΓK arises from some geometric

morphism XK → YK.

(Here, “prop” stands for “proper” – i.e., since, unlike in (∗)tech, where UK appeared, in
(∗)prop only proper curves appear.) Thus, (∗)tech implies (∗)prop. In other words, (up to
some standard general nonsense) one may think of (∗)tech as the concatenation of (∗)prop

with the following assertion:

(∗)iner Any θ : ΠUK
→ ΠYK

as in (∗)tech necessarily factors through the
quotient ΠUK

→ ΠXK
.

(Here, “iner” stands for “inertia” – since the kernel of ΠUK
→ ΠXK

is generated by
inertia groups, so (∗)iner is the assertion that θ : ΠUK

→ ΠYK
always sends inertia groups

in ΠUK
to the identity.) We will come back to the issue of (∗)iner later, but for now, let us

concentrate on outlining the proof of (∗)prop, since it is this which is the core of the paper.

Thus, let us assume that we have been given a continuous surjective homomorphism:

θ : ΠXK
→ ΠYK

over ΓK . We would like to somehow manufacture out of θ a morphism from XK to YK . A
natural, naive way to start is the following: First, by replacing XK and YK by appropriate
étale coverings, we may assume that neither is hyperelliptic (see, e.g., Lemma 10.4 (4)).
Let us write DX (respectively, DY ) for H0(XK , ωXK/K) (respectively, H0(YK , ωYK /K)),
the space of global differentials on XK (respectively, YK). Then it is well-known that XK

(respectively, YK) embeds naturally in the projective space PX
def= P(DX ) (respectively,

PY
def= P(DY )). Moreover, since the p-adic étale cohomology of XK or YK can be computed

as the group cohomology of the respective pro-p geometric fundamental group, it follows
that the surjection θ induces a ΓK-equivariant injection

θH : H1(YK ,Qp) ↪→ H1(XK ,Qp)
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Moreover, it is well-known (see, e.g., [Falt1], [Tate]) that the ΓK -module H1(XK ,Qp) is
Hodge-Tate, and, moreover, that if we tensor H1(XK ,Qp) over Qp with Cp(1) (where the
“(1)” is a “Tate twist”), and take ΓK-invariants, we naturally recover the space DX of
differentials. Thus, since θH is ΓK -equivariant, if we tensor θH over Qp with Cp(1) and
take ΓK-invariants, we obtain from θ (in a natural way) a K-linear injection

θD : DY ↪→ DX

and hence a rational map from PX to PY .

Thus, in some sense, without doing anything terribly new (i.e., we have only just
applied results known to Tate since the 1960’s), we have already come relatively close to
constructing a morphism from XK to YK . Indeed, what we have done is to construct a
morphism θD from differentials on YK to differentials on XK , which we would like to hope
arises as the pull-back map on differentials associated to a morphism from XK to YK .
Moreover, since XK (respectively, YK) is canonically embedded in PX (respectively, PY ),
it follows from elementary algebraic geometry that the “only” thing we need to show is
that θD preserves relations: That is, if i is a positive integer, let Di

X
def= H0(XK , ω⊗i

XK/K).
Similarly, we have Di

Y . Note that multiplication of differential forms defines a natural
morphism

i⊗
DY → Di

Y

Let us denote the kernel of this morphism by Ri. Thus, Ri is the set of relations (of degree
i) defining YK as a subvariety of PY . Moreover, by composing the ith tensor power of θD

with the natural morphism from the ith tensor power of DX to Di
X , we obtain a morphism

κi :
i⊗

DY → Di
X

Then we shall say that θ : ΠXK
→ ΠYK

preserves relations if κi(Ri) = 0 for all positive
integers i. As stated earlier, once we know that θ preserves relations, it follows from
elementary algebraic geometry (see [Harts], Chapter II) that the rational map from PX to
PY defined by θD induces a (dominant) morphism XK → YK , as desired. (Once one has
this morphism XK → YK , the fact that the map that it induces on fundamental groups
coincides with θ is a matter of general nonsense – for details, we refer to the argument
preceding Theorem 14.1.)

Thus, to review what we have done so far, we have reduced the main problem to
showing that any θ : ΠXK

→ ΠYK
as in (∗)prop preserves relations. It should be emphasized

at this point, that so far everything that we have done has been painless general nonsense
– the substantive mathematical core of the argument is yet to come (after some more
general nonsense in the next few paragraphs). The next step is to introduce a field L,
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as follows: Let us assume for simplicity that XK extends to a stable curve X over OK .
Let p ∈ X be an irreducible component of the special fiber of X . Then the completion
of the local ring OX ,p is a p-adically complete discrete valuation ring OL, whose quotient
field we denote by L. The space ΩL of p-adically continuous differentials of L over K is
then a one-dimensional L-vector space. Thus, L is, in some sense, one-dimensional over
K. Alternatively, one may think of Spec(L) roughly as some sort of small p-adic open set
in XK . At any rate, from the construction of L, it follows that we have a natural L-valued
point ξX : Spec(L) → XK . Since L is “one-dimensional,” it is easy to check that the
restriction map on differentials

Di
X → Ω⊗i

L

(where “Ω⊗i
L ” denotes the tensor product of i copies of ΩL over L) is injective. Thus,

instead of checking that κi(Ri) = 0, it suffices to check that the composite

κi
L :

i⊗
DY → Ω⊗i

L

of κi with the above restriction map vanishes on Ri. In other words, we would like to
compute κi

L.

To “compute” κi
L, we need to go back to looking at fundamental groups. First of all,

let us observe that by functoriality of the fundamental group, the natural L-valued point
ξX : Spec(L) → XK defines a morphism

αL
X : ΓL → ΠXK

whose composite with the augmentation ΠXK
→ ΓK is the morphism ΓL → ΓK on Galois

groups induced by the inclusion of fields K ⊆ L. Moreover, if we compose αL
X with θ, we

obtain a morphism

αL
Y : ΓL → ΠYK

Now let us suppose that we know that αL
Y is geometric, i.e., that it arises from some L-

valued point ξY : Spec(L) → YK of YK . Then it follows immediately from the theory of
[Falt1] that κi

L may be computed as the restriction map on differentials associated to ξY .
But it is clear that this restriction map on differentials annihilates Ri. Thus, to summarize:
in order to show that θ preserves relations, it suffices to show that αL

Y is geometric.

As remarked earlier, the above prefatory remarks are just “general nonsense.” The
mathematical core of the present paper lies in showing that given a geometric αL

X , together
with a θ : ΠXK

→ ΠYK
as in (∗)prop, the resulting αL

Y is again geometric. The proof that
αL

Y is geometric is long and intricate, and can be divided roughly into four parts:
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(1) First, we consider a K-valued point x ∈ XK(K) of XK , and its asso-
ciated map on fundamental groups αK

X : ΓK → ΠXK
. It is elementary

to show that the process of passing from the point x ∈ XK(K) to the
arithmetic first Chern class of its associated line bundle

ηK
X

def= c1(OXK (x)) ∈ H2
et(XK ,Zp(1)) = H2(ΠXK

,Zp(1))

can be carried out just by working with αK
X (see the first half of Section 7

for details on this “group-theoretic recipe” for concocting ηK
X out of αK

X ).
On the other hand, by composing αK

X with θ, we get an αK
Y : ΓK → ΠYK

.
The first step then is to show that: If one carries out this recipe for
αK

Y (which may or may not arise geometrically) so as to obtain a class
ηK

Y ∈ H2(ΠYK
,Zp(1)), then ηK

Y is the arithmetic first Chern class of a
line bundle (necessarily of degree prime to p) on YK . This is the topic
of Sections 1 through 5.

(2) Next, we go back to L-valued points, and their associated αL
X , αL

Y .
Then, just as in the case of K-valued points, one can form ηL

Y , and
one would like to know that ηL

Y is the arithmetic first Chern class of

a line bundle (necessarily of degree prime to p) on YL
def= YK ⊗K L.

This is technically much more intricate than the K-valued case, and
is done (roughly speaking) by thinking about the “difference” between
the Chern class of a K-valued point and of an L-valued point, and
showing that this difference has special properties that are preserved by
θ. This allows one to derive the assertion in the L-valued case from
the corresponding assertion in the K-valued case, which was already
handled in (1) above. This reduction is the topic of Sections 6 and 7.

(3) Recall that we would like to show that αL
Y is geometric. We know from

(2) above that at least there exists a line bundle on YL of degree prime
to p. Then an elementary algebraic geometry argument shows that this
implies the existence of a rational point of YL defined over a tamely
ramified (this will be crucial in Step (4)!) extension L′ of L. Although
this portion of the proof is technically rather trivial, its discovery was a
key step in the creation of the proof of Theorem A. This portion of the
proof is discussed in Section 8.

(4) Finally, by applying (3) to all the curves in a certain tower of coverings of
the original YL, we obtain a collection of rational points of the curves of
this tower that are defined over tamely ramified extensions of L. Then
by using Faltings’ p-adic Hodge theory ([Falt1]), we show that these
rational points necessarily converge p-adically to a single L-valued point
of YL = YK ⊗K L whose associated ΓL → ΠYK

is necessarily equal to

11



αL
Y . This completes the proof of the geometricity of αL

Y . This portion
of the proof is given in Sections 9 and 10 (and applied in Section 13).

As discussed above, once one knows the geometricity of αL
Y , one can conclude the preser-

vation of relations – this is discussed in Sections 11 through 13. Finally, the proof of (∗)iner

(i.e., the difference between (∗)tech and (∗)prop) is given in Section 14. Unfortunately, in
order to show (∗)iner, it is necessary to go through all the steps discussed so far for a given
θ : ΠUK

→ ΠYK
, and then to conclude (∗)iner from the preservation of relations. This

makes the proof much more technically intricate than it would be if one could prove (∗)iner

from some sort of a priori argument, and then prove preservation of relations only for
θ : ΠXK

→ ΠYK
as in (∗)prop.

We would like to close this outline of the proof of Theorem A by discussing Step (1)
above (i.e., the content of Sections 1 through 5) in greater detail. The reason for this is
that Step (1) is what allowed us to generalize the “isomorphisms only” result of [Mzk2] to
the homomorphism result of the present paper. First of all, let us recall the notion of the
Malčev completion (cf., e.g., [Del], §9) of ΔX . In fact, we shall only need the “smallest
nontrivial part of Malčev completion”: concretely, a unipotent algebraic group over Qp,
which we denote by MX , whose representations are the same as continuous representations
of ΔX/[ΔX , [ΔX ,ΔX ]] on some Qp-vector space V which is equipped with a ΔX-invariant
filtration on whose subquotients ΔX acts trivially. In fact, since unipotent algebraic groups
are equivalent to their Lie algebras, we shall consider instead the Lie algebra MX of MX .

Next, observe that any section αK
X : ΓK → ΠXK

defines (by conjugation) a true action
(i.e., not just an action up to inner automorphisms) of ΓK on ΔX , hence on MX . Relative
to this action, their exists a unique “weight zero quotient” MX⊗QpCp → ZX . Here, we call
the quotient “weight zero” because it is the maximal quotient MX ⊗Qp Cp → Q for which
the action of ΓK on Q is such that Q has a filtration by ΓK-submodules whose subquotients
are ΓK-equivariantly isomorphic to Cp. Moreover, this quotient MX ⊗Qp Cp → ZX is
independent of the choice of section αK

X .

Step (1) is based on the following pair of observations:

(i) On the one hand, if αK
X arises geometrically, then ZX is “Hodge-

Tate.” (By abuse of terminology, we use the term “Hodge-Tate” here
to mean that ZX has a Cp-basis of ΓK -invariant elements.) This is the
content of Proposition 3.5.

(ii) On the other hand, if ZX is “Hodge-Tate,” then the class ηK
X is the

first Chern class of a line bundle. This is essentially the content of the
calculation performed in Proposition 4.4 (see also Lemma 7.3).

Moreover, if one starts with a surjective θ : ΠXK
→ ΠYK

, then ZX maps naturally to,
and in fact, surjects onto ZY . Thus, if one starts with an αK

X that arises geometrically,
then one knows from Observation (i) above that ZX is Hodge-Tate, but any quotient of a
Hodge-Tate representation of ΓK – i.e., such as ZY – is always Hodge-Tate, so Observation
(ii) above thus allows one to complete Step (1).

12



At this point, the reader may wonder how the author stumbled upon the two key
observations of the preceding paragraph. In fact, the author first realized what was going
on by considering the ordinary case (see Section 1 for a detailed discussion). In this
case, the “weight zero quotient” exists at the level of groups, without passing to Malčev
completions or tensoring with Cp: namely, (in the notation of Section 1) it is the quotient
ΔX → Δet

X (which thus gives rise to a quotient ΠXK
→ Πet

XK
). Moreover, as is shown in

Section 1, it is elementary to show that ΔX → Δet
X can be recovered group-theoretically,

and that every section ΓK → ΠXK
that arises geometrically (from a point of XK) induces

a fixed, group-theoretically constructible section θX : ΓK → Πet
XK

of Πet
XK

→ ΓK . These
observations are enough to complete Step (1) (in the ordinary case). Thus, one may
regard the discussion in the preceding paragraphs (which is valid in the nonordinary case)
as simply the result of generalizing the observations discussed in this paragraph in the
ordinary case to the possibly nonordinary case by means of the technical machinery of the
Malčev completion and p-adic Hodge theory.

Finally, let us make the following observation: As one can see from the key argument
discussed above, in fact, really, one does not need all of ΔX . That is to say, in the
above argument (concerning the issue of when ZX is Hodge-Tate), one actually only uses
the quotient ΔX/[ΔX , [ΔX ,ΔX ]]. It is this observation that is behind the truncated
generalizations (Theorems A′ and A′′) of Theorem A.
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Section 0: Preliminaries and Notations

Let p be a prime number. Throughout this paper the symbol “∧” over or to the upper-
right of an object will denote the p-adic completion of that object. Let K be a Qp-algebra.
Let Ω be an algebraically closed field. Then given a base-point b ∈ HomRing(K,Ω), we can
form the algebraic fundamental group

π1(Spec(K), b)

Typically, the choice of base-point b will not be important for us, so we shall write ΓK for
π1(Spec(K), b). Suppose that Spec(K) is a “universal covering space” for Spec(K) such
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that b arises from a ring homomorphism K → Ω. Then we may think of ΓK as Gal(K/K).
We shall denote the étale cohomology of Spec(K) by Hi(K,−). If M is a profinite abelian
group with a continuous ΓK -action, then M naturally defines an inverse system {Fα} of
locally constant sheaves on the étale site of Spec(K), and we shall write

Hi(K,M)

for the inverse limit (over α) of the Hi(K,Fα). Note that for each r ∈ Z, Zp(r) (where
the “(r)” is a Tate twist) has a natural structure of ΓK -module.

Definition 0.1. We shall call K a p-adic field if it is the quotient field of a p-adically
complete, mixed characteristic discrete valuation ring OK . We shall denote the residue
field (respectively, maximal ideal) of OK by k (respectively, mK). We shall call K a p-adic
local field if k is a finite field.

If K is a p-adic field, and K is an algebraic closure of K, then K ↪→ Ω def= K determines
a base-point “b,” and we have ΓK = Gal(K/K). In this case, Hi(K,−) is equal to the
continuous group cohomology of the profinite group ΓK . If K is a p-adic local field, then
K is, in fact, a finite extension of Qp.

Now (without any assumptions on the Qp-algebra K), let us assume that we are given
a hyperbolic curve XK → Spec(K) over K of type (g, r). (By “curve,” we shall always
mean a smooth, one-dimensional, geometrically connected scheme over the base. By “type
(g, r),” we mean that XK ⊗K K is obtained by removing r mutually nonintersecting K-
valued points from a proper curve over K of genus g. By “hyperbolic,” we mean that
2g− 2 + r ≥ 1.) When XK is proper, we shall denote its Jacobian (an abelian scheme over
K) by JX (or JXK when several bases are in use and it is necessary to specify the base in
question).

Let us assume that XK is equipped with a base-point x ∈ XK(Ω) (which is compatible
with the base-point b of Spec(K)). Then we can form Πprf

X
def= π1(XK , x) and Δprf

X
def=

π1(XK , x). (The use of “Δ” to denote the geometric fundamental group may be new to
some readers. Here, we use “Δ” partly because “Π” is already used for the arithmetic
fundamental group and partly to conform to the notations of [Falt1], a reference on which
the present paper depends heavily.) Occasionally, to avoid confusion, we shall also use the
notation Δprf

XK
for Δprf

X . Let ΔX be the maximal pro-p quotient of Δprf
X . Since the kernel

of Δprf
X → ΔX is normal in Πprf

XK
, we may form the quotient of Πprf

XK
by this kernel, and

call the resulting quotient group ΠXK
. Thus, we have an exact sequence

1 → ΔX → ΠXK
→ ΓK → 1

Moreover, this exact sequence induces a representation
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ρX : ΓK → Out(ΔX) def= Aut(ΔX)/Inn(ΔX)

into the outer automorphism group of ΔX . (Here, “Aut(ΔX)” (respectively, “Inn(ΔX)”)
denotes the group of continuous automorphisms (respectively, inner automorphisms) of
ΔX .) Conversely, it is well-known (see, e.g., [Tama], §7, A.) that the above exact sequence
can be recovered from ρX .

Next, we would like to introduce some terminology particular to pro-p groups. Let Δ
be a pro-p group (i.e., a topological group obtained by taking an inverse limit of finite groups
of p-power order). Let Δ′ ⊆ Δ be the unique normal subgroup of Δ with the following
property: Δ → Δ/Δ′ is the maximal (topologically) Hausdorff abelian quotient of Δ which
is annihilated by p. For i ≥ 0, let Δ<0> def= Δ; Δ<i+1> def= (Δ<i>)′. Thus, we obtain a
descending series of closed normal (even characteristic!) subgroups . . . ⊆ Δ<i> ⊆ . . . ⊆ Δ.
Note that since Δ, being a pro-p group, is “pro-solvable,” it follows that the intersection
of all the Δ<i> is {1}. Moreover, if Δ is topologically finitely generated, it follows that
the Δ/Δ<i> are all finite groups.

Definition 0.2. We shall refer to any one of the Δ<i> as a p-derivate of Δ.

Thus, in particular, if Δ = ΔX , then it follows (by the structure of the fundamental group
of an algebraic curve in characteristic zero) that Δ is topologically finitely generated, so
the Δ/Δ<i> are all finite groups.

Next, let us consider the Kummer sequence on XK , i.e., the exact sequence of étale
sheaves on XK given by 0 → Z/pnZ(1) → Gm → Gm → 0 (for n ≥ 1). (Here, the
“(1)” is a “Tate twist,” and the morphism from Gm to Gm is given by raising to the
(pn)th power.) The connecting morphism induced on étale cohomology by the Kummer
sequence then gives us a morphism H1(XK ,Gm) → H2(XK , (Z/pnZ)(1)). Now suppose
that L is a line bundle on XK . Applying the connecting morphism just considered to L
(which defines an element of H1(XK ,Gm)), we obtain a compatible system of classes in
H2(XK , (Z/pnZ)(1)) (for each n ≥ 1), hence a class c1(L) ∈ H2(XK ,Zp(1)).

Definition 0.3. We shall refer to c1(L) as the arithmetic first Chern class of L.

Finally, we have the following elementary technical result, which states that the étale
cohomology of a hyperbolic curve may be computed as the group cohomology of its fun-
damental group:

Lemma 0.4. Assume that K is a field. For all integers i, r, the natural morphisms

Hi(ΔX ,Zp(r)) → Hi(XK ,Zp(r)); Hi(ΔXK×KXK
,Zp(r)) → Hi(XK ×K XK ,Zp(r))
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and

Hi(ΠXK
,Zp(r)) → Hi(XK ,Zp(r)); Hi(ΠXK×KXK

,Zp(r)) → Hi(XK ×K XK ,Zp(r))

are isomorphisms.

Proof. By the Leray-Serre spectral sequence, it suffices to prove that the morphisms of
the first line are isomorphisms. Let Z be XK or XK ×K XK . Then it follows by general
nonsense that it suffices to check that for any finite étale Galois covering Y → Z of p-power
order, and any cohomology class η ∈ Hi(Y,Fp) (where i > 0), there exists a finite étale
covering Y ′ → Y of p-power order such that η|Y ′ = 0. By the Künneth formula, it suffices
to do the case Z = XK . Then what we must check is trivial for i > 2 (since then η = 0 to
begin with), and clear for i = 1 (by the relationship between étale coverings and H1). If
i = 2, then it suffices to take Y ′ → Y such that Y ′ → Y has degree p over every connected
component of Y . This completes the proof. ©

Section 1: The Ordinary Case

Let p be a prime number. Let K be a p-adic field with algebraically closed residue
field. Then, as discussed in Section 0, the absolute Galois group of K will be denoted
ΓK . Let XK → Spec(K) be a hyperbolic curve over K of type (g, r). In this Section,
let us also assume that XK admits a stable extension X → Spec(OK) over OK . By this,
we mean that there exists a (necessarily unique) r-pointed stable (in particular, proper)
curve X → Spec(OK) of genus g such that X is the complement in X of the images of the
r marking sections of X. Let us write Xk (respectively, Xk) for X ⊗OK k (respectively,
X ⊗OK k).

Remark. Recall that an r-pointed stable curve of genus g (where 2g−2+r ≥ 1) is a proper,
flat morphism f : C → S, together with r mutually disjoint sections σ1, . . . , σr : S → C ,
such that

(1) The geometric fibers of f are connected, reduced, of arithmetic genus
g, and have at most nodes as singularities.

(2) The sheaf ωC/S(σ1 + . . .+σr) (i.e., the sheaf of sections of the dualizing
bundle of C over S with poles of order ≤ 1 at the divisors defined by
the images of the sections σ1, . . . , σr) is relatively ample over S.

We refer to [DM], [Knud] for more details.
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Now we make the following

Definition 1.1. We shall call XK ordinary if the Jacobian of every connected component
of the normalization of the curve Xk is an ordinary abelian variety.

In this Section, we would like to assume that XK is ordinary. Under this assumption, it is
well-known that π1(Xk)(p) (where the “(p)” denotes the maximal pro-p quotient) is a free
pro-p group of rank g. (Indeed, this follows from the fact that H2

et(Xk,Fp) = 0 (which may
be shown by using the long exact sequence in étale cohomology obtained by considering
Fp as the kernel of “1− Frobenius” acting on OXk

), plus Proposition 2.3 of Chapter III,
§3, of [Sha].) Moreover, since étale coverings of Xk lift uniquely to characteristic zero, it
follows that we have a continuous surjection:

εX : ΠXK
→ π1(Xk)(p)

If we restrict εX to ΔX , we obtain a surjection ΔX → π1(Xk)(p). In the following, we
shall regard π1(Xk)(p) as a quotient of ΔX via this surjection. Let us denote this quotient
by Δet

X . Note that the kernel of the surjection ΔX → Δet
X is normal as a subgroup of ΠXK

.
Thus, by taking the quotient of ΠXK

by this kernel, we obtain a quotient ΠXK
→ Πet

XK
.

In other words, we have an exact sequence

1 → Δet
X → Πet

XK
→ ΓK → 1

together with a surjection

ζX : Πet
XK

→ Δet
X

which is the identity on Δet
X .

Now observe that the kernel of ζX projects isomorphically to ΓK . Thus, we obtain a
section

θX : ΓK → Πet
XK

Next, let us observe that every element of Im(θX ) commutes with every element of Δet
X .

Indeed, this follows from the fact that such commutation relations hold after projection
by Πet

XK
→ ΓK , plus the fact that Im(θX ) = Ker(ζX) is normal in Πet

XK
(and maps

isomorphically to ΓK via the projection Πet
XK

→ ΓK). On the other hand, since, as
is well-known (see, e.g., [Tama], §1, Propositions 1.1, 1.11), pro-p free groups (of rank
≥ 2) have trivial centers, it thus follows that we obtain the following “group-theoretic”
characterization of θX (when g ≥ 2):
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Lemma 1.2. Suppose that g ≥ 2. Then the section θX : ΓK → Πet
XK

of Πet
XK

→ ΓK is
the unique section whose image commutes with every element of Δet

X ⊆ Πet
XK

.

On the other hand, the quotient ΔX → Δet
X (and hence also the quotient ΠXK

→
Πet

XK
) can also be reconstructed group-theoretically by means of the following condition

on an open normal subgroup H ⊆ ΔX :

(∗)et Let N ⊆ ΔX be any subgroup such that H ⊆ N and N/H is cyclic.

Then there exists a surjection Nab def= N/[N, N ] → Q, where Q is a free
Zp-module of rank one, with the following properties: (i) there exists
an open subgroup Γ′ ⊆ ΓK that stabilizes N and Nab → Q and acts
trivially on Q; (ii) the surjection N → N/H factors through Q.

Then we have the following “group-theoretic” characterization of the quotient ΔX → Δet
X :

Lemma 1.3. The kernel of ΔX → Δet
X is the intersection of all open normal subgroups

H ⊆ ΔX such that H satisfies the condition (∗)et.

Proof. The proof is entirely the same as that of Sections 3 and 8 of [Mzk1]. The basic
idea is that if the covering corresponding to ΔX/H is not étale (over OK), then it has
nontrivial inertia subgroups. Such inertia subgroups have nontrivial cyclic subgroups. If
we then apply (∗)et to the case where N/H is one of these nontrivial cyclic subgroups,
then we have a contradiction, since the quotient N → N/H factors through the quotient
N → Q; moreover, the quotient N → Q necessarily corresponds to a covering which is
étale over OK because of the assumption concerning the action of Γ′ ⊆ ΓK on Q. ©

Let us review what we have done so far. So far, we have:

(1) constructed quotients ΠXK
→ Πet

XK
and ΔX → Δet

X , as well as a section
ΓK → Πet

XK
via various geometric considerations concerning XK ;

(2) shown (when g ≥ 2) that the above quotients and section may be
reconstructed entirely “group-theoretically.”

Here, we pause to make the following

Remark Concerning the Term “Group-Theoretic.” In [Mzk1] and [Mzk2], we imparted
mathematical rigor to the term “group-theoretic” (cf. the remark on this issue in Section
14 of [Mzk2]) by specifying that it meant “preserved by isomorphism.” In the present
paper, however, we would like to consider homomorphisms which are not necessarily iso-
morphisms. Thus, in the present paper, when we wish to state that a certain property or
object is preserved by such homomorphisms, we shall state this explicitly without using
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the term “group-theoretic.” In the above discussion, however, we recommend the reader to
simply accept this term at the level of “common sense,” since we will not use the “group-
theoreticity” stated in any of the results of this Section in the proof of any of the main
theorems of this paper.

Finally, before continuing, we make the following important observation: Let αx :
ΓK → ΠXK

denote the section of ΠXK
→ ΓK determined (up to composition with an

inner automorphism induced by an element of ΔX) by a point x ∈ XK(K). Denote by
αet

x : ΓK → Πet
XK

the composite of αx with ΠXK
→ Πet

XK
.

Lemma 1.4. We have αet
x = θX .

Proof. It suffices to show that the composite of αet
x with the surjection ζX : Πet

XK
→

Δet
X is trivial. Interpreted geometrically, this simply means that “the pull-back of any

étale covering Y → X (i.e., étale over OK) to Spec(K) via x is the trivial étale covering
of Spec(K).” But this assertion follows immediately from the fact that OK is strictly
henselian. ©

Section 2: Review of Galois Cohomology

Let K be a p-adic field whose residue field is perfect. Let S → Spec(OK) be a
geometrically connected smooth morphism, and let D ⊆ S be a relative (over OK) divisor
with normal crossings. Let us write S log for the log scheme obtained by equipping S with
the log structure defined by D (as in [Kato]). Let us also assume that S is small (in the sense
of [Falt1], [Falt2]): Recall that this simply means that S is affine, say, equal to Spec(R),
and, moreover, étale over some OK [X1, . . . ,Xd] in such a way that D is schematically the
inverse image of the zero locus of the function X1 · . . . ·Xd. The reason we wish to deal with
small (S,D) is that in [Falt1], certain Galois cohomology groups associated to such (S,D)
are computed explicitly by means of the theory of almost étale extensions. The purpose
of this Section is to review certain consequences of the theory of [Falt1] and [Falt2] that
are of relevance to us in this paper.

Let RK
def= R ⊗OK K. Let RK → RK be the maximal extension of RK which is étale

outside of DK . Let R be the normalization of R in RK . Let R̂ (respectively, R̂) be the

p-adic completion of R (respectively, R); let R̂K
def= R̂⊗OK K, R̂K

def= R̂⊗OK K. Let R̂O
K

be the p-adic completion of R ⊗OK OK ; R̂K

def= (R̂O
K

) ⊗OK K. Let ΓR
def= Gal(RK/RK).

Thus, we have a natural surjection ΓR → ΓK whose kernel we denote by Δprf
R . This gives

us a natural exact sequence:

1 → Δprf
R → ΓR → ΓK → 1
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Now we would like to compute some Galois cohomology groups:

Lemma 2.1. For all j ∈ Z, we have:

(1) H0(Δprf
R , R̂K(j)) = R̂K(j);

(2) H1(Δprf
R , R̂K(j)) = ΩSlog/OK

⊗R R̂K(j − 1).

(Here the “(j)” is a Tate twist.)

Proof. This follows from Theorem 4.4 of Section I of [Falt1]. Indeed, (1) follows from
[Falt1], Section I, Theorem 4.4, (i) (applied to the case i = 0, and tensored with K(j)),
while (2) follows from [Falt1], Section I, Theorem 4.4, (iv) (tensored with K(j)). ©

Lemma 2.2. We have: (i) H0(ΓK , R̂K) = R̂K; (ii) Hn(ΓK , R̂K(j)) = 0 (for j �= 0;
n = 0, 1); (iii) H1(ΓK , R̂K) = R̂K.

Proof. This result is due to [Tate] in the case R = OK . (Indeed, in this case, (i) and (iii)
follow from [Tate], §3.3, Theorem 1; while (ii) – at least in the case j = 1 (the proof for
arbitrary j �= 0 is entirely similar) – follows from [Tate], §3.3, Theorem 2.) The slightly
more general result stated here (i.e., for R not necessarily equal to OK) follows by the
same argument as that employed by Tate in the case R = OK (the point being that in
general, R is OK-flat). Alternatively, the cohomology groups in the Lemma can also be
computed using almost étale extensions as in [Falt1]. ©

Lemma 2.3. For n = 0, 1, we have: (i) Hn(ΓR, R̂K) = R̂K; (ii) Hn(ΓR, R̂K(−1)) = 0.

Proof. This follows from the Leray-Serre spectral sequence (applied to the exact sequence
of groups that appears directly before Lemma 2.1), plus the preceding two Lemmas. ©

Now let us assume that we are given an r-pointed stable log-curve f log : X log → S log

of genus g, where 2g − 2 + r ≥ 1. (By this we mean that X log is obtained by pulling
back the universal log-curve Clog → Mlog

g,r via some log morphism S log → Mlog

g,r . The log
structure of the universal log curve is defined by the divisor with normal crossings which
is the union of the marked points and the singular fibers. See, e.g., [Mzk3], Section 3, for
more details; cf. also the Remark preceding Definition 1.1 of this paper for a review of
the notion of a “pointed stable curve.”) Let U

def= S − D. Then taking the relative first
cohomology module of f |UK in the étale topology with coefficients in Zp gives rise to a
local system over UK , hence a ΓR-module H∨. As a Zp-module, H∨ is free of rank = 2g
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(if r = 0) and = 2g + r − 1 (if r > 0). Let H be the ΓR-module given by HomZp(H∨,Zp).
Now let

H0
def= (R1f∗OX)∨

(a vector bundle over S, or alternatively, a projective R-module, of rank g) and

H1
def= (f∗ωX log/Slog )∨

(a vector bundle over S, or alternatively, a projective R-module, whose rank is = g if r = 0
and = g + r − 1 if r > 0).

Proposition 2.4. There is a natural exact sequence

0 → H1 ⊗R R̂K(1) → H ⊗Zp R̂K → H0 ⊗R R̂K → 0

which is compatible with the natural action of ΓR on all three terms.

Proof. This is an immediate consequence of the “Comparison Theorem” (Theorem 6.2 of
[Falt2]). The validity of the proof of this Theorem given in [Falt2] has been disputed by
various mathematicians. However, since Proposition 2.4 is a relatively weak consequence
of the “Comparison Theorem,” it already follows from the portion of [Falt2] that is not in
dispute. (That is to say, we need only that M is “Hodge-Tate,” not that it is “crystalline.”)
Alternatively, although the sort of parametrized (i.e., over a base S) Hodge-Tate decom-
position that we need here is not stated in [Falt1], it follows immediately from the theory
of [Falt1] by exactly the same proof as that of the main result of [Falt1]. Yet another proof
of this sort of result is given in [Hyodo] (the final Theorem – i.e., the “relative version”
– in [Hyodo], §0.3), although here we need the (relatively straightforward) logarithmic
generalization of [Hyodo]’s result. ©

Section 3: The Weight Zero Quotient

In this Section, we maintain the notation of the preceding Section. The purpose of
this Section is to give a (rather weak) nonabelian analogue of Proposition 2.4. In fact,
a much stronger “nonabelian comparison theorem” for the fundamental group of a curve
can be proven, but since I do not know of any place where such a result has been written
up, and, moreover, in this paper, only a relatively weak nonabelian comparison theorem is
needed, I decided instead to give a rather short ad hoc treatment of this issue which will,
nonetheless, be sufficient for the purposes of this paper.
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Let us denote the fundamental group of X log
K by Πprf

XK
. Thus, we have a natural

surjection Πprf
XK

→ ΓR. As usual, we denote the kernel of this surjection by Δprf
X ⊆ Πprf

XK
,

and the maximal pro-p quotient of Δprf
X by ΔX . Moreover, by forming the quotient of

Πprf
XK

by the kernel of Δprf
X → ΔX , we obtain ΠXK

. Thus, just as in Section 1, we have an
exact sequence

1 → ΔX → ΠXK
→ ΓR → 1

Moreover, any section σ : S → X of X → S whose image avoids the marked points and
nodes defines a section πσ : ΓR → ΠXK

of the above exact sequence. Such a section πσ

then defines an action of ΓR on ΔX by conjugation. Note that until one specifies the
section ασ : ΓR → ΠXK

, one only has an outer action of ΓR on ΔX (i.e., an action defined
only up to inner automorphisms); that is to say, in general, there is no natural action (in
the usual, non-outer sense) of ΓR on ΔX until one specifies a section of ΠXK

→ ΓR.

The next step is to introduce the Malčev completion of ΔX . We refer to [Del], [NT] for
more details. In fact, for our purposes, it will be sufficient to consider a truncated form of
the Malčev completion of ΔX . This truncated form may be defined as follows: Let C be the
category of finite dimensional Qp-vector spaces V equipped with a continuous ΔX -action
that factors through ΔX/[ΔX , [ΔX ,ΔX ]] and which admits a ΔX-invariant filtration on
whose subquotients ΔX acts trivially. (The morphisms of this category are the Qp[ΔX ]-
linear morphisms V → V ′.) Then C is a Tannakian category over Qp, hence gives rise to
an algebraic group MX over Qp. Moreover, this algebraic group MX is unipotent, hence
corresponds to a nilpotent Lie algebra MX . For any Qp-algebra A, we shall write (MX)A

(respectively, (MX)A) for MX ⊗Qp A (respectively, MX ⊗Qp A).

Let us write MX [1] for the commutator [MX ,MX ] of this Lie algebra, and MX [0] for
the quotient MX/MX [1]. Then MX [0] may be identified with HQp

def= H⊗Zp Qp (where H
is as in the discussion following Lemma 2.3 in Section 2). Thus, we get an exact sequence

0 → MX [1] → MX → MX [0] = HQp → 0

Moreover, the commutator [−,−] defines a surjection

cX : ∧2 HQp → MX [1]

Now observe that although there is no natural action of ΓR on MX (unless one chooses a
section of ΠXK

→ ΓR), there is nonetheless a natural action of ΓR on MX [0] and MX [1]
with respect to which cX is equivariant. Now we have the following classical result

Lemma 3.1. The kernel of cX is zero if r > 0. If r = 0, then the kernel of cX is one-
dimensional, and equal to the image of the dual to the intersection form ∧2 H∨

Qp
→ Qp(−1)

(defined by the cup product pairing on the cohomology of ΔX).
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Proof. If r > 0, then ΔX is a free pro-p group. Thus, in this case the result follows by
consideration of the fact that a representation on a vector space V of the free group on n
generators is the same as giving n endomorphisms of V . If r = 0, then ΔX is the quotient
of a free pro-p group by a single relation; it is this relation which generates the kernel of
cX . Moreover, it is easy to see from the well-known explicit form of this relation that its
image in ∧2 HQp is precisely as specified in the statement of the Lemma (cf. the discussion
in §2 of [NT]). ©

Next, we would like to construct a certain special quotient ZX of (MX)
R̂K

. By the

well-known categorical equivalence between unipotent algebraic groups and nilpotent Lie
algebras (cf. [Del], §9), this quotient will define a quotient ZX of (MX)

R̂K

. The construc-

tion of ZX from (MX)
R̂K

consists of two steps. The first step is as follows: Consider the
surjection

∧2 H ⊗Zp R̂K → ∧2 H0 ⊗R R̂K

defined by projecting by means of the surjection in the short exact sequence of Proposition
2.4. It follows from Lemmas 2.3 (ii) (in the case n = 0) and 3.1 that this surjection factors
through (MX [1])

R̂K

. Thus, we obtain a surjection

(MX [1])
R̂K

→ ∧2 H0 ⊗R R̂K

By pushing forward the exact sequence 0 → MX [1] → MX → MX [0] → 0 (tensored over

Qp with R̂K) via this surjection, we thus obtain a Lie algebra UX (over R̂K). Thus, we
have a surjection of Lie algebras (MX)

R̂K

→ UX , together with an exact sequence

0 → UX [1] → UX → UX [0] → 0

where UX [1] def= [UX ,UX ] = ∧2 H0 ⊗R R̂K , and UX [0] = (MX [0])
R̂K

.

Now we come to the second step in the construction of ZX . First let us denote by
UX [0] → UX [0, 0] def= H0 ⊗R R̂K the surjection defined by the surjection in the short exact
sequence of Proposition 2.4. Let UX [0, 1] ⊆ UX [0] be the kernel of this surjection. Let
BX ⊆ UX denote the inverse image of UX [0, 1] ⊆ UX [0] under the surjection UX → UX [0].
Then it follows from the definition of UX that BX is an abelian Lie algebra which, in fact,
lies in the center of the Lie algebra of UX . (Indeed, this will follow as soon as we show the
vanishing of [BX ,UX ], which is equal to the image of UX [0, 1]∧UX [0] ⊆ ∧2 HQp under the

composite of cX : ∧2 HQp → MX [1] with the projection MX [1] → UX [1] = ∧2 H0 ⊗R R̂K ;
but this image is zero, by the definition of UX [0, 1].) This observation implies, in particular,
that although, a priori, we have only an outer action of ΓR on UX , hence on BX , in fact,
we get a natural (non-outer) action of ΓR on BX . (That is, the point is that the various
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actions of ΓR on BX arising from different sections of ΠXK → ΓR differ only by an
automorphism on BX induced by conjugation by some element of ΔX ; but since BX lies
in the center of UX , it follows that such an automorphism of BX is always equal to the
identity.)

Next, let us note that we have exact sequences

0 → BX → UX → UX [0, 0] → 0

and

0 → UX [1] → BX → UX [0, 1] → 0

where the latter exact sequence is an exact sequence of ΓR-modules (a statement which has
meaning as a result of the observation at the end of the preceding paragraph). Now observe

that Lemma 2.3 (ii) (for n = 0, 1 – note that here we use that UX [1] = ∧2 H0 ⊗R R̂K

is “of weight zero,” while UX [0, 1] = H1 ⊗R R̂K(1) is “of weight one”) implies that the
latter exact sequence admits a unique ΓR-equivariant splitting: BX → UX [1]. Moreover,
since BX is (as observed above) contained in the center of the Lie algebra UX , it follows
that the kernel of this splitting BX → UX [1] forms a Lie ideal in UX . Thus, if we then
push forward the former exact sequence via this surjection BX → UX [1], we obtain a Lie
algebra ZX . As usual, this Lie algebra fits into an exact sequence

0 → ZX [1] → ZX → ZX [0] → 0

Moreover, one has natural identifications: ZX [1] = ∧2 ZX [0] (via the commutator map);

and ZX [0] = H0 ⊗R R̂K (induced by the surjection of the short exact sequence of Propo-

sition 2.4). In particular, ZX [0] is of rank g over R̂K . Finally, as noted above, ZX defines
a unipotent algebraic group ZX .

Definition 3.2. We shall refer to ZX as the weight zero quotient of ΔX (even though
it is not literally a quotient). (Here, the “Z” of ZX stands for the “zero” of “weight zero
quotient.”)

Now let us fix a (continuous) section

α : ΓR → ΠXK

Then α induces an action of ΓR on ΔX . Since ZX was formed naturally – and, for that
matter, group-theoretically – from ΔX , we thus obtain an action of ΓR on ZX which, in
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general, will depend on the choice of α. The next issue we would like to consider is to what
extent the sequence of ΓR-modules

0 → ZX [1] → ZX → ZX [0] → 0

admits a ΓR-equivariant section. At any rate, this exact sequence defines an extension
class

ηα ∈ H1(ΓR, (ZX [0])∨ ⊗
R̂K

ZX [1])

By Lemma 2.3 (i) (for n = 1 – here we use that both ZX [0] = H0 ⊗R R̂K and ZX [1] =
∧2 ZX [0] are “of weight zero”), it follows that this Galois cohomology group may be
identified naturally with

(H∨
0 ⊗R ∧2 H0) ⊗R R̂K

That is to say, one may think of ηα as a section of a certain vector bundle over R̂K .

Proposition 3.3. Suppose that α arises as the ασ associated to some section σ : S → X
(whose image avoids the marked points and nodes – cf. the discussion at the beginning of
this Section). Then ηα = 0.

Proof. Since everything is functorial, one reduces immediately to the universal case, as
follows: In the present context, the essential data that we begin with is a r-pointed stable
curve of genus g (i.e., f log : X log → S log), plus a section (i.e., σ). The moduli stack for
this data is (a certain dense open substack of) the tautological curve C → Mg,r over the
moduli stack Mg,r of r-pointed stable curves of genus g over Zp. Thus, by “restriction,”
it suffices to prove the Proposition in the case where S is étale over the algebraic stack
C. Also, since everything involved commutes with base-extension, it is easy to see that we
may assume that k is algebraically closed. Then over some dense open T ⊆ (S−D)⊗OK k,
the Jacobian of X ⊗OK k will be ordinary. Thus, every point of β ∈ S(OK) that maps
Spec(k) ⊆ Spec(OK) into T defines an ordinary (in the sense of Definition 1.1) hyperbolic
curve Yβ → Spec(K) over K (by restricting (the complement of the marking sections in)
X → S to β).

Next, observe that that if we restrict the section σ to the point β, we get a section
σβ : Spec(K) → Yβ which induces an action of ΓK on Δet

Yβ
(i.e., the quotient ΔYβ → Δet

Yβ

considered in Section 1). By Lemmas 1.2 and 1.4, this action is, in fact, the trivial action.
Now I claim that in the case of such an ordinary curve:

The quotient ΔYβ → Δet
Yβ

(considered in Section 1) induces a natural
(in particular, ΓK -equivariant) isomorphism of the weight zero quotient
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ZYβ of ΔYβ (= ΔX) with the Malčev completion of Δet
Yβ

(truncated at

the second step and tensored over Zp with K̂).

Indeed, it follows immediately from the construction of ZYβ that the surjection ΔYβ → Δet
Yβ

induces a morphism from ZYβ to the “weight zero quotient” (i.e., constructed in a fashion
analogous to the construction of ZYβ ) of Δet

Yβ
. On the other hand, since the action of

ΓK on Δet
Yβ

is trivial, it follows that the “weight zero quotient” of Δet
Yβ

is just the Malčev

completion of Δet
Yβ

(truncated at the second step and tensored over Zp with K̂). Moreover,
it is clear that the map induced on abelianizations by this morphism from ZYβ to this
weight zero quotient of Δet

Yβ
is an isomorphism. (Indeed, surjectivity follows from the fact

that we are dealing (by definition) with various quotients of a single object; injectivity
then follows from Proposition 2.4 and Lemma 2.3 (ii) (for n = 0), and the fact that both

abelianizations are of rank g over K̂.) Thus, (since Δet
Yβ

is a free pro-p group of rank g

– cf. the discussion following Definition 1.1) we conclude that we get an isomorphism as
stated in the “claim.” This completes the verification of the claim.

Thus, any minimal choice of generators of Δet
Yβ

(which will necessarily be fixed by ΓK)
defines a splitting of the sequence of ΓK-modules

0 → ZX [1] → ZX → ZX [0] → 0

Here the ΓK-action is given by composing the ΓR-action considered above with the mor-
phism – well-defined up to composition with an inner automorphism (which does not
bother us since this inner automorphism corresponds to a coboundary in the computation
of the cohomology class ηα that we are interested in) – ΓK → ΓR defined by β. But from
the definition of the extension class ηα, this means that the restriction

ηα|β ∈ (H∨
0 ⊗R ∧2 H0) ⊗R,β K

of ηα to the point β is zero. On the other hand, if ηα is zero when restricted to any such
β (i.e., any β ∈ S(OK) that maps Spec(k) ⊆ Spec(OK) into T ), it is clear that ηα itself
must be zero. This completes the proof of the Proposition. ©

Note that so far, in this Section and the last, we have been dealing with families
of curves, parametrized over a base S. Before continuing on to the next Section, it is
worthwhile to go back to the case of “a single curve” over K in order to make explicit the
consequences for such single curves of the theory developed thus far.

Thus, let XK → Spec(K) be a hyperbolic curve. As in Section 1, we have an exact
sequence

1 → ΔX → ΠXK
→ ΓK → 1
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Then let us first note that the theory reviewed in Section 2 can be applied in the present
nonparametrized situation as well to produce (following precisely the same recipe as in the
parametrized situation considered as above) a Lie algebra ZX , together with a group ZX

(both over K̂).

Definition 3.4. We shall refer to ZX as the weight zero quotient of ΔX .

Let x ∈ XK(K). Then x defines a section αx : ΓK → ΠXK
(well-defined up to composition

with an inner automorphism arising from ΔX). Moreover, αx defines an action of ΓK on
ZX .

Proposition 3.5. Relative to the action of ΓK on ZX defined by αx, the exact sequence
of ΓK-modules

0 → ZX [1] → ZX → ZX [0] → 0

splits.

Proof. Note that this Proposition is not, strictly speaking, a special case of Proposition
3.3 (i.e., where we take S = OK), since Proposition 3.3 only addresses the case where
the divisor of bad reduction is flat over OK . However, by means of specialization, one
can reduce the present Proposition to the “universal case” considered during the proof of
Proposition 3.3. Moreover, in this case, Proposition 3.3 already tells us that the relevant
exact sequence is split. This completes the proof. ©

Remark. Let us write (ΔX)Qp for the full (i.e., not truncated as above) Malčev completion
(cf. [Del], [NT]) of ΔX . Then in some sense, Proposition 3.5 above is a truncated version
of a theorem that states “relative to the action of ΓK on (ΔX)Qp defined by αx, (ΔX)Qp is
Hodge-Tate.” Here, since (ΔX)Qp is an inverse limit of unipotent algebraic groups, one can
interpret “Hodge-Tate” to mean that the Lie algebras of each of these unipotent algebraic
groups are Hodge-Tate representations. In fact, it is not difficult to prove that (ΔX)Qp

is Hodge-Tate (even for arbitrary higher-dimensional smooth XK → Spec(K)) as follows:
One reduces the higher-dimensional case to the curve case by cutting with hyperplane
sections. Then for curves, by considering the universal case, one can reduce to the case of
curves smooth over OK . Finally, for curves smooth over OK , one can apply the techniques
of [Falt1] (by considering cohomology spaces with coefficients valued in unipotent algebraic
groups over Qp). This shows that (ΔX)Qp is Hodge-Tate. Moreover, one can also construct
a nontruncated “weight zero quotient (ΔX)Qp → Z∞

X ” (that is to say, if XK is a curve of

genus g, then Z∞
X will be (ΓK -equivariantly) isomorphic to the Malčev completion over K̂

of the free group on g generators). In fact, it is even possible to show that (ΔX)Qp is de
Rham, but we shall not pursue such issues here since they are not relevant to the proof of
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the main results of this paper. Nevertheless, we remark that this sort of theorem has been
verified by A. Shiho ([Shiho]), in a manuscript in preparation.

Section 4: J-Geometric Sections

We maintain the notations of the latter portion of Section 3. Moreover, we assume
that our curve XK → Spec(K) is proper (hence of genus ≥ 2) and that XK(K) �= ∅. In
this Section, we would like to consider a continuous homomorphism

α : ΓK → ΠXK

which defines a section of the surjection ΠXK
→ ΓK . The section α defines an action of

ΓK on ΔX by conjugation, and hence also an action of ΓK on ZX . In particular, we would
like to consider the significance of the following condition on α:

(∗)spl The exact sequence of ΓK-modules (relative to the action defined
by α)

0 → ZX [1] → ZX → ZX [0] → 0

splits.

The main result of this Section is to show that the group-theoretic condition (∗)spl is
equivalent to the statement that α is “J -geometric” (a term which means that α acts in
some respects as if it came from a geometric point x ∈ XK(K) – see Definition 4.3 for a
precise definition).

To do this, first we need to recall certain facts concerning Jacobians and their funda-
mental groups. For d ∈ Z, let J

(d)
X → Spec(K) be the Picard scheme of line bundles on XK

of degree d. Thus, J
(d)
X is a torsor over JX = J

(0)
X , the Jacobian of XK . Note that J

(d)
X is

defined even if XK does not admit any K-rational points, as the scheme representing the
étale sheafification of the usual Picard functor of degree d line bundles. Note that a base-
point x ∈ XK(Ω) (where Ω is the algebraically closed field of Section 0) may be regarded
as a degree one divisor on XΩ = XK ⊗K Ω, hence (by multiplying this divisor by d) we
obtain a point xd ∈ J

(d)
X (Ω). This allows us to define the arithmetic fundamental group

π1(J
(d)
X , xd), as well as its geometric counterpart π1(J

(d)
X

K
, xd). If we form the quotient

of π1(J
(d)
X , xd) by the kernel of π1(J

(d)
X

K
, xd) → Δ

J
(d)
X

(i.e., the projection to the maximal

pro-p quotient of the geometric fundamental group), then we obtain a topological group
Π

J
(d)
X

. Moreover, we have a natural exact sequence
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1 → Δ
J

(d)
X

→ Π
J

(d)
X

→ ΓK → 1

Finally, the natural embedding XK ↪→ J
(1)
X induces a natural surjection ΠXK

→ Π
J

(1)
X

,

whose kernel is the commutator subgroup of ΔX .

Now let us observe that we can reconstruct Π
J

(d)
X

from ΠXK
→ ΓK , as follows. First of

all, we can reconstruct Π
J

(1)
X

as the quotient of ΠXK
by the commutator subgroup of ΔX .

Next, let us observe that, since (for all d ∈ Z) J
(d)
X is a JX -torsor, considering the action

of JX on J
(d)
X allows one to identify Δ

J
(d)
X

with ΔJX
. Thus, we have an exact sequence

1 → ΔJX
→ Π

J
(1)
X

→ ΓK → 1

If we consider (for nonzero d), the morphism J
(1)
X → J

(d)
X given by multiplication by d, we

see that the result of pushing forward this sequence by means of the morphism ΔJX

d→ΔJX

(i.e., multiplication by d) gives rise to an exact sequence which can be naturally identified
with the exact sequence

1 → Δ
J

(d)
X

= ΔJX
→ Π

J
(d)
X

→ ΓK → 1

This completes our review of Jacobians and their fundamental groups.

Now recall from the definition of ZX [0] in Section 3 that ZX [0] may be identified with

the weight zero portion of ΔJX
⊗Zp K̂. In particular, one has a natural ΓK-equivariant

morphism ΔJX
→ ZX [0]. Thus, by pushing forward the exact sequence of the preceding

paragraph (for d = 1) by means of this morphism, we obtain a morphism of exact sequences
of topological groups as follows:

1 −→ ΔJX
−→ Π

J
(1)
X

−→ ΓK −→ 1⏐⏐� ⏐⏐� ⏐⏐� 1

1 −→ ZX [0] −→ ΠZ

J
(1)
X

−→ ΓK −→ 1

Next, we would like to consider sections of Π
J

(1)
X

→ ΓK and ΠZ

J
(1)
X

→ ΓK . Recall that the

difference between any two sections of Π
J

(1)
X

→ ΓK (respectively, ΠZ

J
(1)
X

→ ΓK) is given by

an element of H1(K,ΔJX
) (respectively, H1(K,ZX [0])). Moreover, if θL, θM : Γ → Π

J
(1)
X

are sections that arise from geometric points L,M ∈ J
(1)
X (K), then the difference

δ
def= θL − θM ∈ H1(K,ΔJX

)
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maps to zero in H1(K,ZX [0]) ([BK], Example 3.11 – cf. the proof of Lemma 4.1 for some
more details). Thus, it follows that the section θL[0] : ΓK → ΠZ

J
(1)
X

obtained from θL

by composing θL with Π
J

(1)
X

→ ΠZ

J
(1)
X

is independent (up to composition with an inner

automorphism of ΠZ

J
(1)
X

arising from ZX [0] ⊆ ΠZ

J
(1)
X

) of the choice of L. In particular, as

long as J
(1)
X (K) is nonempty (which is the case here, since XK(K) has been assumed to

be nonempty), we thus obtain a canonical section (well-defined up to composition with an
inner automorphism of ΠZ

J
(1)
X

arising from ZX [0] ⊆ ΠZ

J
(1)
X

)

θgeom : ΓK → ΠZ

J
(1)
X

of ΠZ

J
(1)
X

→ ΓK .

Now let θ : ΓK → Π
J

(1)
X

be an arbitrary section, and let θ[0] : ΓK → ΠZ

J
(1)
X

denote

the section induced by θ. Then taking the difference between θ[0] and θgeom defines a
cohomology class

δθ ∈ H1(K,ZX [0]) = H0

(where the last equality follows from Lemma 2.3, applied in the case RK = K). Now we
have the following result:

Lemma 4.1. Suppose that the residue field k is finite. Then there exists a geometric
point L ∈ J

(1)
X (K) such that θ = θL if and only if δθ = 0.

Proof. This follows immediately from the theory of [BK], §3, especially Example 3.11,
plus the following observation: If H is (as in Section 3) the ΓK -module that arises as the
abelianization of ΔX , then

Ker{H1(K,H) → H1(K,H ⊗ B+
DR)}

(i.e., by Lemma 3.8.1 of [BK], “H1
g ” in the notation of [BK]) is equal to

Ker{H1(K,H) → H1(K,H ⊗ K̂) = H1(K,ZX [0])}

(where the last equality follows from Proposition 2.4 and Lemma 2.2 (ii) (for n = 1, j = 1)).
Indeed, this equality of kernels follows by using the natural filtration on B+

DR (whose

subquotients are equal to K̂(i), i ≥ 0), together with the fact that H1(K,H ⊗ K̂(i)) = 0
for i > 0 (by Proposition 2.4, Lemma 2.2 (ii) (for n = 1, j > 0)). ©
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Now, we return to considering the section α : ΓK → ΠXK
. Let β : ΓK → ΠXK

be any
section that arises from some geometric point x ∈ XK(K). We would like to compare α
and β, and, in particular, show that, under the assumption (∗)spl, α and β are, in some
sense (to be specified precisely below), relatively close. Let ζ : ΓK → ΔX be the continuous
function (not necessarily a group homomorphism) such that

α(γ) = ζ(γ) · β(γ) ∈ ΠXK

for all γ ∈ ΓK .

Now let φ ∈ ZX(K̂). If γ ∈ ΓK , then let us write γα(φ) ∈ ZX(K̂) (respectively,
γβ(φ) ∈ ZX(K̂)) for the result of letting γ act on φ by means of the action defined by α
(respectively, β). Note that it follows from the construction of Section 3 that we have a

natural morphism ΔX → ZX(K̂). For ε ∈ ΔX , let us denote by εZ ∈ ZX(K̂) the image of

ε in ZX(K̂). Then we have the following:

Lemma 4.2. We have: γα(φ) = ζ(γ)Z · γβ(φ) · ζ(γ)−1
Z .

Proof. Indeed, this follows immediately from the fact that the respective actions of ΓK

on ZX(K̂) are induced by conjugation by α(γ) and β(γ) inside ΠXK
. ©

Let α′ : ΓK → ΠXK
be any section of ΠXK

→ ΓK , and let α′
Z : ΓK → ΠZ

J
(1)
X

be the

section obtained by composing α′ with ΠXK
→ ΠZ

J
(1)
X

. Then we make the following

Definition 4.3. We shall call α′ J -geometric if α′
Z coincides with θgeom (up to compo-

sition with an inner automorphism of ΠZ

J
(1)
X

arising from ZX [0] ⊆ ΠZ

J
(1)
X

).

The following result is the main technical observation that made it possible to substantially
strengthen the result of [Mzk2].

Proposition 4.4. Let α : ΓK → ΠXK
be a continuous group homomorphism that defines

a section of ΠXK
→ ΓK . Then α satisfies (∗)spl if and only if α is J -geometric.

Proof. Let φ ∈ ZX(K̂) be β-invariant, i.e., invariant under the action of ΓK on ZX(K̂)
defined by β. We would like to calculate the action of ΓK on φ that is induced by α. Thus,
for γ ∈ ΓK , we have, by Lemma 4.2:

γα(φ) = ζ(γ)Z · γβ(φ) · ζ(γ)−1
Z

= ζ(γ)Z · φ · ζ(γ)−1
Z
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Thus, γα(φ) · φ−1 = [ζ(γ)Z , φ] (where the brackets denote the “commutator”). Note that

[ζ(γ)Z , φ] ∈ ZX [1](K̂) = ZX [1] = ∧2 ZX [0] = (∧2 H0) ⊗K K̂

Now it remains to reinterpret the calculation just performed in terms of cohomology classes.

Recall the class

ηα ∈ H∨
0 ⊗K ∧2H0 = HomK(H0,∧2H0)

discussed in Section 3. Let φ[0] be the image of φ ∈ ZX(K̂) in ZX [0](K̂) = ZX [0]. Since
φ is β-invariant, it follows that φ[0] is a ΓK -invariant element of ZX [0], hence belongs to

H0 ⊆ H0⊗K K̂ = ZX [0]. Let δα
def= αZ−θgeom ∈ H1(K,ZX [0]) = H0. Then it is immediate

from the definitions that the calculation of the preceding paragraph, interpreted in terms
of cohomology classes, becomes:

ηα(φ[0]) = δα ∧ (φ[0])

(Note that since θgeom may be computed – cf. the discussion preceding Lemma 4.1 – using
the geometric section β, it follows that δα is precisely the cohomology class defined by the
image of the cocycle ζ(−)Z : ΓK → ZX(K̂) in ZX [0](K̂) = ZX [0].) Next observe that this

equation holds for all β-invariant φ, and that every element of H0 ⊆ H0 ⊗K K̂ = ZX [0] =

ZX [0](K̂) lifts to a β-invariant φ ∈ ZX(K̂). (Indeed, this follows from Proposition 3.5
since β arises from a point of XK(K).) Thus, it follows that ηα : H0 → H0 ∧H0 is simply
the map “δα∧.” In particular, ηα = 0 if and only if δα = 0. This completes the proof of
the Proposition. ©

Remark. So far here we have been dealing with the truncated weight zero quotient ΔX →
ZX , but it would be interesting also to see what happens in the case of the full nontruncated
weight zero quotient ΔX → Z∞

X (as in the Remark at the end of Section 3). For instance,
if the action of α on Z∞

X is such that Z∞
X has “enough invariants” (i.e., there exists a pro-

algebraic group G over K such that G⊗K K̂ is ΓK -equivariantly isomorphic to Z∞
X ), does

it follow that α itself automatically comes from a geometric point x ∈ XK(K)? Although
such questions are beyond the scope of this paper, it is the opinion of the author that
such questions deserve further study. Note that this sort of issue is closely related to the
so-called Section Conjecture – cf. the Remark following Theorem 19.1 for more details on
this conjecture.

32



Section 5: The J-Geometricity of K-Valued Points

Let K be a p-adic field with perfect residue field. Let XK and YK be proper hyperbolic
curves over K. Let UK be the K-scheme obtained by localizing XK at its generic point.
Thus, the underlying topological space of UK consists of one point, and the ring of functions
on UK is the function field KX of XK . Note in particular that we can consider ΠUK

, ΠYK
.

In particular, ΠUK
is a certain quotient of the absolute Galois group of KX . Let us assume

that we are given a continuous open homomorphism

θ : ΠUK
→ ΠYK

over ΓK . In this Section, we would like to begin the proof of the main theorem of this
paper by showing that any such θ necessarily “maps geometric sections to J -geometric
sections.” (Naturally, we will explain below precisely what is meant by the expression in
quotes.)

First observe that if x ∈ XK(K) is any K-valued point, then we can form the com-
pletion (KX )x of the field KX with respect to the valuation defined by x. Moreover, we
have a natural morphism Π(KX )x

→ ΠUK
(well-defined up to composition with conjugation

by an element of ΔU ) whose image is “the” (more rigorously: any of the various conju-
gate) decomposition group associated to x. Moreover, as is well-known (see, e.g., [Ser2]),
(KX )x is (noncanonically) isomorphic to K((t)) (where t is an indeterminate), so Δ(KX)x

may be identified with Zp(1). In particular, by forming, relative to some isomorphism
(KX )x

∼= K((t)), the field extension of (KX )x corresponding to adjoining a compatible
system of p-power roots of t to K((t)), one sees immediately that Π(KX)x

→ ΓK admits
many sections.

Definition 5.1. We shall refer to as geometric any section ΓK → ΠUK
of ΠUK

→ ΓK

obtained by composing a section of Π(KX)x
→ ΓK with (any one of the conjugate natural

homomorphisms) Π(KX)x
→ ΠUK

.

Note, in particular, that Π(KX )x
→ ΠXK

factors through ΓK , so in particular, the com-
posite αX : ΓK → ΠXK

with ΠUK
→ ΠXK

of any geometric section αU : ΓK → ΠUK
is

induced by some point x : Spec(K) → XK .

Let αU : ΓK → ΠUK
be a geometric section. By composing αU with θ, we obtain a

section αY : ΓK → ΠYK
. In this Section, we would like to prove that αY is necessarily

J -geometric in the sense of Definition 4.3. To do this, let us first observe that we have a
diagram of continuous morphisms

ΔU −→ ZX(K̂)⏐⏐�θ|Δ
U

ΔY −→ ZY (K̂)
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which are compatible with the ΓK -actions defined by αU and αY on the all the groups
involved. (Here, the upper horizontal morphism is obtained by composing ΔU → ΔX with

ΔX → ZX(K̂).) Then we have the following

Lemma 5.2. There exists a (natural) surjective ΓK -homomorphism ZX(K̂) → ZY (K̂)
that makes the above diagram commute.

Proof. Observe that the kernel of ΔU → ΔX is generated by inertia groups (i.e., images of
the various Δ(KX)x

→ ΔU ), and the action of ΓK on an inertia group is via the cyclotomic
character, i.e., (in the language of Hodge-Tate Galois representations) of weight one. It

thus follows (from Lemma 2.2 (ii), for n = 0, j = −1) that the morphism ΔU → ZY (K̂)
(obtained from the diagram above) factors through ΔX . Hence, we obtain a morphism

ΔX → ZY (K̂). But now, it follows immediately (by the universal property of the truncated

Malčev completion, plus “weight arguments”) from the construction of ZX(K̂) from ΔX

that this morphism ΔX → ZY (K̂) factors naturally through ZX(K̂). This shows the
existence of a morphism as claimed in the statement of the Lemma. The fact that this
morphism is surjective follows from the fact that θ is open (which implies that the induced
morphism Δab

U → Δab
Y on abelianizations is open, hence surjective after tensoring with

Qp). ©

Lemma 5.3. The action of ΓK on ZY (K̂) defined by αY satisfies the condition (∗)spl

discussed in Section 4.

Proof. Indeed, that the action of ΓK on ZX(K̂) defined by αX satisfies (∗)spl follows
from Proposition 3.5. Thus, Lemma 5.3 follows from the surjectivity of the morphism of
Lemma 5.2. ©

Proposition 5.4. Let θ : ΠUK
→ ΠYK

be a continuous open homomorphism over ΓK ,
αU : ΓK → ΠUK

a geometric (Definition 5.1) section, and αY : ΓK → ΠYK
the composite

of αU with θ. Then αY is J -geometric (Definition 4.3).

Proof. This follows by combining Lemma 5.3 with Proposition 4.4. ©

Section 6: F-Geometricity and FI-Geometricity

Let K be a finite extension of Qp. Let S
def= Spec(R), where R is an OK -algebra

noncanonically isomorphic to OK [[t]] (and t is an indeterminate). Let ηS be the generic
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point of S (regarded as a scheme). Let ΓS
def= π1(SK) (where SK

def= S ⊗OK K, and the
“π1” is with respect to some base-point which we omit to simplify notation); let ΓηS be
the absolute Galois group of K(ηS) (the function field of S). Thus, ΓS can be naturally
regarded as a quotient of ΓηS . If H ⊆ ΓηS is an open subgroup corresponding to some
finite étale covering ηS′ → ηS , then we shall write ΓηS′ for H; S ′ = Spec(R′) for the
normalization of S in ηS′ ; and ΓS′ for the quotient of ΓηS′ corresponding to étale coverings

of S ′
K

def= S ′ ⊗OK K. Thus, S ′ is finite and flat (since S is regular of dimension 2, and R′

is normal, hence an R-module of depth 2) over S.

Remark. For the reader familiar with [Mzk2], we remark that this Section and the next
are, in some sense, a generalization of Section 5 of [Mzk2], and play a comparable role in
the present paper to that of Section 5 in [Mzk2]. For the reader not familiar with [Mzk2],
we remark that, nevertheless, we do not assume any knowledge of [Mzk2] in the following
discussion.

We begin by considering a continuous Zp[ΓηS ]-module V , where V , as a Zp-module,
is a finite and free.

Definition 6.1. We shall refer to V as potentially geometric if there exists some open
subgroup ΓηS′ ⊆ ΓηS such that the ΓηS′ -module obtained by restricting the ΓηS -action
on V to ΓηS′ arises as the Tate module of some p-divisible group G → Spec(OK′ ), where
K ′ ⊆ R′

K is a finite extension of K.

Note, in particular, that the ΓηS′ -action on V then factors through the quotient ΓηS′ → ΓS′ .
Moreover, if V is potentially geometric, then we may make the following construction: Let
us write G for the (not necessarily connected) formal group (over OK′) associated to the
p-divisible group G → Spec(OK′ ) of Definition 6.1. Thus, we have a natural isomorphism
(of finite flat group schemes over OK′ ) between the kernels

G[pn] ∼= G[pn]

of multiplication by pn (for all n ≥ 0) on G and G. In particular, if we consider the exact
sequence (generalizing the Kummer sequence, which corresponds to the case where G is
the formal group associated to the multiplicative group Gm)

0 −→ G[pn] −→ G pn

−→ G −→ 0

as an exact sequence of sheaves on the finite flat site of S ′, then we get a natural map

G(S′) → H1
flat(S

′,G[pn])
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(where the cohomology group is relative to the finite flat topology on S ′) for n ≥ 0. Since
étale morphisms are quasi-finite and flat, we also have a natural morphism

H1
flat(S

′,G[pn]) → H1
et(S

′,G[pn]K′ )

Thus, if we compose the above two morphisms, take the inverse limit with respect to n,
and use the fact that H1

et(S
′,−) ∼= H1(ΓS′ ,−), we get a natural morphism

κG : G(S′) → H1(ΓS′ , V )

which one may regard as a generalization of the Kummer map (from units of a field to a
certain Galois cohomology group of the field).

Remark. Note that when the formal group G arises from an abelian variety over OK′ ,
then the cohomology class that one obtains by applying κG to a point of G coincides with
the cohomology class that one obtains (cf. the discussion of Section 4) by looking at the
morphism induced on arithmetic fundamental groups by the corresponding point of the
abelian variety. Indeed, this is a matter of general nonsense – cf., e.g., [Naka2], Claim
(2.2); [NTs], Lemma (4.14).

Definition 6.2. Suppose that V is potentially geometric, and that ΓηS′ ⊆ ΓηS is as in
Definition 6.1. Then we define

H1
f (S′

K , V ) ⊆ H1(S′
K , V ) def= H1(ΓS′ , V )

to be the subset of elements ζ ∈ H1(S′
K , V ) such that some nonzero multiple of ζ lies in

the image of G(S′) under the morphism κG.

Now let XηS → ηS be a proper hyperbolic curve over ηS such that for some open
ΓηS′ ⊆ ΓηS , and some proper, hyperbolic curve Z → Spec(K ′) (where K ′ ⊆ R′

K is a finite
extension of K, and we assume that Z(K′) �= ∅), we have an isomorphism of ηS′ -curves

XηS ×ηS ηS′ ∼= Z ×K′ ηS′

Then we make the following technical

Definition 6.3. We shall call XηS irreducibly splittable if for some open ΓηS′ ⊆ ΓηS ,
and some proper, hyperbolic curve Z → Spec(K ′) (where K ′ ⊆ R′

K is a finite extension of
K, and we assume that Z(K′) �= ∅), we have an isomorphism of ηS′ -curves

XηS ×ηS ηS′ ∼= Z ×K′ ηS′
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and, moreover, the (induced) map S ′ → Spec(OK′ ) satisfies: (i) S ′ → Spec(OK′ ) admits
a section; (ii) the morphism S ′ → Spec(OK′ ) has geometrically irreducible fibers.

As usual, we have an exact sequence

1 → ΔXηS
= HX → ΠXηS

→ ΓηS → 1

where we write HX for the abelianization of ΔXηS
. Thus, HX has a natural structure of

continuous ΓηS -module. Moreover, as a Zp-module, it is free of rank 2gX (where gX is the
genus of XηS). Let us write

HX → HI
X

for the quotient of HX by all elements of HX on which some open subgroup of ΓηS acts via
the cyclotomic character. (The “I” comes from the fact that HI

X is obtained by forming
the quotient of HX by all of its “inertia-like” subgroups.)

Next, let

HF
X ⊆ HX

be the largest ΓηS -submodule of HX which has no nonzero torsion-free quotients HF
X → Q

such that some open subgroup of ΓηS acts trivially on Q. (Here, the “F” stands for
“finite.” This is because HF

X corresponds to the portion of HX that (potentially) extends
to a p-divisible group – i.e., a direct limit of finite flat group schemes – over OK′ .) Then
it is well-known (see, e.g., [FC], Chapter III) that HF

X and HI
X are Cartier-dual to one

another, and, moreover, that HF
X is potentially geometric (Definition 6.1). (Indeed, in [FC],

Chapter III, one finds a discussion of how one may obtain (in a natural fashion) abelian
varieties over K ′ as “quotients” (by some group of periods) of semi-abelian varieties that
(potentially) extend over OK′ in such a way that the dimensions of their toral parts are the
same over the generic and special points of OK′ . If we apply this theory to the Jacobian JZ

of the curve Z, then HF
X is the Tate module of this semi-abelian variety (that potentially

extends over OK′).) Since HI
X is the Cartier dual of HF

X , it thus follows that HI
X is also

potentially geometric.

Let

HFI
X ⊆ HI

X

be the image of HF
X in HI

X . Thus, we have a surjection HF
X → HFI

X , and HFI
X is also

potentially geometric. Finally, let

HM
X

def= Ker(HX → HI
X) ⊆ HF

X
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(Here, the “M” stands for “multiplicative.” This is because HM
X arises from the portion

of HF
X that corresponds to twisted copies of (the Tate module of) the multiplicative group

Gm.) HM
X is also potentially geometric.

Next, we would like to consider a section α : ΓηS → ΠXηS
of ΠXηS

→ ΓηS . Now recall
the isomorphism

XηS ×ηS ηS′ ∼= Z ×K′ ηS′

By composing α|Γη
S′ : ΓηS′ → ΠXηS

with the projection ΠXηS
→ ΠZ induced by this

isomorphism, we thus obtain a morphism ΓηS′ → ΠZ , whose composite with ΠZ → ΓK′ is
the natural morphism ΓηS′ → ΓK′ . Now let us make the following assumption on α:

(∗)S′
This morphism ΓηS′ → ΠZ factors through ΓS′ .

Let us denote the resulting morphism by β : ΓS′ → ΠZ .

Now let γ : ΓS′ → ΠZ be any morphism obtained by composing the natural morphism
ΓS′ → ΓK′ with some section ΓK′ → ΠZ arising from a geometric point ∈ Z(K′). Let
βJ , γJ : ΓS′ → Π

J
(1)
Z

be the morphisms obtained by composing β and γ, respectively, with

ΠZ → Π
J

(1)
Z

. Then the difference βJ − γJ defines an element

δZ ∈ H1(S′
K ,HZ )

hence an element

δX ∈ H1(S′
K ,HX )

whose image in H1(S′
K ,HI

X ) we denote by δI
X .

Definition 6.4. Suppose that α : ΓηS → ΠXηS
is a section that satisfies the assump-

tion (∗)S′
above. Then we shall call α F -geometric (respectively, FI-geometric) if some

nonzero multiple of δX (respectively, δI
X) lies in the image of H1

f (S′
K ,HF

X) (respectively,
H1

f (S′
K ,HFI

X )) in H1(S′
K ,HX) (respectively, H1(S′

K ,HI
X)).

Note that if α is F -geometric, it is also automatically FI-geometric. Also, let us observe
that the definition of “F -geometric” or “FI-geometric” is independent of the choice of γ
(cf. Lemma 4.1 and the discussion preceding it). Indeed, to see this, it suffices to verify
that some nonzero multiple of the class ∈ H1(S′

K ,HX) arising from the difference of two
γ’s lies in H1

f (S′
K ,HF

X). But the difference of two γ’s (both of which arise from a geometric
point ∈ Z(K′)) defines a point ∈ JZ(K′) (where JZ is the Jacobian of Z). Moreover, since
the residue field of K ′ is finite, it follows that some nonzero multiple of this point in JZ(K′)
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extends to an OK′ -valued point of the Néron model JZ of JZ over OK′ which maps the
special point of Spec(OK′ ) to the identity of JZ . On the other hand, since GF – i.e., the
“G” (cf. the discussion following Definition 6.1) for the potentially geometric module HF

X

– is simply the formal group defined by JZ , it thus follows that such a point ∈ JZ(OK′ )
defines a point in GF (OK′ ) ⊆ GF (S′). Thus, by Definition 6.2, we see that the difference
between the two γ’s lies in H1

f (S′
K ,HF

X ), as desired.

Proposition 6.5. Suppose that XS is irreducibly splittable (cf. Definition 6.3). Then
any FI-geometric α is also F -geometric.

Proof. First, let us state that throughout the proof, “S ′” will be a fixed S ′ satisfying the
conditions of Definition 6.3. Next, let us observe that the cokernel of the natural morphism

H1
f (S′

K ,HF
X) → H1

f (S′
K ,HFI

X )

is torsion. Indeed, this follows from Definition 6.2 and the fact that if GF and GFI are
the respective formal groups as in Definition 6.2, then the natural morphism GF → GFI is
formally smooth (hence surjective on S ′-valued points).

Thus, if we start with a class ζ ∈ H1(S′
K ,HX ) whose image ζI ∈ H1(S′

K ,HI
X) lies

in the image of H1
f (S′

K ,HFI
X ), then (after replacing ζ by a nonzero multiple of ζ), we

may assume that there exists a ζ ′ ∈ H1(S′
K ,HX) such that: (a.) ζ ′ lies in the image

of H1
f (S′

K ,HF
X ); (b.) ζ ′ − ζ maps to 0 in H1(S′

K ,HI
X). Moreover, by the definition of

HM
X

def= Ker(HX → HI
X), it follows that (b.) may be rewritten in the form: “ζ ′ − ζ lies in

the image of H1(S′
K ,HM

X ) in H1(S′
K ,HX).”

With these observations in hand, it follows that it suffices to prove that

(∗)im The image of H1(S′
K ,HM

X ) in H1(S′
K ,HX) is contained up to

torsion (i.e., up to multiplication by a nonzero integer) in the image of
H1

f (S′
K ,HF

X ) in H1(S′
K ,HX).

Note first that by replacing K ′ by a finite extension of K ′ (and thus also enlarging S ′ –
note that this does not affect the validity of the conditions (i) and (ii) of Definition 6.3),
we may assume that the action of ΓS′ on HM

X (−1) (where the “(−1)” is a Tate twist) is
trivial. (Thus, in particular, as a ΓS′ -module, HM

X is isomorphic to a direct sum of a finite
number of copies of Zp(1).) On the other hand, by Lemma 6.6 below (and the Kummer
exact sequence), it follows that H1(S′

K ,Zp(1)) = {(R′
K)×}∧ (where the “∧” denotes p-adic

completion) is generated up to torsion by H1
f (S′

K ,Zp(1)) = {(R′)×}∧ and (the image of)
H1(K′,Zp(1)) = {(K′)×}∧. Thus, it follows that H1(S′

K ,HM
X ) is generated up to torsion

by H1
f (S′

K ,HM
X ) and (the image of) H1(K′,HM

Z ).

Next, observe that the image of H1(K′,HM
Z ) in H1(K′,HZ ) is contained up to torsion

in the image of H1
f (K′,HF

Z ) in H1(K′,HZ ). Indeed, this follows from the theory of [BK],
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§3 (cf. the proof of Lemma 4.1). Namely, since HM
Z is “of weight one,” the image of

HM
Z ⊆ HZ in the weight zero component of HZ ⊗ K̂ is zero, so any cohomology classes

in H1(K′,HM
Z ) go to zero in H1(K′,−) of the weight zero component of HZ ⊗Zp K̂. But

this means (as we saw in Lemma 4.1), that such cohomology classes arise geometrically,
as desired. (Note that, by the above argument involving Néron models (in the discussion
immediately preceding Proposition 6.5), it follows that (relative to pulling back cohomology
classes over K ′ to cohomology classes over S ′

K), the notation “H1
f (S′

K ,−)” of Definition
6.2 is consistent with the notation “H1

f (K′,−)” of [BK], §3.)

Putting everything together, we thus see that (∗)im has been verified. This completes
the proof of the Proposition. ©

Lemma 6.6. For S ′ satisfying condition (ii) of Definition 6.3, we have that (R′
K)× is

generated up to torsion by (R′)× and (K′)×.

Proof. Indeed, condition (ii) of Definition 6.3 implies that if π is a uniformizing element
of OK′ ⊆ R′, then the ideal π ·R′ is contained in a unique prime ideal of height one of R′.
Let us denote this prime ideal by ℘. Let x ∈ R′ be an element which becomes a unit in
R′

K . Then x is invertible at every height one prime of R′ except (possibly) ℘. Moreover,
by replacing x by some xn (where n is independent of x), we may assume that x has the
same valuation as πm (for some nonnegative integer m) in the discrete valuation ring R′

℘.
It thus follows that π−m · x is a unit at every height one prime of R′. Since R′ is normal,
this implies that π−m · x ∈ (R′)×. This completes the proof of the Lemma. ©

Section 7: From F-Geometricity to Line Bundles

In this Section, we use some elementary algebraic geometry (Lemmas 7.1 and 7.2)
to translate the rather abstract and technical condition of “F -geometricity” into a more
tractable existence criterion (Proposition 7.4) for line bundles. Let S be the spectrum of a
field of characteristic zero. Let X → S be a proper hyperbolic curve of genus g over S. Let
N be a fixed positive integer. We would like to consider the natural morphism X → J

(N )
X

(given by mapping a point x of X to the line bundle OX(N · x)). Taking the product of
this morphism with X (on the right), we obtain a morphism ξ : X ×S X → J

(N )
X ×S X.

Lemma 7.1. There exists a line bundle on J
(N )
X ×S X whose pull-back via ξ is a nonzero

tensor power of the line bundle D def= OX×SX(Δ) (where Δ ⊆ X ×S X) on X ×S X.

Proof. First, let us take the product of ξ with one more copy of X on the right, to
obtain a morphism ξ′ : X ×S X ×S X → J

(N )
X ×S X ×S X. For i, j = 1, 2, 3 such that
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i �= j, let Δij ⊆ X ×S X ×S X denote the diagonal given by setting equal the ith and
jth components of the triple product. Let Dij denote the line bundle OX×SX×SX(Δij).
In the triple product of X, we consider the second X to be the “true curve X”; the first
X to be a “parameter space for the family of line bundles D12” (regarded as line bundles
on the “true curve” given by the second factor); and the third X to be a “base extension
X → S.” Over this extended base, the “true curve” acquires a “section” Δ23. Thus, it
follows from the general theory of the Picard functor of a family of curves for which a
section exists that there exists a line bundle L′ on J

(N )
X ×S X ×S X whose pull-back via ξ′

is equal to E ′ def= (D12 ⊗D−1
13 )⊗N .

Now let us consider the “determinant of the higher direct image sheaves” (cf. [MB],
§1, for an exposition of this notion) of L′ and E ′ for the morphisms X×SX×S X → X×S X

and J
(N )
X ×S X ×S X → J

(N )
X ×S X given by forgetting the third factor. We denote the

respective “determinants of the higher direct image sheaves” of L′ and E ′ by L and E. Thus,
(by the functoriality of forming the “determinant of the higher direct image sheaves”) L
is a line bundle on J

(N )
X ×S X such that ξ∗(L) = E. Moreover, I claim that we can write

E = D⊗N ⊗ F

where F is a line bundle on X ×S X obtained by pulling back some ω⊗m
X/S (for m ∈ Z)

from the first factor of X ×S X, and tensoring with the pull-back to X ×S X of some
line bundle M on S. Indeed, the “D⊗N -term” arises from the fact that D12 is the pull-
back of D via the projection X ×S X ×S X → X ×S X under consideration. Then
the difference between the “determinants of the higher direct image sheaves” of the line
bundles D−N

13 = OX×SX×SX(−N ·Δ13) and OX×S×SX may be computed using the natural
inclusion

D−N
13 = OX×SX×SX(−N · Δ13) ⊆ OX×S×SX

By using the fact that the “determinant of the higher direct image sheaves” is multiplicative
on exact sequences, we thus obtain that this difference is equal to some power of the pull-
back to X ×S X (via the projection to the first factor) of OX×SX(−Δ)|Δ=X = ωX/S . On
the other hand, the “determinant of the higher direct image sheaves” of the trivial line
bundle on X ×S X ×S X is clearly the pull-back (to X ×S X) of a line bundle M on S.
This gives us a line bundle F of the form discussed above, hence completes the proof of
the claim.

By replacing L with L ⊗OS M−1, we may assume that M is trivial. Moreover, by
Lemma 7.2 below, there exists a line bundle P on J

(N )
X whose pull-back to X (via the

natural morphism X → J
(N )
X ) is some nonzero tensor power of ωX/S . Thus, replacing L

by a tensor product of appropriate powers of L and (P|
J

(N)
X

×SX
) completes the proof of

the Lemma. ©
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Lemma 7.2. There exists a line bundle P on J
(N )
X whose pull-back to X is a nonzero

tensor power of ωX/S.

Proof. Let us first consider the case N = g − 1. In this case, we take P to be the line
bundle on J

(g−1)
X defined by the natural theta divisor on J

(g−1)
X (i.e., the image of the

natural morphism from the (g − 1)-fold product of X to J
(g−1)
X ). Then the fact that the

pull-back of P to X is equal to ω
⊗ 1

2 g(g−1)

X/S is an immediate consequence of [MB], Corollary
2.5: in the notation of loc. cit., we are interested here in the case where one takes n = 0;
S = X; and a : S → X to be the identity; then specializing the formula of loc. cit. to
the zero section of the Jacobian (note that the restriction of “U (a)

n ” in loc. cit. to the zero
section of the Jacobian is trivial) proves the assertion concerning the pull-back of P to X.

Next, let us consider the case where N is divisible by g − 1. Then the morphism
X → J

(N )
X factors through J

(g−1)
X → J

(N )
X . Moreover, it follows from the basic theory of

line bundles on abelian varieties (see, e.g., [AV], §23, the Corollary to Theorem 2 on p.
231) that a nonzero tensor power of the “P” considered in the previous paragraph descends
from J

(g−1)
X to J

(N )
X . This completes the proof in the case where N is divisible by g − 1.

Finally, we consider the case of arbitrary positive N . In this case, we have a natural
map J

(N )
X → J

(N (g−1))
X (multiplication by g − 1). But, by the preceding paragraph, we

already have a suitable “P” on J
(N (g−1))
X . Thus, by pulling this line bundle back to J

(N )
X ,

we obtain a suitable “P” on J
(N )
X . This completes the proof of the Lemma. ©

Next, we would like to consider a section α : ΓS
def= π1(S) → ΠX of ΠX → ΓS . By

composing α with π1(−) applied to X → J
(N )
X , we obtain a section αN

J : ΓS → Π
J

(N)
X

.

Lemma 7.3. Suppose that αN
J arises from a geometric section ∈ J

(N )
X (S). Then there

exists a line bundle on X of degree prime to p.

Proof. By taking the fibered product (over ΓS) of α with the identity on ΠX , we obtain a
morphism αX : ΠX → ΠX×SX . Since S is the spectrum of the field, the group cohomology
of ΠX×SX computes the p-adic étale cohomology of X ×S X (cf. Lemma 0.4). Thus,
we can form the arithmetic first Chern class of the line bundle D of Lemma 7.1 (cf.
Definition 0.3): c1(D) ∈ H2(ΠX×SX ,Zp(1)). Let ζ

def= α∗
X(c1(D)) ∈ H2(ΠX ,Zp(1)). On

the other hand, by composing αX with π1(−) of the morphism ξ, we obtain a morphism
αN

ξ : ΠX → Π
J

(N)
X

×SX
. Moreover, by assumption, αN

ξ arises from a geometric morphism

X → J
(N )
X ×S X. Thus, if L is a line bundle on J

(N )
X ×S X, we obtain that (αN

ξ )∗(c1(L)) ∈
H2(ΠX ,Zp(1)) can be written as c1(M), for some line bundle M on X. Now recall that
by Lemma 7.1, there exists a line bundle L on J

(N )
X ×S X such that ξ∗L is a nonzero tensor

power of D. Thus, putting everything together, it follows that some nonzero multiple of
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the abstract cohomology class ζ ∈ H2(ΠX ,Zp(1)) can be written in the form c1(M) for
some line bundle M on X, i.e., m · ζ = c1(M) (for some nonzero m ∈ Z). Next, let
us recall that since ζ was constructed from D, the image of ζ under the “degree map”
H2(ΠX ,Zp(1)) → H2(ΔX ,Zp(1)) ∼= Zp is equal to 1, so deg(M) = m. Thus, we can
argue as follows (cf. [Mzk2], Lemma 6.1): Write m = a · pb, where a is an integer prime to
p, and b is a nonnegative integer. Thus, c1(M) vanishes in H2(ΠX , (Z/pbZ)(1)). But, by
the Kummer exact sequence, this implies that there exists a line bundle P on X such that
P⊗pb ∼= M. In particular, deg(P) = p−b · deg(M) = a, so the existence of P completes
the proof of the Lemma. ©

Now let us consider the following situation: Let K be a finite extension of Qp. Let
XK → Spec(K) and YK → Spec(K) be proper hyperbolic curves over K. Let UK be the
generic point of XK . Moreover, let us assume that we have been given a continuous open
homomorphism over ΓK

θ : ΠUK
→ ΠYK

Now let S, ηS be as at the beginning of Section 6. Write XηS for XK ×K ηS (and similarly,
for UηS , YηS). Then by base-change (note that ΠUηS

= ΠUK
×ΓK ΓηS ; ΠYηS

= ΠYK
×ΓK

ΓηS), θ induces a continuous open homomorphism

θηS : ΠUηS
→ ΠYηS

Let Y ′
ηS

→ YηS be a finite étale covering induced by some open subgroup of ΠYηS
that

surjects onto ΓηS . Note that θηS allows us to define the pull-back of Y ′
ηS

→ YηS to
UηS . Let U ′

ηS
→ UηS be a connected component of this pull-back which is geometrically

connected over ηS. Note that U ′
ηS

→ UηS extends to a finite (possibly ramified) covering
X ′

ηS
→ XηS . Thus, X ′

ηS
is a proper hyperbolic curve over ηS. Let us suppose that Y ′

ηS

is irreducibly splittable (Definition 6.3). Then it follows immediately that X ′
ηS

is also
irreducibly splittable. (Indeed, the definition of “irreducibly splittable” only involves the
base (i.e., S, S ′, etc.), plus finite étale coverings of the curve, i.e., it may be phrased
entirely in terms of (the base plus) fundamental groups. Thus, the fact that X ′

ηS
and

Y ′
ηS

are related by θηS is enough to guarantee that “Y ′
ηS

irreducibly splittable =⇒ X ′
ηS

irreducibly splittable.”)

Next, we would like to consider a section

αU : ΓηS → ΠU ′
ηS

of ΠU ′
ηS

→ ΓηS . Composing αU with π1(−) of the natural morphism U ′
ηS

→ X ′
ηS

gives rise
to a section αX : ΓηS → ΠX ′

ηS

. Composing αU with the morphism θ′ηS
: ΠU ′

ηS

→ ΠY ′
ηS

induced by θηS gives a section αY : ΓηS → ΠY ′
ηS

.
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The following key result is the culmination of our efforts in Sections 1 through 7:

Proposition 7.4. Under the circumstances just described above, let us assume that αX

is FI-geometric (Definition 6.4). Then it follows that Y ′
ηS

admits a line bundle of degree
prime to p.

Proof. First observe that the morphism ΔU ′
ηS

→ ΔY ′
ηS

→ HI
Y ′

ηS

(where HI
Y ′

ηS

is as in the

discussion preceding Definition 6.4) factors through HI
X ′

ηS

. (Indeed, this follows by observ-

ing, as in the proof of Lemma 5.2, that the inertia groups of ΔU ′
ηS

map to zero in HI
Y ′

ηS

.)

Thus, we obtain a ΓηS -equivariant morphism HI
X ′

ηS

→ HI
Y ′

ηS

. In particular, it follows by
using Tate’s theorem (i.e., Theorem 4 of [Tate] – that morphisms between Tate modules
of p-divisible groups induce morphisms between the p-divisible groups, hence morphisms
between the respective formal groups) that H1

f (S′
K ,HFI

X ′
ηS

) maps to H1
f (S′

K ,HFI
Y ′

ηS

), for any
finite étale covering ηS′ → ηS of ηS as in Definition 6.2.

Next, I claim that αY is FI-geometric. Indeed, this follows from Proposition 5.4,
plus the observation of the preceding paragraph. In words: This claim amounts to the
claim (cf. Definition 6.4) that the “J -portion” of αY (i.e., the result of composing αY with
ΠY ′

ηS

→ Π
J

(1)
Y ′

, where J
(1)
Y ′ is the Picard scheme of line bundles of degree 1 on Y ′

ηS
) differs

from the “J -portion” of a constant (i.e., arising from a point defined over a finite extension
of K of the curve “Z” of the discussion of Section 6) geometric section of ΠY ′

ηS

by a class

in H1
f (S′

K ,HFI
Y ′

ηS

). On the other hand, since we are operating under the assumption that
αX is FI-geometric, we know that the J -portion of αX differs from the J -portion of a
constant geometric section of ΠX ′

ηS

by a class in H1
f (S′

K ,HFI
X ′

ηS

). Moreover, by Proposi-
tion 5.4, constant geometric sections of ΠU ′

ηS

map to constant J -geometric (which is as
good as “geometric” for us, since we are only interested in “J -portions” here) sections of
ΠY ′

ηS

. Thus, since (by the observation of the preceding paragraph) H1
f (S′

K ,HFI
X ′

ηS

) maps

to H1
f (S′

K ,HFI
Y ′

ηS

), we conclude that αY is FI-geometric, as desired. This completes the
proof of the claim. Now since Y ′

ηS
is also assumed to be irreducibly splittable, it follows

from Proposition 6.5 that αY is, in fact, F -geometric.

Now let us consider the morphism αN
J : ΓηS → Π

J
(N)
Y ′

(where J
(N )
Y ′ is the Picard

scheme of line bundles of degree N on Y ′
ηS

), for some N > 0, induced by composing αY

with ΠY ′
ηS

→ Π
J

(N)
Y ′

. Note that the F -geometricity of αY is, by definition, a property

concerning α1
J . By the definition of F -geometricity (Definition 6.4), it follows immediately

that if N is large enough, then αN
J arises from a geometric section J

(N )
Y ′ (SK). Indeed, the

large N is to take care of the phrase “nonzero multiple of” in Definitions 6.2 and 6.4, plus
the fact that a priori the geometric point whose existence is guaranteed by Definition 6.2
is only defined over ηS′ , so we may need to apply the norm map (for ηS′ → ηS) to get a
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geometric point over ηS, which may cause N to increase again. Now, applying Lemma 7.3
completes the proof of the Proposition. ©

Remark. Note that Sections 6 and 7 are made much more technically difficult by the
fact that we start with a morphism ΠUK

→ ΠYK
rather than a morphism ΠXK

→ ΠYK
.

Indeed, the whole business of distinguishing “F -geometric” from “FI-geometric” arises
because one does not have a proper theory of “p-divisible groups of infinite rank,” which
is the sort of object that one must deal with if one tries to work directly with HU (the
abelianization of ΔU ) without passing to HI

U . Similar technical problems (arising from the
fact that HU is of infinite rank) also are the reason behind the lengthiness of Sections 11
and 12.

Section 8: From Line Bundles to Tame Points

In this Section, which is something of an appendix to that portion of the paper con-
stituted by Sections 1 through 7, we again apply some elementary algebraic geometry, this
time to pass from line bundles to rational points of the curve defined over tamely ramified
extensions of the given field. Thus, let M be a p-adic field whose residue field kM is iso-
morphic to k((t)), where k is a finite field, and t is an indeterminate. Let XM be a proper
hyperbolic curve over M . Then we have the following result:

Proposition 8.1. Suppose that XM admits a line bundle L of degree prime to p. Then
there exists a tamely ramified extension M ′ of M such that XM (M ′) is nonempty.

Proof. By replacing L by an appropriate (prime to p) tensor power of the original L, we
may assume that L is very ample. Thus, by Bertini’s Theorem, it follows that there exists
a divisor D ⊆ XM such that L ∼= OXM (D), and D is étale over M . Let us write

D =
r⋃

i=1

Di

where each Di = Spec(Mi). Thus, Mi is a finite field extension of M . Since deg(D) is
prime to p, it follows that at least one of the Mi (say, M1) is such that [M1 : M ] is prime
to p. Let Mc be the Galois closure of M1 over M . Then it follows from the elementary
theory of p-adic fields (in particular, the fact that the wild inertia subgroup of ΓM is a
normal pro-p subgroup of ΓM , hence contained in any Sylow-pro-p subgroup of ΓM – see,
e.g., [Ser2], Chapter IV, §2) that Mc is tamely ramified over M . Thus, in particular, M1

is tamely ramified over M , and XM (M1) is nonempty. This completes the proof of the
Proposition. ©
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Next, before continuing, we would like to discuss an auxiliary Lemma that will be
useful when we apply Proposition 8.1. Let us suppose that there exists a p-adic field
L ⊆ M satisfying the following properties:

(1) We have an inclusion OL ⊆ OM , relative to which mL · OM = mM .

(2) If kL is the residue field of L, then k ⊆ kL, and kL is a function field in
one variable over k.

(3) The inclusion kL ⊆ kM is obtained by completing the function field kL

at one of its k-valued points.

Let us suppose, moreover, that there exists a curve XL → Spec(L) such that XM =
XL ⊗L M . Then we have the following result:

Lemma 8.2. Suppose that there exists a tamely ramified extension M ′ of M of ramifica-
tion index e such that XM (M ′) is nonempty. Then there exists a tamely ramified extension
L′ of L of ramification index e such that XL(L′) is nonempty.

Proof. Since tamely ramified extensions of M descend to tamely ramified extensions
of L, it is easy to see that without loss of generality, we may assume that e = 1, and
M ′ = M . Thus, we must show that XL admits a rational point over some unramified
extension of L. Note that since OL is a discrete valuation ring, it is well-known that XL

admits a regular model XL → Spec(OL). Let XM
def= XL ⊗OL OM . Let us consider the

morphism φ : Spec(OM ) → Spec(OL). Since finitely generated algebras over a finite field
are excellent, it follows that kM is separable over kL (i.e., the morphism Spec(kM ) →
Spec(kL) is geometrically regular). In particular, it follows that φ is geometrically regular.
Since the natural morphism XM → XL is obtained from φ by base-change, it thus follows
that it, too, is geometrically regular. Thus, the regularity of XL implies that of XM . Now
the fact that XM (M) is nonempty (by assumption) implies that there exist points in the
special fiber of XM at which XM is smooth over OM . But this implies (by descent) that
there exist points in the special fiber of XL at which XL is smooth over OL, which, in turn,
implies that for some unramified extension L′ of L, XL(L′) is nonempty, as desired. ©

Section 9: Convergence via p-adic Hodge Theory

Whereas Sections 1 through 8 formed a unit devoted essentially to showing Propo-
sition 7.4, Sections 9 and 10 form a new unit, devoted to showing, by means of p-adic
Hodge theory, that certain types of sequences of points converge p-adically to a uniquely
determined point defined over a relatively small field. Thus, in particular, we shall start
with fresh hypotheses, as follows:
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Let K be a p-adic local field, with residue field k. Let L be a p-adic field containing
K whose residue field kL is a function field in one variable over k. Let us also assume that
k is algebraically closed in kL, and that mK · OL = mL. Let us denote by

ΓL/K
def= Ker(ΓL → ΓK) = ΓL·K

the “geometric” fundamental group of L. Let HΩ
L be the quotient of H1(ΓL/K , ÔL(1)) by its

torsion submodule. Let XK → Spec(K) be a proper hyperbolic curve. Let XL
def= XK⊗KL.

Thus, as usual, we have a group extension (obtained by pulling back 1 → ΔX → ΠXK
→

ΓK → 1 via ΓL → ΓK)

1 → ΔX → ΠXL
→ ΓL → 1

Let us assume that we are given a continuous, group homomorphism

α : ΓL → ΠXK

whose composite with the projection to ΓK is the natural morphism ΓL → ΓK . As usual, α
defines a section αs : ΓL → ΠXL

of ΠXL
→ ΓL. Let us also assume that α is nondegenerate

in the sense that it satisfies the following group-theoretic condition:

(∗)non The natural morphism H1(ΔX ,Zp(1)) → HΩ
L induced by α is

nonzero.

Let Ltm be a maximal tamely ramified extension of L. Let M
def= (Ltm)∧ be its p-adic

completion. Since Ltm · K is unramified over L · K, and Galois cohomology “ignores
unramified extensions,” we have that

H1(ΓL/K , ÔL(1)) = H1(ΓL·K , ÔL(1)) = H1(ΓLtm·K , ÔL(1))

In particular, since HΩ
L is a quotient of this cohomology module, it follows from assumption

(∗)non that α|Γ
Ltm·K

: ΓLtm·K → ΔX is nontrivial.

For n ≥ 0, let In
L

def= Im(αs) · (ΔX)<n> ⊆ ΠXL
(cf. the discussion preceding Definition

0.2 for an explanation of the notation “< n >”). Let ψn : Xn
L → XL be the corresponding

finite étale covering. Let X∞
L → XL be the inverse limit of the Xn

L . In this Section, we
would like to prove the following assertion:

(∗)con Suppose that we have a sequence of points {x̃n}, where x̃n ∈
Xn

L(Ltm). Let xn
def= ψn(x̃n) ∈ XL(Ltm). Then there exists a subse-

quence of {xn} which converges p-adically in XL(M).
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(Note that by choosing any proper model over OL of XL, we obtain a p-adic topology on
XL(Ltm) which is easily seen to be independent of the model chosen.)

By replacing K be a finite extension of K, we may make the following simplifying
assumptions:

(1) XK has stable reduction. We denote by X → Spec(OK) the unique
stable extension of XK over OK . We denote by J → Spec(OK) the
unique semi-abelian scheme over OK whose generic fiber is the Jacobian
of XK .

(2) XK(K) is nonempty.

Note that replacing K by a finite extension of K does not affect the validity of the con-
vergence assertion (∗)con.

Let us fix an n ≥ 1. Let us consider the morphism xn : Spec(Ltm) → XK . This
morphism induces a morphism

βn : ΓLtm → ΠXK
→ ΠXK

/(ΔX)<n>

which is well-defined up to conjugation by an element of ΔX . Then it follows immediately
from the definitions (and the fact that xn arose from an Ltm-rational point of Xn

L) that:

This morphism βn is equal to the composite of α|ΓLtm : ΓLtm → ΠXK

with the natural projection ΠXK
→ ΠXK

/(ΔX)<n>.

Thus, in particular, βn is independent of the choice of x̃n. Moreover, by (∗)non, it follows
that by taking n to be sufficiently large, we may assume that the restriction of βn to
ΓLtm·K (⊆ ΓLtm) is nontrivial. This implies, in particular, that xn does not factor through
any finite extension of K.

Note that by properness, xn extends to a morphism ξn : Spec(OLtm) → X . Let Ktm

be the algebraic closure of K in Ltm. Thus, Ktm is a maximal tamely ramified extension
of K. Let us denote by ΩOLtm/OKtm the OLtm-module of p-adically continuous differentials
of OLtm over OKtm . Thus, ΩOLtm/OKtm is a free OLtm-module of rank one.

Lemma 9.1. By differentiating ξn, we obtain a natural morphism dξn : ξ∗nωX/OK
→

ΩOLtm/OKtm .

Proof. Suppose that xn is defined over some finite tamely ramified extension L′ of L.
Suppose, moreover, that L′ contains a finite tamely ramified extension K ′ of K such
that mK′ · OL′ = mL′ . Then, if we equip Spec(OK), Spec(OK′ ) and Spec(OL′) with
the log structures defined by the special points, and X with the log structure whose
monoid is the sheaf of functions invertible on the generic fiber, we obtain a log morphism
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Spec(OL′)log → X log compatible with ξn and Spec(OK′ )log → Spec(OK)log. Moreover,
since ωX/OK

= ΩX log/Spec(OK)log , and ΩOLtm/OKtm = OLtm ⊗OL′ ΩSpec(OL′)log/Spec(OK′)log ,
we thus obtain dξn by means of the functoriality of logarithmic differentials. The naturality
of dξn is easily checked by looking at the generic fibers. ©

Let ΓΩ
X

def= H0(X , ωX/OK
). Then we propose to prove in the present situation that

(∗)ind There exists a number n0 depending only on K such that for all
n ≥ n0, the natural morphism ΓΩ

X → ΩOLtm/OKtm ⊗Z/pn−n0Z induced
by dξn is independent of xn (i.e., depends only on α).

To keep the notation simple, let us note that by replacing K by a tamely ramified extension
of K, and then replacing L by an unramified extension of L, we may assume that xn is, in
fact, defined over L. (Note that replacing L and K by extensions in this fashion will not
affect the validity of (∗)ind.) Thus, we shall regard xn and ξn as morphisms Spec(L) → XK

and Spec(OL) → X , respectively.

Let P
def= P(ΓΩ

X ). (That is, P is the projective space over OK defined by ΓΩ
X .)

Then there is (by the definition of ΓΩ
X) a natural finite morphism λK : XK → PK . Let

N → Spec(OK) be the Néron model of JX . Thus, J ⊆ N is an open subscheme of N .
Since XK(K) is nonempty, we can use a K-rational point of XK to identify JX with J

(1)
X .

Thus, we obtain a morphism XK ↪→ NK = JX . By the defining property of the Néron
model, and the fact that OL is geometrically regular over OK , it follows that composing
this morphism with xn gives rise to a morphism ζL : Spec(OL) → N . Moreover, (after
possibly replacing K by a finite unramified extension of K), we may assume that there
exists some ζK : Spec(OK) → N such that ζK and ζL map the special points of Spec(OK)
and Spec(OL), respectively, to the same geometric connected component of the special fiber
of N . Thus, by translating by ζK , we may assume that our identification of JX with J

(1)
X is

such that ζL maps into J ⊆ N . We denote the resulting morphism by jn : Spec(OL) → J .

Now let us consider the ΓK-module H1(XK ,Zp(1)) = H1(JK ,Zp(1)). Here, the iden-
tification of H1(XK ,Zp(1)) with H1(JK ,Zp(1)) is the identification induced by XK ↪→
J

(1)
X

∼= JX . This identification is the same as the standard identification since translation
by K-valued points of J induces the identity on H1(JK ,Zp(1)). Let Hcb ⊆ H1(JK ,Zp(1))
be the maximal Zp-submodule such that ΓK acts on Hcb(−1) through a finite, unram-
ified quotient. (Here, “cb” stands for “combinatorial.” Note that this inclusion Hcb ⊆
H1(JK ,Zp(1)) is Cartier-dual to the quotient HX → HX/HF

X (in the notation of the dis-
cussion following Definition 6.3 in Section 6).) By the theory of [FC], Chapter III, we know
that CX

def= H1(JK ,Zp(1))/Hcb may be (ΓK -equivariantly) identified with H1(GK ,Zp(1))
for some semi-abelian scheme G → Spec(OK) which can be represented as an extension

0 → T → G → A → 0
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of an abelian scheme A → Spec(OK) by a torus T → Spec(OK). Moreover, the p-adic
completion Ĝ of G is equal to the p-adic completion Ĵ of J . Indeed, relative to the
identification Ĝ = Ĵ , the identification CX = H1(GK′ ,Zp(1)) is obtained as follows: Given
a finite étale covering QK → JK , we let Q be the normalization of J in QK , so Q is
finite over J . Thus, by p-adically completing, we obtain a formal morphism Q̂ → Ĵ = Ĝ
(whose relative differentials are annihilated by a power of p) which can be algebrized to
some finite R → G (whose relative differentials are annihilated by a power of p). Thus,
RK → GK is finite étale. In other words, the correspondence between coverings given by
QK �→ RK induces a morphism H1(JK ,Zp(1)) → H1(GK ,Zp(1)) whose kernel is Hcb,
and thus allows us to identify H1(GK ,Zp(1)) with CX .

Now by p-adically completing jn : Spec(OL) → J , applying Ĝ = Ĵ , and then alge-
brizing, we thus obtain a morphism gn : Spec(OL) → G. Moreover, gn induces a morphism
on cohomology groups

H1(gn) : H1(GK ,Zp(1)) → H1(ΓL/K ,Zp(1))

Thus, we have a commutative diagram of ΓK-modules:

H1(JK ,Zp(1))
H1(jn)−→ H1(ΓL/K ,Zp(1)) −→ HΩ

L ⊗ (Z/pnZ)⏐⏐� ⏐⏐�id

⏐⏐�id

H1(GK ,Zp(1))
H1(gn)−→ H1(ΓL/K ,Zp(1)) −→ HΩ

L ⊗ (Z/pnZ)

where the vertical morphism on the left is the natural projection discussed in the preceding
paragraph, and the horizontal morphisms on the right are the natural ones. Recall that
HΩ

L is, by definition, the quotient of H1(ΓL/K , ÔL(1)) by its torsion submodule. Now,
by sorting through the definitions (cf. the discussion preceding Lemma 9.1), it is clear
that the composite morphism on the upper row is completely determined by α (i.e., is
independent of the particular choice of xn). Thus, it follows that the composite morphism
on the bottom row gives rise to a morphism

εn : H1(GK , ÔK(1)) → HΩ
L ⊗ Z/pnZ

which is completely determined by α. Moreover, since HΩ
L is p-adically separated (see Con-

sequence (2) of [Falt1] below), it follows (from (∗)non) that εn is nonzero for n sufficiently
large.

Now, note that G is a smooth OK-scheme with an obvious compactification G such
that G − G is a divisor with normal crossings. (Indeed, G is a product of Gm-torsors
over the OK-proper scheme A, so we simply compactify each of these Gm-torsors to a
P1-bundle.) In particular, it follows that we can apply the theory of [Falt1], in the case of
good reduction.
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Remark. The argument of [Falt1] in the bad reduction case is known to have gaps, which
is one reason why we took pains to avoid applying [Falt1] to JK . Another reason is that in
the bad reduction case, one only has “Qp-results,” not integral results (say, over Z/pnZ),
as we need here.

Let n′′
0 be an integer such that the p-adic valuation of the different of K over Qp is ≤

the p-adic valuation of pn′′
0 . Let n′

0
def= n′′

0 + ordp(g!). Let n0
def= n′

0 + 2. The consequences
of the theory of [Falt1] that we use are as follows:

(1) The ΓK -module H1(GK ,K
∧
) is Hodge-Tate. Let us denote by HΩ

G the
quotient of H1(GK , ÔK(1)) by the submodule that is contained in the
portion of H1(GK ,K

∧
(1)) of weight 1. Thus, HΩ

G ⊗Zp Qp is of weight
0. Let Ωinv

G be the OK-module of invariant differentials (over OK) on
the group scheme G. Then there is a natural ΓK -equivariant morphism
(Theorems 2.4 and 3.1 of II. of [Falt1])

Ωinv
G ⊗OK {(pn0 · OK)/(pn0+n · OK)} → HΩ

G ⊗ Z/pnZ

with an inverse “up to a factor of pn0 .” Here the point of the n0 is to
take care of the “g! · ρ” of [Falt1]: the 2 = 1 + 1 added to n′

0 is to take
care of the 1

p−1 ≤ 1 that always arises, plus the additional e−1
e < 1 that

arise from the tame ramification which we allow (see [Fo], Theorem 1′

for more details on the computation of [Falt1]’s “ρ”).

(2) HΩ
L is p-adically separated. Moreover, there is a natural ΓK -equivariant

morphism (Theorem 4.2 of I. of [Falt1])

ΩOL/OK
⊗OK {(pn0 · OK)/(pn0+n · OK)} → HΩ

L ⊗ Z/pnZ

with an inverse “up to a factor of pn0 .” In particular, by consid-
ering weights, it follows that εn factors through the quotient HΩ

G of
H1(GK , ÔK(1)).

(3) The morphisms (and inverses up to a factor) of (1) and (2) are com-
patible with each other, εn, and the natural morphism Ωinv

G → ΩOL/OK

induced by differentiating gn. That is to say, we have a commutative
diagram:

Ωinv
G ⊗OK {(pn0 · OK)/(pn0+n · OK)} −→ HΩ

G ⊗ Z/pnZ⏐⏐� ⏐⏐�
ΩOL/OK

⊗OK {(pn0 · OK)/(pn0+n · OK)} −→ HΩ
L ⊗ Z/pnZ
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(where the horizontal morphisms are the morphisms of (1) and (2), re-
spectively, the vertical morphism on the left is induced by differentiating
gn, and the vertical morphism on the right is induced by εn).

These assertions allow us to immediately conclude (∗)ind, as follows: Since εn is determined
by α, it thus follows that the morphism (induced by differentiating gn) Ωinv

G → ΩOL/OK
⊗

(Z/pn−n0Z) is determined by α. On the other hand, Ωinv
G can naturally be identified with

Ωinv
J . Moreover, Ωinv

J can naturally be identified with ΓΩ
X . This completes the proof of

(∗)ind.

Lemma 9.2. For n sufficiently large, the morphism HΩ
G → HΩ

L ⊗ (Z/pnZ) induced by
εn is nonzero.

Proof. This follows formally from (∗)non. ©

Now we are ready to tackle the convergence assertion (∗)con. Thus, we go back to
working over Ltm and Ktm. In particular, by composing xn with λK and applying the
valuative criterion for properness, we obtain a morphism λn : Spec(OLtm) → P . Moreover,
this OLtm-valued point λn of the projective space P is precisely the point defined by the
morphism Ωinv

G → ΩOL/OK
⊗OL OLtm = ΩOLtm/OKtm (obtained by differentiating gn).

(Note that here we use the fact remarked above that ΩOLtm/OKtm is a free OLtm -module
of rank one.) Thus, (∗)ind and Lemma 9.2 imply that the points λn of P (OLtm) converge
p-adically to a point λ∞ ∈ P (ÔLtm) = P (M). On the other hand, by “Krasner’s Lemma”
(see, e.g., [Kobl], p. 70), since λK : XK → PK is finite, it follows that some subsequence
{xni} of {xn} converges to a point x∞ ∈ XK(M). This proves the assertion (∗)con, as
desired.

In fact, we can say more. For m ≥ 1, let x̃m
n be the image of x̃n+m in Xm

L (Ltm) under
the natural morphism Xn+m

L → Xm
L . Thus, we obtain a sequence {x̃m

n } (in the index n) of
points of Xm

L (Ltm). Since Xm
L → XL is finite, then by appying “Krasner’s Lemma” again,

see that a subsequence of the sequence {x̃m
n } converges p-adically in Xm

L (M). Moreover,
by the process of “Cantor diagonalization” (of elementary analysis), we thus see that we
have proven the following key result (which is the main result of this Section):

Lemma 9.3. We assume notation as in the first paragraph of this Section. Suppose that
we have a sequence of points {x̃n}, where x̃n ∈ Xn

L(Ltm). Then there exists a subsequence
{x̃ni} of this sequence with the following property: For each m ≥ 0, the sequence obtained
by projecting those x̃ni with ni ≥ m to Xm

L (M) converges to some x̃m∞ ∈ Xm
L (M). In

particular, X∞
L (M) is nonempty.

Proof. The last assertion is proven by noting that the x̃m
∞ ∈ Xm

L (M) form a compatible
system, hence define a point of x̃∞∞ ∈ X∞

L (M). ©
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Finally, before proceeding, we make the following technically trivial, but important
observation: Since the arithmetic fundamental group of X∞

L is just ΓL (i.e., Im(αs)), it
follows that the morphism

ΓM → ΠXK

induced on fundamental groups by the image in XK(M) of any point (e.g., x̃∞∞) of X∞
L (M)

is none other than the restriction of α : ΓL → ΠXK
to ΓM .

Section 10: Uniqueness and Rationality of the Limit Point

We continue with the notation of the preceding Section. In this Section, we would
like to show that the point x̃∞∞ ∈ X∞

L (M) constructed in Lemma 9.3 is the unique element
of X∞

L (M), and that it in fact descends to a point of X∞
L (L). We remark that much of

the material of this Section is not absolutely logically necessary for the proof of the main
results of this paper, but is included partly for aesthetic reasons, and partly because its
inclusion (in the opinion of the author) makes the proof of the main results of the paper
more transparent.

First, let us make the trivial observation that any point in X∞
L (M) arises as a x̃∞∞ (as

in Lemma 9.3) for some sequence of x̃n ∈ Xn
L(Ltm). (Indeed, this follows by using the fact

that M = (Ltm)∧ to approximate the images of the given point in the various Xn
L(M)’s.)

Thus, without loss of generality, we can apply the results of the discussion of Section 9 to
our analysis of an arbitrary point of X∞

L (M).

Now recall the limit point λ∞ ∈ P (M) of the discussion following Lemma 9.2. This
limit point is clearly independent of the choice of the particular sequence {x̃n} under
consideration – i.e., it depends only on α. More precisely, λ∞ ∈ P (M) ⊆ P (L

∧
) is the

point defined by the surjection

ΓΩ
X ⊗OK L

∧
= Ωinv

G ⊗OK L
∧

= HΩ
G ⊗Ô

K

L
∧ → HΩ

L ⊗Zp Qp = ΩOL/OK
⊗OL L

∧

induced by α (cf. the discussion preceding Lemma 9.2). Note that ΓL acts naturally on
all of these modules, and that this surjection is ΓL-equivariant. Indeed, this follows by
transport of structure from the fact that α is defined on ΓL, not just on ΓLtm·K . Thus, we
conclude the following

Lemma 10.1. The image λ∞ ∈ P (M) of x̃∞
∞ ∈ X∞

L (M) under the natural morphism
X∞

L → XK → PK is independent of x̃∞∞ and, moreover, λ∞ is defined over L.

53



The next step is to observe that this argument can be modified so as to show that
the image of x̃∞∞ in the projective space defined by the differentials on Xn

L (for n ≥ 1) is
independent of x̃∞

∞ and defined over L. To see this, we need to introduce some new objects.
First, let us fix n. Now observe that (after possibly enlarging K) there exists a finite étale
covering Zn

K → Spec(K) of XK with stable reduction Zn → Spec(OK), together with a
finite Galois extension L̃ of L such that

Xn

L̃
= Xn

L ⊗L L̃ ∼= Zn

L̃
= Zn

K ⊗K L̃

Now let m ≥ n, and consider x̃m ∈ Xm
L (Ltm) ⊆ Xm

L (L̃tm), where L̃tm is the composite
of Ltm and L̃ (as extensions of L). (Note that L̃tm is then a maximal tamely ramified
extension of L̃.) Thus, by projecting x̃m to a point of Zn

K , we obtain a morphism

zm : Spec(O
L̃tm) → Zn

Let us assume that we have chosen K large enough so that Zn
K(K) is nonempty, so that

we can identify JZn
K

(i.e., the Jacobian of Zn
K) with J

(1)
Zn

K
. Let NZn

K
→ Spec(OK) be the

Néron model of Zn
K over OK . More generally, in the following discussion we shall denote

by N(−) the Néron model of any proper hyperbolic curve “(−)” over a discretely valued
field. In fact, we shall even use this notation for proper hyperbolic curves over inductive
limits of discretely valued fields in which case this notation is to be taken to mean the
corresponding inductive limit of the Néron models. Also, we shall denote by

Comp(N(−))

the (inductive limit of) finite abelian (étale) group scheme(s) of connected components of
the special fiber of the Néron model N(−).

The main technical difficulty that we must overcome in order to apply the argument
of Section 9 (for XK) to the curves Zn

K is the following: The points that we are interested
in are the points zm of Zn

K(L̃tm) = Zn(O
L̃tm). These points define points of J

(1)
Zn

K

∼= JZn
K

,
hence points

zNm : Spec(O
L̃tm) → NZn

L̃tm

Then, in order to apply the argument of Section 9, we must show that:

(After replacing K by a finite extension of K which is independent of
m), zNm maps the special point of Spec(O

L̃tm) to the same component
of Comp(NZn

L̃tm
) as some Ktm-valued point of NZn

L̃tm
.
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(see Lemma 10.2 below for an alternate formulation.) To show this, we reason as follows:
Let us write L̃unr for the maximal unramified extension of L̃ in L̃tm. Thus, L̃tm is a totally
tamely ramified extension of L̃unr. In particular, L̃tm is a union of finite Galois extensions
of L̃unr which are of degree (over L̃unr) prime to p. In particular, it follows that the cokernel
of the inclusion

Comp(NZn

L̃unr
) ↪→ Comp(NZn

L̃tm
)

is annihilated by integers prime to p. (Indeed, this follows by applying the “trace map”
(for subextensions of L̃tm over L̃unr) to the second “Comp,” and observing that (since
Gal(L̃tm/L̃unr) clearly acts trivially on Comp(NZn

L̃tm
)) this trace map is just multiplication

by some integer prime to p.) On the other hand, since L̃unr is an unramified extension of
L̃, it follows (essentially from the definition of the Néron model) that NZn

L̃unr
= NZn

L̃

. In

particular, since L̃ is a discretely valued field, it follows that Comp(NZn

L̃

) is finite. In other

words, we conclude that: the p-torsion of Comp(NZn

L̃tm
) is annihilated by some (finite)

power of p. We are now ready to prove the following Lemma:

Lemma 10.2. After possibly enlarging K by a larger field that is independent of m, we
may arrange that the morphism zJ

m : Spec(L̃tm) → J
(1)
Zn

K

∼= JZn
K

induced by zm extends to a
morphism Spec(O

L̃tm) → NZn
Ktm

, for all m ≥ n.

Proof. Indeed, without enlarging K, it follows from our observation above concerning the
p-torsion of Comp(NZn

L̃tm
) that a · zJ

m extends to (zN )′m : Spec(O
L̃tm) → NZn

K
for some

positive integer a whose order at the prime p is independent of m. Now let us assume
(by enlarging K – independently of m) that all of the p-torsion points of JZn

K
annihilated

by a are rational over K. Since all prime-to-p torsion points of JZn
K

are rational over
Ktm, it thus follows that the morphism “multiplication by a” on NZn

Ktm
is finite over a

neighborhood of the image of (zN )′m⊗OK OKtm in NZn
K
⊗OK OKtm ⊆ N ′

Zn
Ktm

. Since (zN )′m
was constructed by multiplying zJ

m by a, it thus follows that zJ
m extends to a morphism

Spec(O
L̃tm) → NZn

Ktm
, as desired. ©

Now that we have Lemma 10.2, we can use the extended morphism of Lemma 10.2
to construct the analogue of the morphism “gn” of Section 9 (over some tamely ramified
extension of K). Then the rest of the argument of Section 9 goes through without difficulty.
More precisely:

Let ΓΩ
Zn

def= H0(Zn, ωZn/OK
). Let Pn def= P(ΓΩ

Zn ). (That is, Pn is the projective space
over OK defined by ΓΩ

Zn .) Then there is (by the definition of ΓΩ
Zn ) a natural finite morphism

λn
K : Zn

K → Pn
K . Let λn

m : Spec(O
L̃tm ) → Pn be the morphism obtained by composing zm

with λn
K . Then, just as in Section 9, one sees via p-adic Hodge theory that as m → ∞ (and
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n remains fixed), the λn
m converge to a point in λn∞ ∈ Pn(Ô

L̃tm) = Pn((L̃tm)∧). Moreover,
λn∞ is independent of the original sequence {x̃m}. Finally, just as we saw for Lemma 10.1,
by transport of structure and the fact that α (and, here, Xn

L) are defined over L, it follows
that if we regard λn∞ as a point of PXn

((L̃tm)∧), where PXn

is the projective space over
L associated to

H0(Xn
L, ωXn

L/L)

(for the original L), then λn∞ ∈ PXn

(L). Thus, we see that we obtain the following
analogue of Lemma 10.1:

Lemma 10.3. The image λn
∞ ∈ PXn

(M) of x̃∞
∞ ∈ X∞

L (M) under the natural morphism
X∞

L → Xn
L → PXn

is independent of x̃∞∞ and, moreover, λn∞ is defined over L.

Now let us recall some basic facts on hyperelliptic curves:

Lemma 10.4. Let Q be a proper hyperbolic curve over an algebraically closed field Ω of
characteristic zero. Then:

(1) If Q is hyperelliptic (i.e., admits a “g1
2,” or linear system of dimension

1 and degree 2), then the g1
2 is unique.

(2) If Q is non-hyperelliptic, then the canonical morphism from Q into the
projective space associated to H0(Q,ωQ/Ω) is an embedding.

(3) Suppose that W → Q is a finite étale covering, where W is connected.
Then if Q is non-hyperelliptic, so is W .

(4) Suppose that W → Q (where W is connected) is a cyclic étale covering
of degree m > 2. Then W is non-hyperelliptic.

Thus, in particular, none of the Xn
L is hyperelliptic, for n ≥ 2.

Proof. For proofs of assertions (1) and (2), we refer to [Harts], Chapter IV, §5, Propo-
sitions 5.2 and 5.3. As for (3), the push-forward of a g1

2 on W via W → Q is a g1
2 on Q,

so (3) follows immediately. Now let us consider assertion (4). Let σ be a generator of the
Galois group of W over Q. If W admits a g1

2, it is unique, hence stabilized by σ. But
this means that there exists some rational function fW on W in this g1

2 which satisfies
σ−1(fW ) = T (fW ), where T is some linear fractional transformation with coefficients in
Ω. Note that since σ has finite order, so does T . Thus, if we diagonalize T (by choosing
a different fW ), we may assume that σ−1(fW ) = λ · fW , for some nonzero λ ∈ Ω. (Note
that T cannot be parabolic (i.e., a transformation of the form fW �→ fW + λ, for some
nonzero λ ∈ Ω) since T is of finite order and Ω is of characteristic zero.) Thus, fm

W (which
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is a constant multiple of the norm (relative to W → Q) of fW ) defines a rational function
fQ on Q. Now fQ is contained in some g1

2 on Q, so its zeroes have order equal to 1 or 2.
On the other hand, fQ has an mth root in the function field of W , so it follows from the
assumption that m > 2 that the covering W → Q must be ramified at the zeroes of fQ,
which is absurd. This contradiction completes the proof. ©

We summarize our efforts in Sections 9 and 10 as follows:

Corollary 10.5. Let M be the p-adic completion of a maximal tamely ramified extension
Ltm of L. Suppose that we are given a nondegenerate α : ΓL → ΠXK

, which thus gives
rise to Xn

L, X∞
L . Suppose that for each n ≥ 0, Xn

L(Ltm) is nonempty. Then it follows that
the set X∞

L (M) consists of precisely one point, which is, in fact, contained in X∞
L (L) ⊆

X∞
L (M).

In particular, there exists a unique L-valued point of Spec(L) → XK whose induced
morphism on fundamental groups (for an appropriate choice of base-points) is the mor-
phism α : ΓL → ΠXK

.

Proof. Indeed, if x̃∞∞ ∈ X∞
L (M), then by Lemma 10.4, if n ≥ 2, the image of x̃∞∞ in

Xn
L(M) is determined by the image λn∞ of x̃∞∞ in PXn

(M). But, by Lemma 10.3, λn∞ is
independent of x̃∞∞ and defined over L. Thus, it follows that the image of x̃∞∞ in Xn

L(M)
(for n ≥ 2) is independent of x̃∞

∞ and defined over L. But, by the definition of X∞
L , this

means that x̃∞∞ itself is “independent of x̃∞∞” and defined over L. (In other words, X∞
L (M)

consists of precisely one point, which is, in fact, defined over L.) The last sentence is a
formal consequence of the rest of the Corollary. This completes the proof. ©

Section 11: Hodge-Tate Representations of Infinite Rank

Let K be a finite extension of Qp. Let XK → Spec(K) be a proper hyperbolic curve
over K. Let UK be its generic point. Let HU be the abelianization of ΔU . Thus, HU is
a Zp-flat topological ΓK -module of infinite rank. Note that we have a natural surjection
HU → HX → HI

X (cf. the discussion following Definition 6.3 for the definition of HI
X).

Let HM
U ⊆ HU be the kernel of this surjection. Note that the inertia groups (defined by

closed points of XK) of ΔU all map into HM
U . Let HP

U ⊆ HM
U denote the closure of the

image of all these inertia groups. (Here the “P” stands for “points.”) Thus, HU/HP
U may

be identified with HX , hence is of finite rank over Zp. In this Section, we would like to
analyze HU , and, in particular, HP

U in greater detail.

For simplicity, let us assume (by replacing K by a finite extension of K) that XK

has stable reduction over OK, and that there exists a K-valued point x ∈ XK(K). Let
℘ ∈ XK be a closed point of XK . Then there are finitely many points y1, . . . , yr ∈
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XK(K) = Hom(Spec(K),XK) that map to ℘. For i = 1, . . . , r, let Iyi ⊆ ΔU denote “the”
inertia group (well-defined up to conjugation by an element of ΔU ) associated to yi. Thus,
projection to the quotient ΔU → HU yields a map

I℘
def=

r⊕
i=1

Iyi → HP
U

Note, moreover, that I℘ has a natural structure of ΓK-module (given, for instance, by
conjugating by the image of a section ΓK → ΠUK

(cf. Definition 5.1) induced by x ∈
XK(K) – note, however, that the ΓK -action is independent of the choice of x). Relative
to this ΓK -action on I℘, the above morphism is ΓK-equivariant. Moreover, by letting ℘
range over all closed points of XK other than that defined by x, we obtain a continuous
ΓK -equivariant morphism

Ξ : Mx
def=

∏
℘�=x

I℘ → HP
U

In fact,

Lemma 11.1. The morphism Ξ is an isomorphism.

Proof. Note that ΠUK
is equal to the inverse limit of ΠVK

, where the limit is taken over
all open subsets VK ⊆ XK −{x}. For such a VK , we can define HP

V just as we defined HP
U ,

and it is well-known that HP
V is the direct sum of the I℘, where the sum is taken over all

℘ ∈ XK −{x}−VK – indeed, this follows from the well-known (from elementary algebraic
topology) structure of the homology group of a Riemann surface obtained by removing a
finite number of points from a compact Riemann surface. Passing to the limit proves the
Lemma. ©

Next, we would like to define a quotient I℘ → IT
℘ as follows: Note that if K℘ is the

residue field of XK at ℘, then the ΓK-module I℘(−1) (where the “(−1)” is a Tate twist)
may be naturally identified with Zp[HomK(K℘,K)]. (Here, Zp[a set] denotes the free Zp-
module generated by the elements of the set.) Thus, there exists a unique nonzero quotient
I℘(−1) → Q℘ stabilized by ΓK such that ΓK acts trivially on Q℘. Moreover, Q℘ is a free
Zp-module of rank one. Let I℘ → IT

℘ be the quotient obtained by tensoring I℘(−1) → Q℘

with Zp(1). Moreover, by taking the product of these quotients, we obtain a quotient

Mx → MT
x

def=
∏
℘�=x

IT
℘

Let HP
U → HT

U be the quotient corresponding to this quotient under the isomorphism
Ξ. Thus, the ΓK -action on HT

U (−1) is trivial. Moreover, HP
U → HT

U has the following
universal property:
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Lemma 11.2. Let N be a Zp-flat topological ΓK -module such that ΓK acts trivially on
N(−1). Then any continuous ΓK -morphism HP

U → N factors through HT
U .

Proof. This follows immediately from the construction of HT
U . ©

Now let us define the subquotient HT
X of HU as follows: First, let HF

U ⊆ HU denote the
inverse image of HF

X ⊆ HX under the projection HU → HX (cf. the discussion following
Definition 6.3 for the definition of HF

X ). Now let HT
X be the quotient of HF

U by the kernel
of HP

U → HT
U . Thus, we have an exact sequence of topological ΓK-modules

0 → HT
U → HT

X → HF
X → 0

Let us take the continuous dual Homcont
Zp

(−,Zp) of this exact sequence. This gives us a
new exact sequence of topological ΓK -modules

0 → CF
X → CT

X → CT
U → 0

(Here, one may think of the “H’s” as standing for “homology,” and the “C ’s” as standing
for “cohomology.”) In particular, we have

CT
U =

(⊕
℘ �=x

ZT
℘

)∧

where ZT
℘ is defined to be the dual of IT

℘ . If we pull-back this last exact sequence by
ZT

℘ ⊆ CT
U , we obtain exact sequences of topological ΓK -modules

0 → CF
X → CT

℘ → ZT
℘ → 0

all of which are of finite rank over Zp. Moreover, it is clear that that CT
X is obtained by

summing these extensions (over ℘) and then p-adically completing.

We would like to show that CT
X is “Hodge-Tate”. Unfortunately, typically the theory

of Hodge-Tate Galois representations only goes through for modules of finite rank over Zp.
On the other hand, CT

℘ is of finite rank over Zp. Thus, our approach in the following will
be to use the CT

℘ to show that CT
X is, in some sense, like a Hodge-Tate representation.

First, let X℘ be the singular curve obtained from XK by considering the subsheaf of
OXK of functions f such that f(x) = f(℘). Let J ′

℘ be the generalized Jacobian associated
to X℘ (see, e.g., [Ser1], Chapitre I, §1). Thus, J ′

℘ is an extension of the abelian variety JX

by some torus. Moreover, the p-adic Tate module T (J ′
℘) of J ′

℘ fits into an exact sequence
of ΓK-modules
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0 → I℘ → T (J ′
℘) → HX → 0

In particular, one sees immediately that there exists a quotient J ′
℘ → J℘ whose p-adic Tate

module fits into the exact sequence

0 → IT
℘ → Tp(J℘) → HX → 0

obtained by pushing forward the preceding exact sequence by I℘ → IT
℘ . Moreover, CT

℘

may be identified with the dual of the pull-back of this exact sequence by HF
X ↪→ HX .

Alternatively, CT
℘ may be identified with a certain quotient Tp(J℘)∨ = H1(J℘,Zp) → CT

℘

(whose kernel is the dual of HX/HF
X). Note, in particular, that J℘ is an extension of JX

by the trivial torus Gm. Thus, J℘ extends to a semi-abelian variety over OK (cf. the
paragraph following Theorem 2.6 of Chapter I of [FC]).

Next, let us recall (from the theory of [FC], Chapters I through III) that JX may
be constructed as a certain rigid analytic quotient of a semi-abelian variety J̃X which has
good reduction (i.e., the dimension of the torus part is constant) over OK by some discrete
group. The kernel of the induced pull-back map on cohomology H1(JX ,Zp) → H1(J̃X ,Zp)
is precisely the dual of HX/HF

X . If we pull-back the extension J℘ → JX from JX to J̃X ,
we then obtain an extension J̃℘ of J̃X by the trivial torus of dimension one. Moreover, J̃℘

has good reduction over OK . Finally, the quotient H1(J℘,Zp) → H1(J̃℘,Zp) is precisely
the quotient H1(J℘,Zp) → CT

℘ referred to in the preceding paragraph.

Now, just as in Section 9, we can apply the theory of [Falt1] (in the case of good
reduction) to J̃℘. Let F0

def= H1(X,OX), where X → Spec(OK) is the stable extension of
XK over OK . Let F℘ be the space of invariant differentials on J̃℘, where J̃℘ → Spec(OK)
is the extension of J̃℘ to a semi-abelian variety over OK . Thus, F0 and F℘ are both free
of finite rank over OK . Then it follows from the theory of [Falt1] (specifically, Theorems
2.4 and 3.1 of II. of [Falt1]) that

(∗)℘ There exists a natural ΓK-equivariant, ÔK-linear morphism

CT
℘ ⊗Zp ÔK → (F0 ⊗OK ÔK) ⊕ (F℘ ⊗OK ÔK(−1))

which has an inverse up to pn, where n is a nonnegative integer that is
independent of ℘.

Note that the fact that n is independent of ℘ is of profound importance in what follows.
Moreover, if, instead of J̃℘, we had worked with J℘ (which, in general, has “bad (though
stable) reduction”), or J ′

℘ (which has only potentially stable reduction – i.e., for general
℘, one needs to enlarge K in order to get stable reduction), we would have been unable to
obtain this crucial “independence of ℘” from the theory of [Falt1].
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Now observe that F℘ fits into a natural exact sequence

0 → FF
X → F℘ → Z℘ → 0

where FF
X

def= H0(X,ωX/OK
), and Z℘ is defined so as to make the above sequence exact.

Now let FT
X be the sum of these extensions over all ℘; let FT

U be the direct sum of the Z℘

over all ℘. Thus, we have an exact sequence of flat OK-modules

0 → FF
X → FT

X → FT
U → 0

Thus, by taking the p-adic completion of the sum of the morphisms in (∗)℘, and using the
facts that:

(i) the “n” of (∗)℘ is independent of ℘;

(ii) both CT
X and FT

X are sums of extensions which are of finite rank;

we obtain the following result:

Proposition 11.3. We have a natural, ÔK-linear morphism of exact sequences of
topological ΓK-modules

0 −→ CF
X ⊗̂ZpÔK −→ CT

X ⊗̂ZpÔK⏐⏐� ⏐⏐�
0 −→ (FF

X ⊗̂OK ÔK(−1)) ⊕ (F0 ⊗̂OKÔK) −→ (FT
X ⊗̂OKÔK(−1)) ⊕ (F0 ⊗̂OKÔK)

−→ CT
U ⊗̂ZpÔK −→ 0⏐⏐�

−→ (FT
U ⊗̂OKÔK(−1)) −→ 0

which become isomorphisms when tensored with Qp.

Next, we would like to relate FT
X to a certain space of differentials on X, as follows:

Let E be a finite set of closed points of XK . Let S
def= Spec(OK), and let us endow S

with the log structure defined by the monoid OS − {0}; denote the resulting log scheme
by S log. Let X log[E] → S log be the pointed stable log-curve (see, e.g., [Mzk3], Section 3,
for more details on this terminology) extending XK ⊗K K, equipped with all the points
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of XK(K) that map to primes in E as marked points. Let L[E] def= ωX log[E]/Slog . Then if
E ⊆ E′, we get a natural morphism X log[E′] → X log[E], which lies under a morphism of
sheaves L[E] → L[E′]. Thus, by taking the projective limit of the (X log[E],L[E]) as E
ranges over all finite sets of closed points of XK , we obtain (X log[∞],L[∞]). Moreover,
note that H0(X[∞],L[∞]) is a flat, p-adically separated OK-module.

If E contains x and ℘, then it is easy to see that we get a natural inclusion F℘ ↪→
H0(X[E],L[E]), which extends to a morphism F℘ ⊗OK OK ↪→ H0(X[E],L[E]) whose
cokernel is torsion free. Taking the limit with respect to E, we thus obtain a map F℘ ⊗OK

OK ↪→ H0(X[∞],L[∞]). In fact, it is not difficult to see that, by summing over the F℘

for all ℘ �= x, we get a morphism

FT
X ⊗OK OK ↪→ F∞

def= H0(X[∞],L[∞])

whose cokernel is torsion free. Moreover, this morphism remains injective after p-adic
completion. Thus, we see from Proposition 11.3 that we get a morphism

Φ : CT
X ⊗̂ZpÔK → F∧

∞(−1)

(where the “∧” denotes p-adic completion). Moreover, the kernel of Φ is of weight zero.
Finally, if N is a positive integer, let G∞[N ] def= H0(X[∞],L[∞]⊗N ). Thus, G∞[N ] is a free
OK-module of infinite rank (such that G∞[1] = F∞), and we have a natural multiplication
morphism

⊗N
O

K
F∞ → G∞[N ]

Section 12: The Preservation of Relations

The purpose of this Section is to show how the material of Section 11 will be applied
in Section 13 to show the “preservation of relations.” We maintain the notation of Section
11. Moreover, let us assume that we have been given a continuous open homomorphism
over ΓK

θ : ΠUK
→ ΠYK

(where YK → Spec(K) is a proper hyperbolic curve over K). For simplicity, let us assume
(by enlarging K) that YK extends to a stable curve Y → Spec(OK) over OK , and that
the ΓK -action on HM

Y (−1) (cf. the discussion following Definition 6.3 for an explanation
of the notation “HM”) is trivial. Next, observe that θ induces a continuous morphism
of ΓK -modules HU → HY whose cokernel is torsion. Note that this morphism induces

62



a map HF
U → HF

Y (cf. the discussions following Definition 6.3 and Lemma 11.2 for an
explanation of the notation “HF ”) whose cokernel is torsion. Moreover, the restriction of
this morphism to HP

U (cf. the discussion at the beginning of Section 11 for an explanation
of the notation “HP

U ”) maps into HM
Y , hence (by Lemma 11.2 and the fact that ΓK acts

trivially on HM
Y (−1)), we get a morphism HT

X → HF
Y whose cokernel is torsion. Taking

the dual of this morphism yields an injection CF
Y ↪→ CT

X (where CF
Y is the dual of HF

Y ).
Topologically tensoring with OK , dividing out by the “weight zero part,” and applying the
morphism Φ considered at the end of Section 11, we thus obtain (after further tensoring
with Zp(1)) an injection

H0(Y, ωY/OK
) ⊗OK ÔK ↪→ F∧

∞

In this Section, we shall be concerned with the issue of whether or not this morphism
“preserves relations.” By this, we mean the following: Let N be a positive integer. By
taking the N th tensor power of this morphism, and then composing with the completion
of the multiplication morphism ⊗N F∞ → G∞[N ] considered at the end of Section 11, we
obtain a morphism

ΨN : ⊗N (H0(Y, ωY/OK
) ⊗OK ÔK) → (G∞[N ])∧

We would like to know whether or not ΨN annihilates the elements of

RN
def= Ker(⊗N (H0(Y, ωY/OK

)) → H0(Y, ω⊗N
Y/OK

))

i.e., the “relations.” In the following, we would like to state a certain assertion that will
be proven in the next Section, and explain why this assertion implies that ΨN “preserves
relations.”

First, let us introduce the notation necessary to state the assertion. Suppose that E
is a finite set of points of XK(K). Then the pointed stable curve X log[E] → Spec(OK)
introduced at the end of Section 11 is defined over K, i.e., we have X log[E]OK → Spec(OK).
Let p ∈ X[E]OK be a generic point of the special fiber of X[E]OK . Let Spf(OL) be the
completion of the localization of X[E]OK at p. Thus, L (the quotient field of OL) is a p-adic
field whose residue field is k(p) (i.e., the residue field of X[E]OK at the prime p), and we
have a canonical L-valued point ξL ∈ XK(L). Let ΩL/K denote the module of p-adically
continuous differentials of L over K. Thus, ΩL/K is an L-vector space of dimension one.
Moreover, note that we have a natural restriction morphism (induced by ξL)

F∧
∞ → ΩL/K⊗̂KK̂

Thus, if we compose this morphism with the morphism

H0(Y, ωY/OK
) ⊗OK ÔK ↪→ F∧

∞
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considered above, we get a morphism

κL : H0(Y, ωY/OK
) ⊗OK ÔK → ΩL/K⊗̂KK̂

Next, let us observe that the coverings of XK defined by subgroups of ΠUK
are étale

at the point ξL. Thus, it follows that ξL induces a natural morphism αL
U : ΓL → ΠUK

(well-defined up to conjugation by an element of ΔU ) whose composite with ΠUK
→ ΓK

is the natural morphism ΓL → ΓK . Let αL
Y : ΓL → ΠYK

be the composite of αL
U with θ.

Then the assertion that will be proven in Section 13 is the following:

(∗)L−pt Suppose that p satisfies the condition that κL is not identically
zero. Then it follows that there exists a point (ξ′)L ∈ YK(L) such that
αL

Y arises from (ξ′)L.

Note in particular, that if αL
Y arises from (ξ′)L, then it follows immediately that the group-

theoretically constructed morphism κL coincides (cf. the application of the theory of [Falt1]
discussed in Section 9) with the natural restriction map on differentials induced by (ξ′)L.
Thus, if ρ ∈ RN is a relation, then it follows that the restriction of ΨN(ρ) ∈ (G∞[N ])∧ to

Ω⊗N
L/K⊗̂KK̂ is zero. This argument already leads one to believe that there should be some

sort of connection between (∗)L−pt and the “preservation of relations.” In fact, we have
the following:

Proposition 12.1. Suppose that (∗)L−pt always holds (i.e., for all data of the sort
discussed above). Then ΨN(RN ) = 0, for all positive integers N .

Proof. Suppose that ρ ∈ RN is such that ψ′ def= ΨN (ρ) �= 0. By dividing ψ′ by a suitable
element of OK , we obtain an element ψ ∈ (G∞[N ])∧ such that ψ �≡ 0 (mod mK) (where
mK ⊆ OK is the maximal ideal). Let us write k for the residue field OK/mK . Write ψ for
ψ considered modulo mK . Then ψ is a section of L[E]⊗N ⊗ k for some E. By enlarging
K, we may assume that E consists solely of K-valued points of XK . Moreover, since ψ is
nonzero, there exists some irreducible component of the special fiber of X[E]⊗k over which
ψ is nonzero. If we choose p (in the above discussion) to be such that p ⊗OK OK is this

irreducible component, then it follows that the restriction of ψ ∈ (G∞[N ])∧ to Ω⊗N
L/K⊗̂KK̂

will be nonzero. Now I claim that p satisfies the condition that κL is not identically zero:
Indeed, if κL were identically zero, then it would follow that κ⊗N

L would be identically

zero. But the restriction of ψ to Ω⊗N
L/K⊗̂KK̂ (which is assumed to be nonzero) is a nonzero

K-multiple of κ⊗N
L (ρ) (which would have to be zero). This contradiction proves the claim.

Thus, we are in a position to apply (∗)L−pt. As discussed in the paragraph preceding

this Proposition, it then follows that the restriction of ψ to Ω⊗N
L/K⊗̂KK̂ is zero. Thus, we

get a contradiction. This completes the proof of the Proposition. ©

64



Remark. In [Mzk2], where one only considers isomorphisms of π1’s, as opposed to homo-
morphisms as we do here, there is no need to place (as we did in (∗)L−pt) the condition
on p that κL be not identically zero. Because in the present context it is necessary to
include such a condition on p in (∗)L−pt, the author at first did not see how it would be
possible to prove the “preservation of relations” in the present context. However, in fact,
in order to prove the preservation of relations (Proposition 12.1), it suffices to consider
only p for which one knows already that κL is not identically zero. This observation arose
in discussions between the author and A. Tamagawa.

Section 13: The Preservation of L-Points

The purpose of this Section is to verify the assertion (∗)L−pt discussed in Section
12. The technique is similar to that employed in [Mzk2] (although we do not assume any
knowledge of [Mzk2] in the following discussion). We continue with the notation of the
preceding Section. In particular, we assume that we have been given a continuous open
homomorphism over ΓK

θ : ΠUK
→ ΠYK

Moreover, we assume that XK extends to a stable curve X → Spec(OK). Let p be as in
(∗)L−pt. Thus, we have a blow-up X̃ → X (that is, X̃ is what we denoted by X[E]OK

in Section 12), and p is a generic point of the special fiber of X̃ → Spec(OK). Choose a
smooth, affine, geometrically connected open neighborhood W of p in the special fiber of
X̃. Let T be the affine scheme whose coordinate ring RT is such that Spf(RT ) (where we
equip RT with the p-adic topology) is the completion of X̃ along W . Thus, T → Spec(OK)
is (p-adically) formally smooth, and T ⊗k = W . By abuse of notation, we shall write p for
the prime of T that maps to the original p under T → X̃. Let us write ηT for the generic
point of T (regarded as a scheme). Let L be the quotient field of the p-adic completion of
(RT )p. Thus, L is a p-adic field whose residue field is k(W ) (the function field of W ).

Note that we have natural morphisms ξT
X : T → X; ξηT

X : ηT → XK ; ξL
X : Spec(L) →

XK ; ξηT

U : ηT → UK ; ξL
U : Spec(L) → UK . Let αηT

U : ΓηT → ΠUK
be the morphism

determined (up to conjugation by an element of ΔU ) by ξηT

U . Similarly, we have αL
U :

ΓL → ΠUK
. Composing αηT

U , αL
U with θ gives αηT

Y : ΓηT → ΠYK
, αL

Y : ΓL → ΠYK
.

Now let ΔY ′ ⊆ ΔY be a p-derivate (see Definition 0.2) of ΔY . Thus, ΔY ′ is an open,
characteristic subgroup of ΔY . Note that αηT

Y defines a section aηT

Y : ΓηT → ΠYηT
of

ΠYηT
→ ΓηT . Write ΠY ′

ηT

for the open subgroup Im(aηT

Y ) ·ΔY ′ ⊆ ΠYηT
. Thus, ΠY ′

ηT

gives
rise to a finite étale covering

Y ′
ηT

→ YηT
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Moreover, there exists some finite étale covering ηT ′ → ηT such that

Y ′
ηT

×ηT ηT ′ ∼= ZY
K′ ×K′ ηT ′

for some curve ZY
K′ → Spec(K ′), where K ′ is a finite extension of K contained in K(ηT ′).

Let T ′ be the normalization of T in ηT ′. Then T ′ → T is finite (since ηT is of characteristic
zero) and generically étale.

By means of θ, we can pull-back the above covering to UηT : Thus, we obtain an
open subgroup ΠU ′

ηT

⊆ ΠUηT
, which corresponds to some finite étale covering U ′

ηT
→ UηT

(which is geometrically connected over ηT since ΠU ′
ηT

contains the graph of αηT

U in ΠUηT
=

ΓηT ×ΓK ΠUK
). This covering extends to a finite, possibly ramified covering X ′

ηT
→ XηT .

Moreover, we have an isomorphism

X ′
ηT

×ηT ηT ′ ∼= ZX
K′ ×K′ ηT ′

for some curve ZX
K′ → Spec(K ′). By enlarging K ′, we may assume that this curve has a

stable extension ZX → Spec(OK′ ).

Next, let us go back to considering the morphism ξηT

U : ηT → UK . Now it follows
tautologically from the way we defined αηT

Y (i.e., the fact that it comes originally from ξηT

U )
that ξηT

U lifts naturally to a point ξηT

U ′ : ηT → U ′
ηT

. Let ξηT

X ′ : ηT → X ′
ηT

be the result of
composing this morphism with U ′

ηT
→ X ′

ηT
. Moreover, by restricting to ηT ′, we get a point

ξ
ηT ′
X ′ : ηT ′ → X ′

ηT ′ . Projecting to ZX
K′ , we thus get a point ξ

ηT′
ZX : ηT ′ → ZX

K′ . Moreover, it
is easy to see that this morphism extends to a morphism ξT ′′

ZX : T ′′ → ZX , where T ′′ ⊆ T ′

is an open subscheme obtained as the “D(f)” (i.e., the complement of V (f) ⊆ T ′) for
some f ∈ Γ(T ′,OT ′) with the property that f is nonzero at every generic point of the
special fiber of T ′ → Spec(OK′ ). Indeed, this follows from the following two facts: (i) we
already have an extension to T ′

K′ , since ZX
K′ → XK is finite, and ξηT

X : ηT → XK extends
to TK ; (ii) to extend from T ′

K′ to some T ′′, it suffices to apply the valuative criterion for
properness (since ZX → Spec(OK′ ) is proper).

Next, let us consider the morphism T ′′ ⊆ T ′ → T . Clearly (after possibly enlarging
K ′) there exists a closed point t ∈ T such that if we let S be the completion of T at t, then
the morphism S ′′ → S obtained by base-changing T ′′ → T by S → T has the following
properties: (i) S ′′ → S is finite and flat; (ii) S ′′ is a finite disjoint sum of connected
components which are geometrically irreducible over OK′ ; (iii) each of these components
admits a section over OK′ . Let S ′ be any one of these connected components. Then we
have the following:

Lemma 13.1. The scheme S ′ is normal.

Proof. (Note that this is not entirely obvious since it is not clear that T is excellent.) First,
I claim that the (flat) morphism S → T is geometrically regular. Indeed, over the generic
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fiber, this follows from the fact that S is regular and generically of characteristic zero;
over a closed point of TK or T , either the fiber of the morphism S → T is (schematically)
isomorphic to the given closed point, or it is empty. Thus, it remains to check what happens
over the height one prime of T which is the special fiber of T → Spec(OK). But over this
prime, the geometric regularity of S → T follows from the excellence of T ⊗ k = W (which
is finitely generated over a finite field). This completes the proof of the claim. Thus, it
follows that S ′ → T ′ is geometrically regular. Moreover, T ′ is normal; hence, we obtain
that S ′ is normal, as desired. ©

Thus, S ′ → S satisfies the properties listed in Definition 6.3. Moreover, if we apply the
base-change S → T to all the objects in the above discussion, it is easy to see that we are
in the situation discussed in Proposition 7.4. Note, in particular, that the existence of the
morphism ξT ′′

ZX : T ′′ → ZX shows that the condition (∗)S′
(cf. the discussion preceding

Definition 6.4) is satisfied by αηS

X ′ : ΓηS → ΠX ′
ηS

. In fact, we also have the following:

Lemma 13.2. αηS

X ′ is F -geometric, hence also FI-geometric.

Proof. Indeed, first observe that restricting ξT ′′
ZX gives rise to a morphism ξ1 : S ′ → ZX .

Since S ′ was constructed so as to admit a section over OK′ , let σ : Spec(OK′ ) → S ′

be such a section. Then we may form the composite ξσ : S ′ → ZX of the structure
morphism S ′ → Spec(OK′ ) with ξ1 ◦ σ. Now observe that ξ1 and ξσ both define sections
of ZX

S′
def= ZX ×OK′ S ′ → S ′ (which coincide over Im(σ)). Let D1,Dσ ⊆ ZX

S′ be the Weil
divisors which are the images of these two sections. Next, let us observe that by Lemma
13.3 below, these two Weil divisors are Q-Cartier. Hence it follows that there exists a
positive integer N such that N · D1 and N · Dσ are, in fact, Cartier divisors, so we may
form the line bundle L def= OZX

S′
(N ·D1−N ·Dσ). Note that the line bundle L is trivial over

Im(σ) ⊆ S ′, hence over the closed point of S ′. Let JZX → Spec(OK′ ) be the unique semi-
abelian scheme whose generic fiber is the Jacobian of ZX

K′ . Then it follows that L defines
an S ′-valued point of JZX which arises from an S ′-valued point of the formal completion
of JZX at the identity. But, sorting through the definitions (in particular, Definitions 6.2,
6.4) reveals that this implies that αηS

X ′ is F -geometric, hence also FI-geometric (cf. the
paragraph following Defintion 6.4). ©

Lemma 13.3. The scheme ZX
S′

def= ZX ×OK′ S ′ is normal, and, moreover, any Weil
divisor D ⊆ ZX

S′ arising as the graph of an OK′-morphism ξD : S ′ → ZX is Q-Cartier.

Proof. By Lemma 13.1 above, S ′ is normal. Moreover, since ZX
S′ is a generically smooth

stable curve over S ′, one checks easily that the conditions “R1” and “S2” of Serre (see, e.g.,
[Mats], Chapter 7, §17.I, Theorem 39) are satisfied by ZX

S′ , so ZX
S′ is normal. Now recall

that to say that a Weil divisor is “Q-Cartier” simply means that some nonzero multiple of
that Weil divisor is Cartier. Next, let us observe that since the graph of ξD is defined by a
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single equation in a neighborhood of any point of the smooth locus of ZX → Spec(OK′ ), it
suffices to check that D is Q-Cartier in a neighborhood of the nodes of the special fiber of
ZX → Spec(OK′ ). In fact, it even suffices to check that D is Q-Cartier over the spectrum
of the completion of the local ring of ZX

S′ at such a node.

Thus, let us write

A def= Γ(S′,OS′); B def= OK′ [[x, y]]/(xy − πn); C def= A[[x, y]]/(xy − πn)

where π ∈ OK′ is a uniformizer, and n is a positive integer. Here, we think of B (respec-
tively, C) as the result of completing ZX (respectively, ZX

S′) at a node (respectively, at
the inverse image of this node via the projection ZX

S′ → ZX). Recall that S ′ is affine, so
S ′ = Spec(A). Now ξD is given by some morphism B → A. Write sx, sy ∈ A for the images
of x and y, respectively, under this morphism. Note that sx · sy = πn ∈ A. Moreover, the
restriction DC of the subscheme D to Spec(C) is defined by the equations x − sx, y − sy,
i.e., DC = V (x − sx, y − sy). Now let us consider the regular function x − sx on Spec(C).
I claim that the ideals (x − sx) and (x − sx, y − sy) in C coincide in C[ 1

π ]. Indeed, this
follows from the following equation:

y − sy =
−y · sy

πn
(x − sx) ∈ C[

1
π

]

Thus, we conclude that on Spec(C), the Weil divisor DC is linearly equivalent to a Weil
divisor E on Spec(C) which is supported on the special fiber FC of Spec(C) → Spec(OK′ ).
On the other hand, the fact that S ′ → Spec(OK′) is geometrically irreducible implies that
(FC)red has precisely two irreducible components, namely, V (x)red and V (y)red. Thus, it
follows that any divisor supported on FC is Q-Cartier, as desired. This completes the proof
of the Lemma. ©

Thus, (by Lemma 13.2) we may apply Proposition 7.4 to conclude that Y ′
ηS

admits a
line bundle of degree prime to p. Moreover, by Proposition 8.1 and Lemma 8.2, it thus
follows that:

Y ′
L

def= Y ′
ηT

×ηT Spec(L) has a rational point over some tamely ramified
extension L′ of L.

It is this key result that will allow us to conclude the proof of (∗)L−pt.

Let us review what we have done so far, from the point of view of objects over YL.
First, we have a section aL

Y : ΓL → ΠYL
of ΠYL

→ ΓL (defined by αL
Y ). Moreover, given

any p-derivate ΔY ′
L
⊆ ΔY , we obtain a finite étale covering Y ′

L → YL defined by ΠY ′
L

def=
Im(aL

Y ) · ΔY ′
L
⊆ ΠYL

. Under these circumstances, we just showed that Y ′
L necessarily has
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a rational point over some tamely ramified extension of L. Moreover, tracing through the
definitions, it is easy to see that the assumption placed on p in (∗)L−pt that κL be not
identically zero means precisely (in the language introduced at the beginning of Section
9) that aL

Y is nondegenerate. It thus follows that we can apply Corollary 10.5 to conclude
that:

aL
Y : ΓL → ΠYL

arises from some geometric point (ξ′)L ∈ YL(L).

In other words, the proof of (∗)L−pt has been completed. Thus, by Proposition 12.1, we
conclude the following:

Corollary 13.4. Let θ : ΠUK
→ ΠYK

be a continuous open homomorphism over ΓK .
Then θ “preserves relations,” i.e., (in the notation of Section 12), we have ΨN (RN ) = 0,
for all positive integers N .

Note that in [Mzk2] (where we essentially dealt with the case where θ is an isomor-
phism), the preservation of relations is already enough to conclude the proof of the main
theorem. In the present context, however, because of the fact that HU is of infinite rank,
it is necessary to go through one more intermediate technical step before we can complete
the proof of the (first part of the) first main theorem. This step essentially amounts to
showing that any θ as in Corollary 13.4 necessarily factors through ΠXK

. The proof of
this next step is the main topic of the following Section. Note that if this fact (i.e., that θ
factors through ΠXK

) could be proven more directly, then this paper could be simplified con-
siderably. (For instance, Section 11, as well as the rather technical notions of “irreducibly
splittable” and “FI-geometric” would be unnecessary.) Unfortunately, however, the proof
of this fact in Section 14 relies heavily on the “preservation of relations” (Corollary 13.4).

Section 14: The Annihilation of Inertia

In this Section, we prove that any continuous surjective homomorphism θ : ΠUK
→

ΠYK
over ΓK necessarily (acts as though it) factors through ΠXK

. In the process of doing
this, we complete the proof of the (first part of) the first main theorem of this paper, in the
case where the base field is a local field. Throughout most of this Section (except for the
very end – i.e., from the statement of Theorem 14.1 on), we continue to use the notation of
the preceding three Sections. Let us assume, moreover, that YK is not hyperelliptic. Thus,
it follows (e.g., from Lemma 10.4 (3)) that any connected finite étale covering of YK is also
non-hyperelliptic.

Let us first consider the morphism

H0(Y, ωY/OK
) ⊗OK ÔK ↪→ F∧

∞
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constructed in Section 12. We would like to show first of all that

(∗)FF
X This morphism factors through FF

X ⊗OK ÔK ⊆ F∧
∞, where FF

X
def=

H0(X,ωX/OK
) (cf. the discussion preceding Proposition 11.3).

To do this, we argue as follows: Let x ∈ XK(K). Let

εx : F∧
∞ → ÔK

be the morphism induced by restriction: i.e., elements of F∞ are sections of L[∞], hence
differentials on X[∞]; thus, by taking the residue of such a differential at x, we get a
residue map F∞ → OK ; then taking the p-adic completion of this residue map gives us
εx. We would like to show in the following that the restriction

ζx : H0(Y, ωY/OK
) → ÔK

of εx to H0(Y, ωY/OK
) is zero. If we show this, then this will be also hold for all x′ ∈

XK(K′) (where K ′ is a finite extension of K), hence (∗)FF
X will follow immediately (from

the fact that FF
X consists precisely of all those differentials whose residues at every point

are zero).

Thus, let us assume that ζx �= 0. Let Ix ⊆ ΔU denote the inertia group (well-defined
up to conjugation) corresponding to x. Then observe that the restriction Ix ⊆ ΔU → ΔY

of θ to ΔU is nontrivial. Indeed, if this restriction were zero, then it is clear from the way
that ζx was constructed (cf. the “comparison theorem” of Proposition 11.3) that ζx would
be zero. Thus, θ(Ix) �= {1}. In particular, it follows (by possibly enlarging K) that there
exists an open normal subgroup ΠY ′

K
⊆ ΠYK

(corresponding to a covering Y ′
K → YK) such

that: (i) ΠY ′
K

surjects onto ΓK ; and (ii) if we let U ′
K → UK be the result of pulling back

Y ′
K → YK via θ, then U ′

K → UK is a connected Galois covering which is ramified over x.

Let G
def= ΠYK

/ΠY ′
K

. Thus, G is a finite group, and G = Gal(U ′
K/UK) = Gal(Y ′

K/YK).
Note that U ′

K → UK extends to a ramified covering X ′
K → XK . Let x′ ∈ XK(K) (where

we enlarge K if necessary) be a point lying above x.

Now let us denote with primes the objects corresponding to U ′
K , X ′

K , and Y ′
K that

are analogous to the objects already constructed for UK , XK , and YK . Thus, we have

ε′x′ : (F ′
∞)∧ → ÔK

and

ζ ′
x′ : H0(Y ′, ωY ′/OK

) → ÔK
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Note that the fact that ζx �= 0 implies (since ζ ′
x′|H0(Y,ωY/OK

) = ζx) that ζ ′
x′ �= 0. Let σ ∈ G

be such that σ(x′) = x′, σ �= 1. Then the fact that σ fixes x′ implies that σ fixes ε′x′ ,
which, in turn, implies (since the inclusion H0(Y ′, ωY ′/OK

) ↪→ (F ′∞)∧ is G-equivariant)
that σ fixes ζ ′

x′.

On the other hand, by Corollary 13.4 (“preservation of relations”) and the fact
that Y ′

K is not hyperelliptic, it follows that the point of the projective space P ′
K

def=
P(H0(Y ′, ωY ′/OK

)) defined by ζ ′
x′ lies on the canonically embedded curve Y ′

K ⊆ P ′
K .

Thus, the fact that ζ ′
x′ is fixed by σ implies that Y ′

K admits a K̂-valued point which is fixed
by σ. Since Y ′

K → YK = Y ′
K/G is étale, however, this is absurd. This contradiction thus

completes the proof that ζx = 0, and hence also the proof of (∗)FF
X .

Let us review what we have done so far. Given a surjective continuous homomorphism
θ : ΠUK

→ ΠYK
over ΓK , we have seen that θ induces an injection

H0(YK , ωYK /K) ↪→ H0(XK , ωXK/K)

that preserves relations. Thus, it follows (by using the canonical embedding of YK) that
we get a dominant morphism θU : UK → YK which extends to a morphism

θX : XK → YK

by properness. Moreover, given any finite Galois étale covering Y ′
K → YK whose geometric

part has p-power order, we can pull-back this covering via θ to obtain U ′
K → UK (finite

étale), X ′
K → XK (finite and possibly ramified), together with θ′ : ΠU ′

K
→ ΠY ′

K
. If

we then repeat the argument just applied to θ for θ′, we see that we get a morphism
θ′X ′ : X ′

K → Y ′
K which lies over θX . If we then continue this procedure for arbitrary

finite Galois étale coverings (whose geometric parts have p-power order), the well-known
correspondence between fundamental groups and categories of étale coverings thus shows
that the morphism induced by θU on fundamental groups coincides with θ up to composition
with an inner automorphism induced by an element of ΠYK

. On the other hand, since both
θ and the morphism induced by θU on fundamental groups have the property that they
lie over ΓK , it follows that the element of ΠYK

in question must map to the the center
of ΓK . Since, however, ΓK is center-free (see Lemma 15.6 below – one checks easily that
there are no “vicious circles” in the reasoning), it follows that the element in question
must therefore be an element of ΔY ⊆ ΠYK

. That is to say, we have essentially proven the
following result:

Theorem 14.1. Let K be a finite extension of Qp. Let YK be a hyperbolic curve (not
necessarily proper) over K. Let UK be the spectrum of a one-dimensional function field
over K. Let Homdom

K (UK , YK) be the set of dominant K-morphisms from UK to YK. Let
Homopen

ΓK
(ΠUK

,ΠYK
) be the set of open, continuous group homomorphisms ΠUK

→ ΠYK

over ΓK, considered up to composition with an inner automorphism arising from ΔY .
Then the natural map
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Homdom
K (UK , YK) → Homopen

ΓK
(ΠUK

,ΠYK
)

is bijective.

Proof. We begin by proving that this map is injective. First, observe that by replacing UK

and YK by coverings defined by “p-derivates” (as in Definition 0.2) of ΔU and ΔY (where
we use p-derivates since they are natural), we may assume that both UK and YK admit
hyperbolic compactifications UK and Y K (i.e., UK and Y K are proper hyperbolic curves
over K). Since dominant K-morphisms UK → YK are the same as dominant K-morphisms
UK → Y K , it suffices to show that such a morphism UK → Y K is determined by its
induced morphism Δab

U
→ Δab

Y
(on abelianizations of geometric fundamental groups). But

this follows from the fact that this morphism Δab
U

→ Δab
Y

clearly determines the morphism
between all p-power torsion points of the Jacobians of UK and Y K , hence it determines
the induced morphism between the Jacobians of UK and Y K . Moreover, since UK and
Y K are both proper hyperbolic (i.e., of genus ≥ 2), they both embed in their Jacobians,
so we conclude that the original morphism UK → Y K is uniquely determined, as desired.

Next, we consider surjectivity. Let us first consider the case where YK is proper. By
replacing UK by a finite étale covering of UK (and then descending at the end, which is
possible since (by the preceding paragraph) the natural map in the Theorem is injective),
we can assume that the proper model XK of UK is hyperbolic. Note, moreover, that if
θ : ΠUK

→ ΠYK
is open, then its image is of finite index, so by replacing YK by a finite

étale covering of YK , it is clear that we may assume that θ is surjective. Finally, by Lemma
10.4 (4), by replacing YK by a finite étale covering of YK , it is clear that we may assume
that YK is non-hyperelliptic. Now we are in the circumstances considered above, and so
we see that θ arises from a geometric morphism UK → YK , as desired. This completes the
proof of the Theorem when YK is proper.

Now let us consider the case when YK is not proper. First note that by replacing YK

by a finite étale covering of YK , we may assume that the compactification ZK of YK is
hyperbolic. Now the point is to compose the given θ : ΠUK

→ ΠYK
with the morphism

ΠYK
→ ΠZK

arising from the compactification inclusion YK ⊆ ZK . Since we know the
Theorem to be true for morphisms between UK and ZK , we thus obtain that ΠUK

→ ΠZK

arises from some dominant UK → ZK (which necessarily factors – since UK is the spectrum
of a field – through YK , thus yielding a UK → YK). Thus it remains only to see that the
morphism induced on π1’s by this UK → YK is the same as the given θ. But this is done
(as usual) by considering a finite étale covering Y ′

K → YK , and applying the argument just
described to U ′

K and Y ′
K to obtain a U ′

K → Y ′
K which lies over the UK → YK constructed

previously. As usual, this is enough to show (cf. the argument directly preceding the
statement of Theorem 14.1) that the morphism induced on fundamental groups by the
UK → YK that we constructed is the same as the given θ. This completes the proof of the
Theorem. ©

In fact, we have the following:
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Corollary 14.2. Let K be a finite extension of Qp. Let XK (respectively, YK) be either
a hyperbolic curve (not necessarily proper!) over K or the spectrum of a one-dimensional
function field over K. Let Homdom

K (XK , YK) be the set of dominant K-morphisms from
XK to YK. Let Homopen

ΓK
(ΠXK

,ΠYK
) be the set of open, continuous group homomorphisms

ΠXK
→ ΠYK

over ΓK , considered up to composition with an inner automorphism arising
from ΔY . Then the natural map

Homdom
K (XK , YK) → Homopen

ΓK
(ΠXK

,ΠYK
)

is bijective.

Proof. By an argument analogous to that of the final paragraph of the proof of Theorem
14.1, it follows that it suffices to consider the case where YK is a hyperbolic curve. If UK is
the generic point (considered as a scheme) of XK , then given any open θX : ΠXK

→ ΠYK
,

composing θX with the natural surjection ΠUK
→ ΠXK

induced by UK → XK gives us an
open θU : ΠUK

→ ΠYK
. Applying Theorem 14.1 to θU thus gives us a dominant morphism

XK → Y K (where Y K is the compactification of the curve YK). To see that this morphism
factors through YK , it suffices to apply this construction to Y ′

K → YK , where Y ′
K is a finite,

geometrically connected (over K), Galois étale covering (of p-power order) of YK which
is ramified over all the points of Y K − YK . In fact, we may even choose Y ′

K so that the
ramification indices over all the points of Y K − YK are larger than the degree of XK over
Y K . Then the fact that we get some X ′

K → Y
′
K (where X ′

K is étale over XK) lying
over the morphism XK → Y K obtained previously shows that this morphism XK → Y K

factors through YK , as desired. This completes the proof of the Corollary. ©

Remark. Corollary 14.2 is thus a special case of Theorem A, the first main theorem of this
paper. In fact, Corollary 14.2 holds even in the case where K is only finitely generated over
Qp. However, unlike the situation in [Mzk2], deriving this finitely generated case from the
local field case is not so trivial, again (cf. the discussion at the end of Section 13) because
of the fact that ΔU is so large. Thus, we save the derivation of the finitely generated case
for the following Section.

Section 15: Base Fields Finitely Generated over the p-adics

In this Section, we let L be a finitely generated extension of Qp. We would like to
prove versions of Theorem 14.1 and Corollary 14.2 in the case where the base field is L
(as opposed to a finite extension of Qp). Thus, by induction on the transcendence degree
of L over Qp, we may assume that Theorem 14.1, for instance, is known for all base fields
whose transcendence degree over Qp is < that of L.

Let XL and YL be proper hyperbolic curves over L. Let UL be the generic point of
XL (regarded as a scheme). Moreover, let us assume that we have been given a continuous
surjective homomorphism over ΓL
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θ : ΠUL
→ ΠYL

Once it is shown that θ factors though ΠXL
, it is relatively easy to derive that θ arises

geometrically from Theorem 14.1. Thus, the first order of business is to show that θ factors
through ΠXL

. To achieve this, we assume that this is not the case. Then (cf. the argument
employed in Section 14) by replacing YL and UL by finite étale coverings Y ′

L → YL and
U ′

L → UL (the latter obtained by pulling back the former via θ), we may assume that we
are in the following situation: There is a finite cyclic group G (with generator σ) acting
faithfully on UL (hence also XL) and YL – via L-linear automorphisms – in such a way that
σ fixes a point x0 ∈ XL(L), but acts without fixed points on YL. Moreover, we assume
that σ ◦ θ ◦ σ−1 coincides with θ up to composition with an inner automorphism defined
by an element of ΔY . If we can show that these assumptions lead to a contradiction, it
will follow immediately that θ factors through ΠXL

.

Let (as usual) HU (respectively, HY ) be the abelianization of ΔU (respectively, ΔY )
regarded as a ΓK-module. Let HP

U ⊆ HU be the closure of the image of all the inertia
groups (cf. the beginning of Section 11). Note that θ induces a ΓK -morphism HU → HY .
Since HY is a finitely generated Zp-module, it follows that (by possibly replacing L by a
finite extension of L) there exist points x1, . . . , xr ∈ XL(L) such that the images of the
corresponding inertia groups θ(Ii) (for i = 1, . . . , r) in HY is equal to the image of θ(HP

U )
in HY .

Now let K ⊆ L be a subfield such that L is a one-dimensional function field over
K (hence, in particular, we assume that K is algebraically closed in L). Note that such
a K always exists (as long as L is not a finite extension of Qp). Thus, there exists a
smooth affine model M → Spec(K) of L such that XL and YL extend to smooth curves
XM → M and YM → M over M . Moreover, we may also assume (by shrinking M) that
x1, . . . , xr extend to sections s1, . . . , sr : XM → M whose images are disjoint from one
another, and that σ acts on XM and YM . The point x0 ∈ XL(L) then extends (by the
valuative criterion for properness) to a section s0 : M → XM . Finally, let us observe that
(by further shrinking M), we may assume that σ acts without fixed points on YM .

The first thing that we would like to get our hands on is a morphism like θ, except for
objects over K, so that we can apply Theorem 14.1 over K (which we know to be true via the
induction hypothesis). To construct such a morphism, we argue as follows. Let m ∈ M(K)
be a point (which, after possibly enlarging K, always exists). Let D be the spectrum of the
completion of OM,m. (Here, one should think of the “D” as standing for “disk.”) Thus, we
may choose an isomorphism D ∼= Spec(K[[t]]) (where t is an indeterminate). Let D∞ → D

be the ramified covering of infinite degree obtained by adjoining all t
1
N (for N a positive

integer) to OD. Let p ∈ XM be the prime which is the fiber Xm of XM → M over M . Let
UD be the spectrum of the completion of OXM ,p. Thus, UD is the spectrum of a complete
discrete valuation ring with residue field equal to K(Um), the function field of Xm. Let ηD

(respectively, ηD∞) be the generic point of D (respectively, D∞). Let UηD

def= UD ×D ηD.
Thus, UηD is the spectrum of a complete, discretely valued field. In particular, it follows
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from the well-known theory of such fields (see, e.g., [Ser2]) that if ΓUηD
is the absolute

Galois group of this field, then we have an exact sequence

1 → Ẑ(1) → ΓUηD
→ ΓK(Um) → 1

Here the covering corresponding to the Ẑ(1) is given by adjoining all t
1
N (for N a positive

integer) – cf. the covering D∞ → D.

Now let us denote by ΠUηD
the result of replacing the geometric portion (i.e., relative

to the morphism UηD → ηD) of the fundamental group of UηD by its maximal pro-p
quotient. Then we get an exact sequence

1 → ΔUm
→ ΠUηD

→ ΓηD → 1

If we pull this exact sequence back via ΓηD∞ = ΓK → ΓηD , we thus get an exact sequence

1 → ΔUm
→ ΠUηD∞

→ ΓηD∞ = ΓK → 1

Moreover, it is easy to see that this last exact sequence can be identified with

1 → ΔUm
→ ΠUm

→ ΓK → 1

On the other hand, if we pull back ΠYL
→ ΓL via ΓK = ΓηD∞ → ΓL, we get an exact

sequence

1 → ΔYm
→ ΠYm

→ ΓK → 1

Thus, if we pull-back θ via ΓK = ΓηD∞ → ΓL to obtain a morphism ΠUηD∞
→ ΠYηD∞

(where the subscripted ηD∞ denotes “⊗LηD∞”) and compose with “π1” of the natural
morphism UηD∞ → UηD∞ , we get a continuous homomorphism

θm : ΠUm
→ ΠYm

over ΓK (where K we regard here as the residue field of M at m).

Lemma 15.1. The morphism θm is surjective.

Proof. It suffices to show that the restriction of θm to ΔUm
surjects onto ΔYm

= ΔY . In
fact, by the basic theory of p-groups, it suffices to show that θm induces a surjection of
ΔUm

onto HYm = HY . To see this, it suffices to consider (after replacing M by a finite
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étale covering of M , and enlarging K if necessary) a finite abelian covering Y ′
L → YL

(where Y ′
L → L is geometrically connected) of degree a power of p which is > 1. Let

us pull-back this covering to some covering U ′
L → UL via θ. Then we must show that

the pull-back U ′
ηD∞

→ UηD∞ of this covering to UηD∞ is not the trivial covering. Thus,
suppose that it is the trivial covering. Then the covering U ′

m → Um that it induces (cf.
the exact sequences above) of Um is again trivial. Since the images of s1, . . . , sr in Xm

are disjoint this implies first of all that U ′
L → UL is unramified at x1, . . . , xr. But because

of the way in which x1, . . . , xr were chosen, this implies that the covering Y ′
L → YL was

obtained from a quotient of HY /Im(θ(HP
U )). Thus, it follows that U ′

L → UL extends to
a finite étale covering X ′

L → XL. Moreover, since XM is smooth over M at m, it follows
that X ′

L → XL is split if and only if the induced X ′
m → Xm is split. But this X ′

m → Xm

extends the covering U ′
m → Um which we already saw to be trivial. Thus, we obtain that

X ′
L → XL, hence U ′

L → UL is trivial. Since θ is surjective, however, this implies that
Y ′

L → YL is trivial. This contradiction completes the proof of the Lemma. ©

Now by the induction hypothesis on the transcendence degree of L, it follows that θm

arises from some geometric morphism Um → Ym which is compatible with the action of
σ on both sides (since σ is compatible with θ). By the valuative criterion for properness,
this morphism extends to a morphism Xm → Ym. Moreover, σ fixes s0(m) ∈ Xm(K), so
s0(m) ∈ Xm(K) is mapped to a fixed point of Ym(K), which is absurd, since σ acts on Ym

without fixed points. This contradiction completes the proof of the following result:

Lemma 15.2. Let L be a finitely generated extension of Qp. Let XL and YL be
proper hyperbolic curves over L. Let UL be the generic point of XL. Then any continuous
surjective homomorphism θ : ΠUL

→ ΠYL
over ΓL necessarily factors through ΠXL

.

Now we can conclude that θ arises geometrically, as follows. Consider the M-scheme
HM

def= HomM (XM , YM ) → M . Since YM is hyperbolic, it is well-known that HM is
finite and unramified over M . (Indeed, that HM → M is unramified (respectively, quasi-
finite; proper) follows since the pull-back of the tangent bundle of Ym to Xm (for any
m ∈ M) has no global sections (respectively, follows from the Hurwitz formula, which
allows one to bound the degree of a morphism Xm → Ym; follows via the same argument
as that used in Lemma 8.3 of [Mzk1]).) By shrinking M , we may assume that HM is finite
étale over M . Then the fact that θm arises geometrically (from some Xm → Ym) shows
that over some finite extension L′ of L, we have a morphism XL′ → YL′ that specializes
to Xm → Ym. Moreover, if M ′ is the normalization of M in L′, then since the pro-p
geometric fundamental groups of XM ′ and YM ′ form local systems over M ′, it follows (by
checking what happens over the point m) that the morphism on Δ’s induced by XL′ → YL′

is the same (up to composition with an inner automorphism) as that induced by θ. In
particular, the morphism HX → HY induced by XL′ → YL′ is the same as that induced
by θ. On the other hand, a morphism from XL to YL (over any field) is determined by
the morphism it induces from HX to HY (cf. the proof of the injectivity part of Theorem
14.1). Thus, since the HX → HY in question is ΓL- (not just ΓL′ -) equivariant, we obtain
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that XL′ → YL′ descends to a XL → YL. By repeating this construction (as usual) for
all finite étale coverings of YL, we also obtain that the morphism induced on fundamental
groups by this XL → YL is the original θ.

That is to say, in summary, we have proven that any θ : ΠUL
→ ΠYL

as in Lemma
15.2 necessarily arises geometrically from some morphism UL → YL. Thus, by arguments
formally analogous to those of the proofs of Theorem 14.1 and Corollary 14.2, we obtain
the following analogue of Corollary 14.2:

Corollary 15.3. Let K be a finitely generated field extension of Qp. Let XK (re-
spectively, YK) be either a hyperbolic curve over K or the spectrum of a one-dimensional
function field over K. Let Homdom

K (XK , YK) be the set of dominant K-morphisms from
XK to YK. Let Homopen

ΓK
(ΠXK

,ΠYK
) be the set of open, continuous group homomorphisms

ΠXK
→ ΠYK

over ΓK , considered up to composition with an inner automorphism arising
from ΔY . Then the natural map

Homdom
K (XK , YK) → Homopen

ΓK
(ΠXK

,ΠYK
)

is bijective.

It turns out that it is most natural to generalize Corollary 15.3 to the case where the
long and unwieldy expression “hyperbolic curve/spectrum of a one-dimensional function
field defined over a finitely generated field extension of Qp” is replaced by the much shorter
expression “pro-hyperbolic curve over a sub-p-adic field.” Thus, we make the following
definition: Let K be a field. Let XK be a K-scheme.

Definition 15.4. (i) We shall call a field K a sub-p-adic field if there exists a prime num-
ber p, together with a finitely generated field extension L of Qp such that K is isomorphic
to a subfield of L.

(ii) We shall call XK a hyperbolic pro-curve (over K) if XK can be written as the projec-
tive limit of a projective system of hyperbolic curves over K such that all the transition
morphisms in the projective system are birational.

Thus, the following are all examples of sub-p-adic fields:

(1) finitely generated (in particular, finite) extensions of Qp

(2) number fields (i.e., finite extensions of Q)

(3) the subfield of Q which is the composite of all number fields of degree
≤ n over Q (for some fixed integer n).

77



Another way to think of a pro-hyperbolic curve XK is as the result of removing some set
(possibly infinite, possibly empty) of closed points from some hyperbolic curve. In partic-
ular, the notion of a “hyperbolic pro-curve” generalizes both the notion of a hyperbolic
curve and the case of the spectrum of a function field of dimension one. Then we have the
following result:

Corollary 15.5. Let K be sub-p-adic. Let XK (respectively, YK) be a hyperbolic
pro-curve over K. Let Homdom

K (XK , YK) be the set of dominant K-morphisms from XK

to YK. Let Homopen
ΓK

(ΠXK
,ΠYK

) be the set of open, continuous group homomorphisms
ΠXK

→ ΠYK
over ΓK , considered up to composition with an inner automorphism arising

from ΔY . Then the natural map

Homdom
K (XK , YK) → Homopen

ΓK
(ΠXK

,ΠYK
)

is bijective.

Proof. First, let us observe that if K is a finitely generated field extension of Qp, then
Corollary 15.5 follows immediately from Corollary 15.3 by arguments formally analogous
to those of the proofs of Theorem 14.1 and Corollary 14.2. Thus, the only (slightly)
“new” phenomenon here is the fact that we allow K to be a subfield of a finitely generated
extension of Qp. The argument for such subfields is as follows: Let K be a subfield of a
finitely generated extension field L of Qp. Suppose that we have been given XK and YK

as in the statement of Corollary 15.5, as well as an open θ : ΠXK
→ ΠYK

over ΓK . Let us
denote by θgeom the morphism ΔX → ΔY induced by θ on geometric fundamental groups.
By base-changing to L and applying the Corollary 15.5 over L, we obtain that there exists
a morphism φL : XL → YL whose induced morphism on geometric fundamental groups
coincides with that defined by θ. On the other hand, since morphisms between hyperbolic
curves (hence also hyperbolic pro-curves), clearly have no moduli (cf. the fact that the
scheme HM of the discussion preceding Corollary 15.3 was finite and unramified over M),
it follows that φL descends to a finite Galois extension K ′ of K. Thus, we have a morphism
φK′ : XK′ → YK′ . It remains to descend φK′ to K. But this follows from the fact that
if σ ∈ Gal(K ′/K), then conjugating φK′ by σ gives a morphism φσ

K′ : XK′ → YK′ whose
induced morphism on geometric fundamental groups is the result of conjugating θgeom by
σ. On the other hand, θgeom arises from θ which lies over ΓK , so θgeom is fixed (up to
composition with an inner automorphism defined by an element of ΔY ) by conjugation
by σ. Thus, φK′ and φσ

K′ induce the same morphism on geometric fundamental groups,
hence coincide (cf. the argument of the discussion preceding Corollary 15.3). This shows
that φK′ descends to a morphism φK : XK → YK . Repeating this construction (as usual
– cf. the argument preceding the statement of Theorem 14.1) for coverings of XK and YK

shows that the morphism induced by φK on fundamental groups coincides with θ (up to
composition with an inner automorphism defined by an element of ΔY ). ©

Remark. Note that in Corollaries 15.3 and 15.5, in fact, we implicitly used the fact that
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for K as in those Corollaries, ΓK is center-free. This may be proven as follows. First, if
K is a finite extension of Qp, then we have the following:

Lemma 15.6. If K is a finite extension of Qp, then the group ΓK is center-free.

Proof. (The argument given here is “well-known,” but was related to the author by A.
Tamagawa.) Since one knows explicitly (see, e.g., [Ser2], Chapter IV, §2) the structure of
Gal(Ktm/K), it is clear that the quotient Gal(Ktm/K) of ΓK is center-free. Thus, the
center of ΓK must lie in ΓKtm ⊆ ΓK . On the other hand, ΓKtm is a pro-p group. Moreover,
it follows immediately from the facts that

(1) H2(K,Fp(1)) = Fp;

(2) if K ′ is a finite unramified extension of K of degree p (which always
exists), then the natural morphism H2(K,Fp(1)) → H2(K′,Fp(1)) is
zero;

that H2(ΓKtm ,Fp) = 0. But by [Shatz], Chapter III, §3, Proposition 2.3, this is enough
to imply that ΓKtm is free (as a pro-p group), which implies that its center is trivial (see,
e.g., [Tama], §1, Propositions 1.1, 1.11). ©

Next, we consider the case of a finitely generated extension of Qp:

Lemma 15.7. Suppose that K0 is a field of characteristic zero with the property that
every open subgroup of ΓK0 is center-free. Then any finitely generated field extension K
of K0 also has this property. In particular, if K is a finitely generated field extension of
Qp, then ΓK is center-free.

Proof. The last statement follows from the first plus Lemma 15.6. Thus, let us prove
the first statement. Note that an extension of a center-free group by a center-free group
is center-free. Thus, it suffices to prove that if L is a function field (of arbitrary finite
dimension) over K0, then ΓL is center-free. Next, note that the projective limit of a
projective system of center-free groups in which all the transition morphisms are surjective
is center-free. Moreover, as is well-known, Spec(L) is a projective limit of “hyperbolic Artin
neighborhoods” over K0 (i.e., successive fibrations of hyperbolic curves – see [SGA4], XI
3.3). Thus, it suffices to prove that the fundamental group of such an Artin neighborhood
is center-free. But this then reduces to showing that the fundamental group of a hyperbolic
curve is center-free, which is well-known (see, e.g., [Tama], §1, Proposition 1.11). ©

This is already enough for Corollary 15.3. Now we can conclude the result for arbitrary
K as in Corollary 15.5 by means of the following Lemma (due to A. Tamagawa):
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Lemma 15.8. Let K be sub-p-adic. Then ΓK is center-free.

Proof. Let K ′ be a finitely generated field extension of Qp that contains K. Suppose
that σ ∈ ΓK lies in the center of ΓK , but is not equal to the identity. Then there exists
a finite Galois extension L of K such that σ maps to an element of Gal(L/K) other than
the identity. Write L = K(α), for some α ∈ L. Let EL be an elliptic curve over L with
j-invariant α. Let XL be the complement of “0” in EL. Thus, XL is a hyperbolic curve
over L. Let YL be the result of base-changing XL by σ : L → L. Thus, it follows that
XL and YL are isomorphic as schemes over K. Moreover, conjugating by σ defines an
isomorphism ΠXL

∼= ΠYL
which lies over ΓL because σ is in the center of ΓK . Base-

changing this isomorphism to L′ (the composite of K ′ and L over K), we get a ΓL′ -
isomorphism ΠXL′

∼= ΠYL′ . By Corollary 15.3 (in fact, really, this follows already from the
results of [Mzk2]), we obtain that this isomorphism arises from an L′-isomorphism of XL′

with YL′ . But this implies that the j-invariants of the compactifying elliptic curves of XL′

and YL′ are the same, i.e., that α = ασ ∈ L ⊆ L′, which is absurd. This contradiction
completes the proof of the Lemma. ©

Section 16: Maps From Higher-Dimensional Function Fields to Curves

Let K be sub-p-adic (cf. Definition 15.4 (i)). Let UK be the spectrum of a function
field over K. (Note that here, we do not assume that the dimension of the function field is
one.) Let XK be a smooth projective model of UK (which exists by [Hiro]). Thus, UK is
the generic point of XK . Let n be the dimension of XK . By abuse of terminology, we shall
also say that n is the “dimension of UK over K.” Since the one-dimensional case has been
dealt with previously, we assume here that n ≥ 2. The purpose of this Section is to prove
a result like Corollary 15.5, except for morphisms between UK and a hyperbolic pro-curve.

Let L be a very ample line bundle on XK . Let

V
def= Γ(XK ,L)

Since the dimension of XK is ≥ 2, and L is very ample, it follows that dimK(V ) ≥ 3.
Let W ′ ⊆ V be a one-dimensional (over K) subspace, generated by a section of L whose
zero locus forms a smooth, connected subvariety of XK . (Note that by Bertini’s theorem
(see, e.g., Theorem 6.3, pp. 66, of [Jou]), it is well-known that such a W ′ exists.) Let
W ⊆ V be a two-dimensional subspace containing W ′. Choose a basis {e1, e2} for W such
that e1 ∈ W ′. Let e3 ∈ V be an element whose image in V/W is nonzero. Let us also
assume that the common zero locus in XK of the three sections e1, e2, e3 is a subscheme
of XK of codimension ≥ 3. (This can always be achieved by choosing e1, e2, e3 sufficiently
generically.) Let K ′ = K(t) (where t is an indeterminate). Let s1

def= t; s2
def= t−1. Then we

can construct a new two-dimensional subspace W̃ ⊆ VK′
def= V ⊗K K ′, over K ′, as follows:
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We let W̃ be the subspace generated by the vectors ẽ1
def= e1 + s1 · e3, ẽ2

def= e2 + s2 · e3.
Thus, to summarize, we have the following situation:

W ′ ⊆ W ⊆ K · e1 + K · e2 + K · e3 ⊆ V

‖ ‖ ‖

K · e1 ⊆ K · e1 + K · e2 ⊆ K · e1 + K · e2 + K · e3

W̃ = K ′ · ẽ1 + K ′ · ẽ2 ⊆ VK′ = V ⊗K K ′; K ′ = K(t)

ẽ1 = e1 + s1 · e3; ẽ2
def= e2 + s2 · e3; s1 = t; s2 = t−1

Lemma 16.1. Let Ω be an algebraically closed field containing K ′. Then there do not
exist any one-dimensional subspaces W ′′ of W̃Ω

def= W̃ ⊗K′ Ω such that W ′′ is defined (as
a subspace of V ⊗K Ω) over a finite extension of K.

Proof. Indeed, if such a W ′′ existed, then there would exist elements a, b, c ∈ Ω (with
c �= 0, and at least one of a, b nonzero), together with α1, α2, α3 ∈ K such that

a · ẽ1 + b · ẽ2 = c · (α1 · e1 + α2 · e2 + α3 · e3)

By dividing a and b by c, we may assume that c = 1. Then, equating the coefficients of
e1, e2, e3, we obtain that a = α1; b = α2; s1 · a + s2 · b = α3. But this implies that t, t−1,
and 1 (as elements of K ′) are linearly dependent over K, which is absurd. This completes
the proof of the Lemma. ©

Before proceeding, let us pause to interpret what this Lemma means. Note that the
3-dimensional K-subspace of V generated by e1, e2, e3 defines a rational morphism ψ from
XK to QK

def= P(K · e1 + K · e2 + K · e3). Thus, ψ is defined outside of some closed
subscheme of XK of codimension ≥ 2. Moreover, note that the inverse image via ψ of any
closed point of QK is a subscheme of XK of codimension ≥ 2. (Indeed, this follows from
the fact that the common zero locus of e1, e2, e3 has codimension ≥ 3 in XK .) Now let Ω
be a finite extension of K ′, and let us consider a one-dimensional (over Ω) subspace W ′′

of W̃Ω. Thus, W ′′ corresponds to a line LΩ ⊆ QΩ
def= QK ⊗K Ω, and the zero locus (in

XΩ
def= XK ⊗K Ω) of a nonzero section of W ′′ is equal to the closure of ψ−1

Ω (LΩ) ⊆ XΩ.

Now we are ready to interpret Lemma 16.1: Namely, I claim that Lemma 16.1 implies
that no irreducible component of the (closure of the) divisor ψ−1

Ω (LΩ) is defined over K.
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Indeed, if there were a divisor D ⊆ XK such that ψΩ(DΩ) ⊆ LΩ, then by spreading out Ω
(respectively, LΩ) to a smooth affine curve CK over K (respectively, a family of lines in QK

parametrized by CK), we obtain that for every closed point c ∈ CK , we have ψ(D) ⊆ Lc.
But since (by Lemma 16.1) LΩ is not defined over K, it follows that for two sufficiently
generic closed points c, c′ ∈ CK , dimK(Lc

⋂
Lc′) = 0, which implies that D is contained

in the inverse image of a finite set of closed points of QK . But we saw in the preceding
paragraph that the inverse image via ψ of a closed point of QK is of codimension ≥ 2.
Since D is a divisor, this is absurd. This completes the proof of the claim stated at the
beginning of this paragraph.

Next, let us base-change UK and XK to K ′: this gives rise to UK′ and XK′ . The
two-dimensional subspace W̃ ⊆ VK′ defines a rational map from XK′ to PK′

def= P(W̃ ). Let
X ′

K′ ⊆ XK′ be the complement of the indeterminacy locus of this rational map. Thus, the
complement of X ′

K′ in XK′ is of codimension ≥ 2, and, moreover, we obtain a dominant
morphism (a “pencil”)

ξ : X ′
K′ → PK′

Let ηP be the generic point of PK′ . Let ηP be the spectrum of an algebraic closure of
K(ηP ) (the function field of PK′ ). Let

FηP ⊆ XηP

def= XK ×K ηP

be the divisor which is the zero locus of the section of L⊗K K(ηP ) defined by the generic
point ηP of PK′ . (Thus, FηP → ηP is proper.) Put another way, FηP is the (closure in XηP

of the) fiber (⊆ X ′
ηP

⊆ XηP ) of the morphism ξ over the generic point ηP ∈ PK′ (whence
the use of the letter “F”). Since the pencil PK′ contains ẽ1, which is a genericization of e1

(i.e., e1 is the specialization of ẽ1 at s1 = t = 0), and the zero locus of e1 is (geometrically)
smooth and connected, it follows that FηP will also be geometrically smooth and connected
over ηP . Moreover, by the Lefshetz hyperplane theorem (see, e.g., [SGA2]), it follows (since
dimK(XK) ≥ 2) that the natural morphism

π1(FηP
) → π1(XηP

) = π1(XK
′) = π1(XK)

is surjective. Let

GηP

def= FηP ×XηP
UηP = FηP ×XK UK

Since UK is a projective limit of dense open subschemes of XK , it thus follows that GηP

is a projective limit of open subschemes of FηP . Moreover, since FηP (thought of as (the
closure of) the fiber of the dominant morphism ξ over the generic point ηP of PK′ ) contains
(as a dense open subset) a scheme which is a projective limit of dense open subschemes of
XK′ , we conclude that GηP is an integral, nonempty scheme.
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At any rate, we get a natural morphism

π1(GηP
) → π1(UηP

) = π1(UK
′) = π1(UK)

Now we have the following important

Lemma 16.2. This morphism π1(GηP
) → π1(UK) is surjective.

Proof. It suffices to take a finite, connected étale covering ŨK → UK (of degree > 1),
pull it back to a covering G̃ηP

→ GηP
over GηP

, and show that this pulled back covering
can never be split. Indeed, suppose that G̃ηP

→ GηP
is split. Now observe that since ξ is

dominant, it follows that FηP
→ X

K
′ and GηP

→ U
K

′ are dominant. In fact, FηP → XK′

and GηP → UK′ are even birational isomorphisms. Moreover, I claim that the divisors (in
XK′ ) that were thrown out of XK′ to create FηP – let us call these divisors F -divisors –
are different from the divisors that were thrown out of XK′ to create UK′ – which we shall
call U-divisors. Indeed, as divisors of XK′ = XK ⊗K K ′, the U-divisors are all defined
over finite extensions of K, whereas the F -divisors (which are just fibers of ξ over closed
points of PK′ ) are, by Lemma 16.1 (see also the interpretation of Lemma 16.1 in the two
paragraphs following the proof of Lemma 16.1), never defined over finite extensions of K.
This proves the claim.

Next, let us observe that the morphism FηP
→ FηP is ramified only over F -divisors.

Thus, it is unramified over U -divisors. Since GηP
→ FηP

is birational, the fact that
G̃ηP

→ GηP
splits (hence, in particular, extends to a finite étale covering over FηP

) thus
implies that the original ŨK → UK is unramified over the U-divisors, i.e., ŨK → UK arises
from a covering X̃K → XK . (Here we use “purity of the branch locus” for regular local
rings – see, e.g., [SGA2], Exposé X, p. 118, Théorème 3.4.) But then the fact that the
pull-back F̃ηP

→ FηP
of this covering to FηP

does not split follows from the surjectivity
observed immediately before the statement of this Lemma. Thus, since GηP

→ FηP
is

birational, it follows that G̃ηP
→ GηP

cannot split either. This contradiction completes
the proof of the Lemma. ©

Now let us assume that we are given a surjective continuous homomorphism over ΓK

θ : ΠUK
→ ΠYK

where YK is a proper hyperbolic curve over K. Let YηP

def= YK ×K ηP . Thus, YηP is a
proper hyperbolic curve over ηP . Suppose, moreover, that we know that morphisms like
θ necessarily arise geometrically (i.e., from a dominant morphism UK → YK) for UK

of dimension < n. (We shall refer to this assumption as the “Induction Hypothesis.”
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Note that by Corollary 15.5, we already know that this induction hypothesis is true for
dimK(UK) = 1.) Then the morphism

ΠGηP
→ ΠYK

obtained by composing (“π1 of”) the natural morphism GηP → UK with θ lies over ΓηP →
ΓK , and by Lemma 16.2, is such that it induces a surjection between the (maximal pro-
p quotients of the) respective geometric fundamental groups. Moreover, this morphism
naturally defines a morphism

θG : ΠGηP
→ ΠYηP

(since ΠYηP
is the fibered product of ΠYK

and ΓηP over ΓK). Thus, to summarize, θG is
a surjective continuous homomorphism over ΓηP .

Let UG
ηP

be the generic point of GηP . Thus, by composing (“π1 of”) UG
ηP

→ GηP with
θG, we obtain a continuous surjective homomorphism

θUG : ΠUG
ηP

→ ΠYηP

over ηP . Moreover, the dimension of UG
ηP

over ηP is < n. Thus, by the induction hypothesis,
it follows that θUG arises geometrically, from some unique dominant morphism UG

ηP
→ YηP .

Projecting to YK′ then gives a dominant morphism UG
ηP

→ YK′ .

We would like to observe that this morphism UG
ηP

→ YK′ extends to UK′ . Indeed,
to see this, observe that UG

ηP
and UK′ are both projective limits of open subsets of the

projective K ′-variety XK′ . Moreover, UK′ can be written as the projective limit of K ′-
smooth open subsets of XK′ . Thus, the fact that we get a morphism

UK′ → YK′

follows from the following

Lemma 16.3. Let L be a field; YL be a proper, smooth, geometrically connected curve
of nonzero genus over L; and ZL be a smooth L-variety. Suppose that we have a rational
map φ from ZL to YL. Then φ is defined over all of ZL.

Proof. This Lemma is a well-known consequence of the classical theory of the Albanese
variety (see, e.g., [Lang]): Namely, let UL ⊆ ZL be a (nonempty) open over which φ is
defined. Assume (without loss of generality) that YL(L) �= ∅. Let AL be the Jacobian of
YL, and let BL be its dual. Then a point of YL(L) defines an embedding YL ↪→ AL which
we can compose with φ to obtain a rational map φA from ZL to AL. It suffices to show
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that φA extends to a morphism on ZL. But note that the portion of φA which already is
a morphism (from UL to AL) defines (by pulling back the Poincaré bundle on AL ×L BL)
a line bundle on UL ×L BL. Since ZL ×L BL is a regular scheme, it follows that this line
bundle extends to ZL ×L BL. Then taking the classifying morphism associated to this
extended line bundle gives a morphism ZL → AL, as desired. ©

Let us review what we have done so far. We started with a continuous surjective
homomorphism

θ : ΠUK
→ ΠYK

over ΓK . Moreover, we have shown that if we base-change θ from K to K ′ to obtain

θK′ : ΠUK′ → ΠYK′

then θK′ arises geometrically from some dominant UK′ → YK′ . Note, moreover, that this
morphism UK′ → YK′ is the unique morphism that gives rise to (the geometric portion
of) θ. (This follows, for instance, from the inductive hypothesis on n. Moreover, this
uniqueness also holds, of course, over any finite extension of K ′.) Thus, if we specialize
the indeterminate t ∈ K ′ to some element of a finite extension L of K that is sufficiently
generic so that UK′ → YK′ specializes to UL → YL, and then base-change this UL → YL

back up to a morphism UL′ → YL′ (where L′ is the composite of K ′ and L), then this
morphism UL′ → YL′ coincides with the morphism obtained by base-changing the original
UK′ → YK′ via K ′ ⊆ L′. But this means that the original UK′ → YK′ is, in fact, defined
over L. Finally, since K ′ and L are linearly disjoint over K, it follows that the original
UK′ → YK′ is defined over K. Thus, we get a morphism UK → YK which clearly induces
the original θ (since, for instance, ΠUK′ → ΠUK

is surjective).

Let us step back now and take stock of what we have done so far in this Section. We
started with UK , the spectrum of a function field over K, and a proper hyperbolic curve
YK over K. Then given any surjective continuous homomorphism

θ : ΠUK
→ ΠYK

over ΓK , we showed that θ necessarily arises geometrically. Now let us pause for a defini-
tion:

Definition 16.4. Let QK be a K-scheme. We shall call QK a smooth pro-variety if it
is the projective limit of a projective system of smooth (geometrically connected) varieties
over K such that the transition morphisms are all birational.

Now Lemma 16.3, plus the techniques of the proofs of Theorem 14.1 and Corollary 14.2
show that we have, in fact, proven the following (our first main theorem – Theorem A in
the Introduction):
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Theorem 16.5. Let K be sub-p-adic (cf. Definition 15.4 (i)). Let XK (respectively, YK)
be a smooth pro-variety (respectively, hyperbolic pro-curve) over K. Let Homdom

K (XK , YK)
the set of dominant K-morphisms from XK to YK. Let Homopen

ΓK
(ΠXK

,ΠYK
) be the set of

open, continuous group homomorphisms ΠXK
→ ΠYK

over ΓK, considered up to composi-
tion with an inner automorphism arising from ΔY . Then the natural map

Homdom
K (XK , YK) → Homopen

ΓK
(ΠXK

,ΠYK
)

is bijective.

Remark. Finally, we make the following important observation:

Note that given any pro-p result such as Theorem 16.5, one can always
immediately derive a corresponding profinite result from it.

(Here by “corresponding profinite result,” we mean the same result, except that “Π”
(respectively, “Δ”) is replaced by “Πprf” (respectively, “Δprf”).) Indeed, suppose that K,
XK , and YK are as in the statement of Theorem 16.5, and let

θ : Πprf
XK

= π1(XK) → Πprf
YK

= π1(YK)

be an open homomorphism over ΓK . Then note that θ immediately induces an open
homomorphism θp : ΠXK

→ ΠYK
. Applying Theorem 16.5 shows that θp arises from

some φ : XK → YK . Thus, it remains only to show that the morphism induced by φ
on fundamental groups coincides with θ. But this follows from the argument preceding
Theorem 14.1: namely, we consider an arbitrary finite étale covering Y ′

K → YK . Pulling
this covering back via θ gives a finite étale covering X ′

K → XK . Moreover, θ induces a
morphism between the full profinite fundamental groups of X ′

K and Y ′
K . Next, observe that

this morphism gives us a φ′ : X ′
K → Y ′

K (by the same argument as that used to construct
φ from θ) which (by naturality of the constructions involved) lies over φ. Thus, if we
continue this procedure for arbitrary finite étale coverings, the well-known correspondence
between fundamental groups and categories of étale coverings shows that the morphism
induced by φ on fundamental groups coincides with θ up to composition with an inner
automorphism induced by an element of Δprf

Y . This completes the proof of the “profinite
analogue of Theorem 16.5.”

Section 17: Maps Between Higher-Dimensional Function Fields

Let K be sub-p-adic (cf. Definition 15.4 (i)). Let L and M be function fields (of
arbitrary dimension) over K. (Thus, in particular, we assume here that K is algebraically
closed in L and M). We denote by ΓL and ΓM the absolute Galois groups of L and
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M , respectively. In this Section, we would like to show how to derive a result (Theorem
17.1, which is stated as Theorem B in the Introduction) like Theorem 16.5 for morphisms
between L and M (over K).

Theorem 17.1. Let K be sub-p-adic (cf. Definition 15.4 (i)). Let L and M be func-
tion fields of arbitrary dimension over K. Let HomK(Spec(L),Spec(M)) be the set of
K-morphisms from M to L. Let Homopen

ΓK
(ΓL,ΓM ) be the set of open, continuous group

homomorphisms ΓL → ΓM over ΓK , considered up to composition with an inner automor-
phism arising from Ker(ΓM → ΓK). Then the natural map

HomK(Spec(L),Spec(M)) → Homopen
ΓK

(ΓL,ΓM )

is bijective.

Proof. First, recall (cf. the Remark following Theorem 16.5) that any pro-p result such
as Theorem 16.5 always implies a corresponding profinite result. Now we use induction
on the transcendence degree – which we shall henceforth denote by dimK(M) – of M over
K. When dimK(M) = 0, the result is vacuous. When dimK(M) = 1, the result follows
from the profinite version of Theorem 16.5; thus, we may assume that dimK(M) > 1. Now
suppose that we know Theorem 17.1 to be true for maps to functions fields of transcendence
degree < dimK(M). Suppose that we are given an open continuous homomorphism

θ : ΓL → ΓM

over ΓK . Observe that just as previously (e.g., in the proof of Theorem 14.1), we can
assume without loss of generality that θ is surjective.

Next, observe that there exists a function field P ⊆ M such that 0 < dimK(P ) <
dimK(M). Moreover, we may assume that P is algebraically closed in M . Thus, we
get a surjection ΓM → ΓP . Composing θ with this surjection, we obtain a surjection
θP : ΓL → ΓP , which, by the induction hypothesis on dimK(M), we know arises geo-
metrically from some P ↪→ L (over K). Moreover, since θP is surjective, it follows that
P is algebraically closed in L. Thus, we may regard L and M as function fields over P .
Moreover, dimP (M) < dimK(M). Thus, since θ : ΓL → ΓM is (by the definition of θP )
a morphism over ΓP , it follows from the induction hypothesis on dimK(M) that θ arises
from some M ↪→ L over P (hence also over K). This completes the proof of the Theorem.
©

Remark. Note that in this case, we needed to work with profinite (not pro-p) fundamental
groups because the operation of taking the maximal pro-p quotient is not well-behaved
with respect to fibrations: i.e., if we had replaced Ker(ΓM → ΓK) with its maximal
pro-p quotient, we would run into trouble because it is not clear that the maximal pro-p
quotient of Ker(ΓM → ΓP ) injects into the maximal pro-p quotient of Ker(ΓM → ΓK).
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Also, we needed to work with function fields (as opposed to varieties) because, if, for
instance, Spec(L) and Spec(P ) had been varieties, the fact that the geometric (over K)
fundamental group of Spec(L) surjects onto that of Spec(P ) does not necessarily imply that
the morphism Spec(L) → Spec(P ) has geometrically connected fibers. Moreover, if the
generic geometric fiber of Spec(L) → Spec(P ) has several distinct connected components, it
is not necessarily the case that the fundamental group of any of these connected components
surjects onto the geometric (over P ) fundamental group of Spec(M). Indeed, by replacing
Spec(M) by a smooth projective variety YK (of dimension ≥ 3), and Spec(L) by the
result – call it XK – of cutting this variety with a generic hyperplane section, then the
inclusion XK ↪→ YK induces an isomorphism on geometric fundamental groups despite
the fact that XK is not isomorphic to YK . Moreover, note that such a counterexample to
a “variety version” of Theorem 17.1 exists even if YK is “hyperbolic” (say, a product of
proper hyperbolic curves), in which case, one would expect XK (at least if the ample line
bundle used to cut YK to form XK has sufficiently high degree) to be “quite hyperbolic,”
as well.

Section 18: Truncated Fundamental Groups

If Δ is a topological group, let us introduce the following notation: Δ{0} def= Δ; for
i ≥ 1, Δ{i} def= [Δ{i−1}, Δ{i−1}]. Also, let us write “Πi” (respectively, “Δi”) for Π/Δ{i}
(respectively, Δ/Δ{i}). The purpose of this Section is to observe that much of the theory
of this paper continues to hold to a large extent even when we consider morphisms not
between the full Π’s, but between certain truncated versions of the Π’s. Our first main
result is the following:

Theorem 18.1. Let K be sub-p-adic (cf. Definition 15.4 (i)). Let XK be a smooth
variety over K. Let YK be a hyperbolic curve over K. Let n ≥ 5. Then every continuous
open homomorphism

θ : Πn
XK

→ Πn
YK

over ΓK induces a dominant morphism μ : XK → YK whose induced morphism on fun-
damental groups coincides (up to composition with an inner automorphism arising from
ΔYK

) with the morphism Δn−3
XK

→ Δn−3
YK

defined by considering θ “modulo Δ{n − 3}.”

Proof. First let us consider the case where: (i) K is a finite extension of Qp; (ii) XK

is a curve; (iii) YK is a non-hyperelliptic proper hyperbolic curve; (iv) n = 3. Then note
that the theory of Sections 1 through 5 manifestly only involves Δ2

XK
. It thus follows

immediately (via the help of a technical lemma – Lemma 18.4 below – necessary in order
to assure that Lemma 7.3 goes through in the truncated context) that to prove Proposition
7.4, we really only used Δ2

Y ′
ηS

. Thus, in summary, as long as the covering Y ′
ηS

→ YηS (in
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the notation of the discussion preceding Proposition 7.4) arises from an open subgroup of
Π1

YK
, we can apply Proposition 7.4 to Y ′

ηS
to conclude that Y ′

ηS
admits a line bundle of

degree prime to p.

Now we would like to conclude the “preservation of relations.” Note that Section 11
manifestly only involves the abelianization of the geometric fundamental group. More-
over, Section 12 is just formal manipulation. In Section 13, the only thing from Sections
1 through 7 that is used is Proposition 7.4 (whose applicability under the present circum-
stances was discussed in the preceding paragraph). Thus, by using Propositions 7.4 and
8.1, Lemma 8.2, and the theory of Section 9, we may conclude “preservation of relations”
for the morphism H0(YK , ωYK/K) → H0(XK , ωXK/K) induced by Δ1

XK
→ Δ1

YK
. (Note,

however, that this time, in the application of Section 9, we take for our tower of coverings
“Xn

L” not the coverings corresponding to the p-derivates of the whole geometric fundamen-
tal group Δ, but rather the p-derivates of Δ1 – which is enough to carry out the argument
of Section 9.) Hence we get a morphism μ : XK → YK .

Now let us lift the hypothesis that n = 3. Then we obtain the following: If Y ′
K → YK

is a covering arising from an open subgroup of Πn−3
YK

, and X ′
K → XK is a connected

component of the pull-back of this covering to XK via θ, then we get a natural morphism
μ′ : X ′

K → Y ′
K . Moreover, the naturality of the construction of this morphism means that

it always lies over the morphism XK → YK . Thus, it follows by the usual argument (i.e.,
the one preceding Theorem 14.1) that the morphism induced by μ on fundamental groups
is equal to θ modulo Δ{n − 3} (up to composition with an inner automorphism arising
from ΔYK

).

So far we have not used that n ≥ 5. (In fact, we have only used that n ≥ 3.)
The purpose of assuming that n ≥ 5 is to lift hypothesis (iii) (in the first paragraph of
this proof). Namely, given any hyperbolic curve YK , it is elementary to show that there
always exists a covering Y ′

K → YK defined by an open subgroup of Π2
YK

such that the
compactification Y

′
K of Y ′

K is hyperbolic and non-hyperelliptic, and such that Y
′
K → Y K

has arbitrarily large (specified) ramification over all the points of Y K −YK . Thus, we get a
map X ′

K → Y
′
K which descends to a map XK → Y K . Moreover, the fact that X ′

K → XK

is étale, while Y
′
K → Y K is ramified over the points of Y K −YK (with ramification indices

arbitrarily large) implies that the map XK → Y K factors through YK . Thus, we get a
map XK → YK , as desired. Then arguing as in the preceding paragraph completes the
proof, albeit still under the assumptions (i) and (ii) (of the first paragraph of the proof).

The extension to the case of fields K that are subfields of finitely generated extensions
of Qp then follows via the same “specialization argument” as that employed previously
in the nontruncated case (following Lemma 15.2). Thus, we can also lift assumption (i).
Finally, the “cutting with a hyperplane argument” of Section 16 extends immediately to
the truncated case. This allows us to lift assumption (ii), thus completing the proof of the
Theorem. ©

Theorem 18.2. Let K be a subfield of a finitely generated field extension of Qp. Let
XK be a smooth pro-variety over K. Let YK be a hyperbolic pro-curve over K. Let n′

0 be
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the minimum transcendence degree over Qp of all finitely generated field extensions of Qp

that contain K. Let n′′
0 be the transcendence degree over K of the function field of XK .

Let n0
def= n′

0 + 2(n′′
0 − 1) + 1.

Let n ≥ 3n0 + 5. Then every continuous open homomorphism

θ : Πn
XK

→ Πn
YK

over ΓK induces a dominant morphism μ : XK → YK whose induced morphism on
fundamental groups coincides (up to composition with an inner automorphism arising
from ΔYK

) with the morphism Δn−3−3n0
XK

→ Δn−3−3n0
YK

defined by considering θ “mod-
ulo Δ{n − 3 − 3n0}.”

Proof. The reason for the inclusion of the extra “3n0” (i.e., a “price” of three steps for
every additional transcendence degree that is used, plus an extra “tax” of three steps for
allowing the prefix “pro”) is the following: in order to reduce to the situation discussed
in the proof of Theorem 18.1, we need to show (in the present “pro” context) that inertia
groups are annihilated. Moreover, to apply the first “inertia annihilation argument” (at
the beginning of Section 14), we needed to know that after one passes to some covering
Y ′

K → YK arising from an open subgroup of Πn−3
YK

(i.e., we wish to apply the arguments
of Theorem 18.1 for n − 3), one knows “preservation of relations” for Y ′

K . Thus, already
one needs some extra padding – to the tune of three steps (necessary, as we saw in the
first two paragraphs of the proof of Theorem 18.1, to derive “preservations of relations”
for Y ′

K). (This accounts for the 1 in the definition of n0.) Moreover, each time one adds a
transcendence degree, one needs to apply the “inertia annihilation argument” of the first
half of Section 15. Thus, by the same line of reasoning, one needs extra padding consisting
of three steps. (This accounts for the n′

0 in the definition of n0.) In Section 16, one uses not
only the transcendence degrees inherent in K, but also 2(n′′

0 − 1) auxiliary transcendence
degrees – here the “2 = 1 + 1” comes from the transcendence degree of “K ′” over “K,”
plus the transcendence degree of the pencil “ξ.” (This accounts for the 2(n′′

0 − 1) in the
definition of n0.) Finally, we remark that although in Sections 14, 15, and 16, we assumed
that the morphism of fundamental groups “θ” was surjective, it is easy to see that this
assumption is merely cosmetic, i.e., is inessential and serves only to simplify the discussion.
This completes the proof of the Theorem. ©

Remark. Thus, the essential difference between Theorems 18.1 and 18.2 is that in Theo-
rem 18.2, we allow “pro-objects,” at the cost of having to apply “annihilation of inertia”
arguments, which require us to use larger quotients of ΔXK

, ΔYK
(i.e., each application of

annihilation of inertia costs three units of “n”).

Remark. We do not mean to pretend that the estimates in the above two Theorems (e.g.,
the “5’s,” “n0,” etc.) are the best possible. Especially if one is willing to add hypotheses
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to YK , it should not be so difficult to improve these estimates. The point of the above two
Theorems is simply to illustrate the principle involved.

We conclude this Section with two technical lemmas that were used in the proofs of
the above two Theorems.

Lemma 18.3. Let XK be a proper hyperbolic curve over a field K of characteristic zero.
Let ΔX be (as usual) the maximal pro-p quotient of its geometric fundamental group. Let
ΞX

def= ΔX/[ΔX , [ΔX ,ΔX ]]. Then the natural morphism

H2(ΞX ,Zp(1))ΓK → H2(ΔX ,Zp(1))ΓK

(induced by the quotient map ΔX → ΞX) is surjective. Here, the superscripted “ΓK”
denotes “the submodule of ΓK-invariants.”

Proof. Let us first consider the morphism

H2(ΞX ,Zp(1)) → H2(ΔX ,Zp(1))

To do this, we shall use the Hochschild-Serre spectral sequence for the quotient ΞX → HX

(where, as usual, we write HX for the abelianization of ΔX). Write ΨX ⊆ ΞX for the kernel
of ΞX → HX . Thus, ΨX may be identified with a certain well-understood (cf. Lemma
3.1) quotient of ∧2 HX . Consideration of the E··

2 -term of this spectral sequence shows
that there is a natural ΓK -equivariant injection of the cokernel of the natural morphism
(induced by the quotient ∧2 HX → ΨX)

H1(ΨX ,Zp(1)) = HomZp(ΨX ,Zp(1)) → H2(HX ,Zp(1)) = HomZp(∧2HX ,Zp(1))

into H2(ΞX ,Zp(1)). (In other words, the above morphism is the differential (from E0,1
2 to

E2,0
2 ) of the “Epq

2 = Hp(HX ,Hq(ΨX ,Zp(1)))”-term of the spectral sequence.) Moreover,
it follows from Lemma 3.1 that the cokernel of this natural morphism is precisely the
quotient of H2(HX ,Zp(1)) = (∧2 H1(HX ,Zp))(1) given by the (surjective) cup-product
map (∧2 H1(HX ,Zp))(1) → H2(ΔX ,Zp)(1). Thus, in summary, we have a ΓK-equivariant
diagram:

H2(ΞX ,Zp(1)) ⊇ Image(H2(HX ,Zp(1))) → H2(ΔX ,Zp(1))

in which the arrow is bijective. This implies the assertion stated in the Lemma. ©

91



Lemma 18.4. Let K, XK , ΔX , and ΞX be as in Lemma 18.3. Since the kernel of
ΔX → ΞX is a normal subgroup not only of ΔX , but also of ΠXK

, write ΠXK
→ ΠΞ

XK
for

the quotient of ΠXK
by this subgroup. Then the natural morphisms

H2(ΠΞ
XK

,Zp(1)) → H2(ΠXK
,Zp(1))

and

H2(ΠXK
×ΓK ΠΞ

XK
,Zp(1)) → H2(ΠXK

×ΓK ΠXK
= ΠXK×KXK

,Zp(1))

are surjective. In particular, if η ∈ H2(ΠXK×KXK
,Zp(1)) denotes the first Chern class of

the diagonal in XK ×K XK , then η lies in the image of H2(ΠXK
×ΓK ΠΞ

XK
,Zp(1)).

Proof. The assertions of this Lemma follow by considering the consequences of the sur-
jectivity assertion of Lemma 18.3 for the Hochschild-Serre spectral sequences associated
to ΠΞ

XK
→ ΓK ; ΠXK

→ ΓK ; ΠXK
×ΓK ΠΞ

XK
→ ΓK ; and ΠXK

×ΓK ΠXK
→ ΓK . ©

Section 19: Injectivity Result

In this Section, we prove the following “pro-p injectivity part of the so-called Section
Conjecture”:

Theorem 19.1. Let K be sub-p-adic (cf. Definition 15.4 (i)). Let XK be a hyperbolic
curve over K. Let XK(K) be the set of K-valued points of XK . Let Sect(ΓK ,ΠXK

) be
the set of sections ΓK → ΠXK

of ΠXK
→ ΓK , considered up to composition with an inner

automorphism arising from ΔXK
. Then the natural map

XK(K) → Sect(ΓK ,ΠXK
)

is injective.

Remark. The so-called “Section Conjecture” states that (for instance when XK is proper)
the natural map in Theorem 19.1 is bijective. (When XK is affine, the statement must be
modified slightly.) At the time of writing (July 1996), the Section Conjecture has not yet
been proven.

Proof. (of Theorem 19.1) Let HX be the abelianization of ΔX . First, note that by
replacing XK by some finite Galois étale covering of XK of p-power order, we may assume
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that the compactification XK of XK is itself hyperbolic and non-hyperelliptic. Let r be
the number of points in (XK − XK)(K). Let ZX be the complement of the diagonal in
XK ×K XK . By taking the second projection ZX → XK , we may regard ZX as a family
(parametrized by XK) of smooth hyperbolic curves obtained by removing r + 1 distinct
points from some compactification.

Let ηX be the generic point of XK . Let ηX be the spectrum of some algebraic closure
of K(ηX). Let ZηX

def= ZX ×X ηX . Then (since ZX → XK is a family of smooth hyperbolic
curves obtained by removing precisely r + 1 distinct points from some compactification)
we obtain an exterior Galois representation

ρZ : Πprf
XK

→ Out(ΔZηX
)

Now I claim that ρZ factors through ΠXK
. Indeed, to see this, note that if HZηX

is the
abelianization of ΔZηX

, then since ΔZηX
is a pro-p group, the kernel of

Ξ : Out(ΔZηX
) → Aut(HZηX

)

is itself a pro-p group. Thus, it suffices to show that Ξ◦ρZ maps Δprf
X into a pro-p subgroup

of Aut(HZηX
). But now observe that one has a Galois-equivariant surjection HZηX

→ HX

whose kernel is either 0 or Zp(1) (depending on whether r = 0 or r > 0). Moreover,
the actions of Δprf

X on HX and Zp(1) are trivial. Thus, it follows immediately that the
Δprf

X -action on HZηX
is by unipotent matrices, so Ξ ◦ ρZ maps Δprf

X into a pro-p subgroup
of Aut(MZ ), as desired. This completes the proof of the claim.

Thus, we have a representation

ρZ : ΠXK
→ Out(ΔZηX

)

Now suppose that we have two points α, β ∈ XK(K) that induce the same element φ ∈
Sect(ΓK ,ΠXK

). Let Zα (respectively, Zβ) be the pull-back of ZX → X via α (respectively,
β). Thus, Zα and Zβ are hyperbolic curves over K. Moreover, since the action of ΓK on
ΔZα

(respectively, ΔZβ
) is determined by composing φ with ρZ , it follows that there exists

some isomorphism ψ : ΔZα

∼= ΔZβ
such that (i) ψ is compatible with the respective outer

ΓK -actions; (ii) ψ preserves and induces the identity between the quotients ΔZα
→ HX ,

ΔZβ
→ HX . Thus, by Theorem 16.5 (in fact, really, all we need is Theorem A of [Mzk2]),

it follows that ψ arises from some isomorphism Zα
∼= Zβ which is compatible with and

induces the identity on the inclusions Zα ↪→ XK , Zβ ↪→ XK . But this clearly implies that
α = β, thus completing the proof of the Theorem. ©

Remark. Note that in fact, in the proof of Theorem 19.1, we really only used the weaker
results of [Mzk2] – i.e., we did not need to use Theorem A of the present paper. On the
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other hand, at the time that [Mzk2] was written, the author was unaware of Theorem 19.1,
which is the primary reason that Theorem 19.1 did not appear in [Mzk2]. Note also that
although Theorem 19.1 implies a corresponding profinite result, the profinite result can
be proven much more easily, by using the “Kummer exact sequence” for the Jacobian of
XK . Finally, it should be remarked that the argument employed in the proof of Theorem
19.1 (as well as the Kummer sequence argument just mentioned) have been well-known
for some time (see, e.g., [Naka2]). The main reason that Theorem 19.1 was included in
this paper was that the author just wanted to make explicit that a pro-p injectivity result
(such as Theorem 19.1) could now be proven.

APPENDIX: A Grothendieck Conjecture-Type Result for

Certain Hyperbolic Surfaces

Section a0: Introduction

In this Appendix, we show how Theorem A (cf. the Introduction) can be used to
prove a Grothendieck Conjecture-type result for certain types of surfaces. The surfaces
considered are families of (smooth) hyperbolic curves that are parametrized by hyperbolic
curves (cf. Definition a2.1). We call such surfaces hyperbolically fibred. Our notation is
similar to that of the rest of the paper, except that since here we consider only profinite
(i.e., not pro-p) fundamental groups, in this Appendix, we will write ΠXK

for the profinite
fundamental group of XK :

Notation: If K is a field and XK is a K-scheme, we denote by ΠXK

def= π1(XK) the
fundamental group of XK (for some choice of base-point), and by ΓK the absolute Galois
group of K. Then we have a natural morphism ΠXK

→ ΓK whose kernel ΔX ⊆ ΠXK
is

the geometric fundamental group π1(XK ⊗K K) (where K is an algebraic closure of K).

Our main theorem is the following:

Theorem D. Let K be sub-p-adic (cf. Definition 15.4 (i)). Let XK and YK be
hyperbolically fibred surfaces over K. Let IsomK(XK , YK) be the set of K-isomorphisms
(in the category of K-schemes) between XK and YK. Let IsomΓK (ΠXK

,ΠYK
) be the set of

continuous group isomorphisms ΠXK
→ ΠYK

over ΓK , considered up to composition with
an inner automorphism arising from ΔY . Then the natural map

IsomK(XK , YK) → IsomΓK (ΠXK
,ΠYK

)
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is bijective.

This Theorem is given as Theorem a2.4 in the text.

We remark that:

(1) Theorem D above is (modulo a certain technical result – Lemma a1.1)
essentially derived from Theorem A. Note that one needs the full power
of the “Hom version” of the Grothendieck Conjecture for hyperbolic
curves (i.e., Theorem A) in order to prove an “Isom-type result” for
surfaces (i.e., Theorem D above). That is to say, the “Isom version”
of Theorem A of the present paper – i.e., Theorem A of [Mzk2] – is
not sufficient to prove Theorem D above. Moreover, even with the
“Hom version” of the Grothendieck Conjecture for hyperbolic curves
(i.e., Theorem A), at the present time, I am unable to prove a “Hom
version” of Theorem D.

(2) One might ask whether Theorem D can be extended to hyperbolically
fibered varieties (i.e., varieties obtained as successive fibrations of hy-
perbolic curves) of higher dimension. The problem is that just as we
needed (see Remark (1)) the “Hom version” in dimension one to prove
an “Isom-type result” in dimension two, we would need a “Hom-type
result” in dimension two – which is currently not available – in order
to prove an “Isom-type result” in, say, dimension three. Thus, at the
present time, we are unable to advance beyond dimension two.

(3) Since Theorem A is valid in the pro-p case as well, one might ask why one
cannot prove a pro-p version of Theorem D above. The problem is that
the process of passing to the maximal pro-p quotient is not well-behaved
with respect to fibrations. That is to say, if XK → X ′

K is a family of
hyperbolic curves parametrized by a hyperbolic curve (as in Definition
a2.1), then the maximal pro-p quotient of the fundamental group of
the geometric generic fiber of XK → X ′

K does not map injectively (in
general) to the maximal pro-p quotient of ΔX . Thus, any attempt to
prove a pro-p version of Theorem D by means of the techniques employed
here would result in a rather unnatural theorem.

(4) Since Theorem A admits various truncated versions (cf. the Introduc-
tion) as well, one might ask why one cannot prove a truncated version
of Theorem D. The problem here is the same as the problem that arises
when one tries to prove a pro-p result: i.e., truncating is not well-behaved
with respect to fibrations.

(5) To a slight extent, the content of Theorem D above overlaps with recent
results of H. Nakamura and N. Takao (see Theorem A and Corollary B
of [NT]).
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Section a1: A Key Lemma

In this Section, we prove a simple technical lemma which will be the key technical
ingredient that allows us to extend Theorem A to the case of surfaces. Let K be an
algebraically closed field of characteristic zero. Let X and Y be hyperbolic curves over K
(cf. Section 0 for a definition of this term).

Lemma a1.1. Let φ : X → Y be a finite K-morphism. Let ψ : ΠXK
→ ΠYK

be the
induced morphism on fundamental groups. Suppose that Ker(ψ) is topologically finitely
generated. Then φ is étale.

Proof. By replacing Y by the finite étale covering of Y corresponding to Im(ψ) ⊆ ΠYK
,

we may assume that ψ is surjective. Under this assumption, φ is étale if and only if φ is
an isomorphism. Thus, it suffices to assume that:

(1) Ker(φ) is topologically finitely generated; and

(2) φ is not an isomorphism (hence has degree > 1)

and derive a contradiction.

Let Y ′ → Y be a finite étale covering Y , where Y ′ is connected. Let X ′ def= X ×Y Y ′.
Then X ′ → X is finite étale, and it follows from the assumption that ψ is surjective that
X ′ is connected. Since Y is hyperbolic, it follows that for a suitable choice of Y ′ → Y , Y ′

will have genus ≥ 2. Thus, by replacing our original X → Y by X ′ → Y ′, we may assume
that X ′ and Y ′ have genus ≥ 2.

Since X → Y is assumed to have degree > 1, it follows that gX (the genus of X)
is strictly greater than gY (the genus of Y ). Let Y ′ → Y be a finite étale covering of
degree d such that Y ′ is connected, and Y ′ → Y extends to an étale covering over some
compactification of Y . Then the Riemann-Hurwitz formula implies that, as Y ′ → Y varies,
gY ′ (which we think of as a function of d) is equal to d(gY − 1) + 1. On the other hand,
if X ′ def= X ×Y Y ′, then (again by the Riemann-Hurwitz formula) gX ′ = d(gX − 1) + 1.
Thus, it follows that as d → ∞, the difference gX ′ − gY ′ → ∞.

Now let HX ′ denote the first homology group of the compactification of X ′ with
coefficients in Zp (for some prime number p which will be fixed throughout the discussion).
Then ψ induces a surjection H ′

ψ : HX ′ → HY ′ . Thus, Ker(H ′
ψ) is a free Zp-module of rank

2(gX ′ − gY ′). On the other hand, any topological generators of Ker(ψ) clearly define
a set of Zp-generators of Ker(H ′

ψ). But this implies that rankZp(Ker(H ′
ψ)) is bounded,

independently of Y ′ → Y , which contradicts the fact that rankZp(Ker(H ′
ψ)) = 2(gX ′ −

gY ′) → ∞ as d → ∞. This contradiction completes the proof. ©
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Section a2: The Main Theorem

Let K be a field of characteristic zero. Let XK be a surface over K, by which we
mean that XK is a smooth (geometrically connected) variety over K of dimension two.

Definition a2.1. We shall say that XK is a hyperbolically fibred surface if the following
condition holds: There exists a hyperbolic curve X ′

K over K, together with a smooth,
proper, connected morphism XK → X ′

K of relative dimension one such that XK embeds
as an open subvariety of XK satisfying the following conditions: (i) XK −XK is a divisor
in XK which is étale over X ′

K ; (ii) the geometric fibers of XK ⊆ XK → X ′
K are hyperbolic

curves.

If XK is a hyperbolically fibred surface, then we shall refer to XK → X ′
K (as above)

as a parametrizing morphism for XK .

Note that given a hyperbolically fibered surface XK , in general, there can exist more than
one parametrizing morphism for XK . If XK → X ′

K is a parametrizing morphism for
XK , and FΩ ⊆ XK is a fiber of this morphism (over some point of XK(Ω) valued in an
algebraically closed field Ω), then we have an exact sequence of fundamental groups:

1 → ΠFΩ
→ ΠXK

→ ΠX ′
K
→ 1

Note that since FΩ and X ′
K are hyperbolic curves, it follows that ΠFΩ

and ΠX ′
K

(hence
also ΠXK

) are topologically finitely generated.

Now let K be sub-p-adic (cf. Definition 15.4 (i)) (for some prime number p), and let
XK and YK be hyperbolically fibred surfaces over K. Let

φ : ΠXK
→ ΠYK

be a continuous group isomorphism over ΓK . We would like to show that φ arises geomet-
rically.

Let ζY : YK → Y ′
K be a parametrizing morphism for YK . Then by composing φ

with π1(ζY ), we obtain a continuous surjection ΠXK
→ ΠY ′

K
. By Theorem A, it follows

that this surjection arises geometrically, from some morphism XK → Y ′
K . Thus, we may

regard XK and YK as objects over Y ′
K . Let ZK be the normalization of Y ′

K in XK . Thus,
the morphism XK → Y ′

K factors through δ : ZK → Y ′
K . Observe that ZK is a smooth,

geometrically connected (since XK is geometrically connected over K) curve over K, and
that ZK → Y ′

K is finite. (In particular, since Y ′
K is hyperbolic, it follows that ZK is also

hyperbolic.) Moreover, it follows from the definition of ZK that the morphism ΠXK
→

ΠZK
induced by XK → ZK is surjective. This implies that Ker(π(δ)) is a quotient of

Ker(ΠXK
→ ΠY ′

K
) ∼= Ker(ΠYK

→ ΠY ′
K

), which (by the definition of a hyperbolically fibred
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surface) is topologically finitely generated. Thus, it follows that Ker(π(δ)) is topologically
finitely generated. But then Lemma a1.1 implies that ZK → Y ′

K is étale. On the other
hand, since ΠXK

→ ΠY ′
K

is surjective, we thus see that ZK → Y ′
K must be an isomorphism.

In particular, we thus conclude that the generic fiber of XK → Y ′
K is smooth, geometrically

connected, and of dimension one.

In fact, the argument of the preceding paragraph can be applied more generally to
coverings of XK , as follows: Let Ỹ ′

K → Y ′
K be a finite étale covering such that Ỹ ′

K is
geometrically connected over K. Let ỸK → YK ×Y ′

K
Ỹ ′

K be a finite étale covering such that

ỸK → Ỹ ′
K is geometrically connected. Let X̃K → XK be the covering corresponding (via

φ) to ỸK → YK . Thus, X̃K → XK factors through X̃K → XK ×Y ′
K

Ỹ ′
K . Then I claim that

X̃K → Ỹ ′
K is geometrically connected. Indeed, this follows by the same argument as that

employed in the preceding paragraph: Namely, we simply observe that Π
X̃K

→ Π
Ỹ ′

K

is

isomorphic to Π
ỸK

→ Π
Ỹ ′

K

, which is surjective with topologically finitely generated kernel.

This proves the claim. Let L be the function field of Y ′
K ; let L be its algebraic closure.

Note that the natural map Spec(L) → Y ′
K factors through Ỹ ′

K . Moreover, the above claim
implies that if we base-change X̃K → Ỹ ′

K via Spec(L) → Ỹ ′
K , the resulting X̃K×

Ỹ ′
K

Spec(L)
is connected.

Now let us reinterpret the conclusions of the preceding paragraph in terms of funda-
mental groups. Let ηY ′ be the generic point of Y ′

K . Let YηY ′
def= YK ×Y ′

K
ηY ′ ; XηY ′

def=
XK ×Y ′

K
ηY ′ . Then what we did in the preceding paragraph implies precisely that the

morphism

Ker(π1(XηY ′ ) → π1(ηY ′)) → Ker(π1(YηY ′ ) → π1(ηY ′)) = Ker(ΠYK
→ ΠY ′

K
)

(induced by φ) is surjective. Thus, we see that by composing the natural surjection of
π1(XηY ′ ) onto ΠXK

with φ, we obtain a continuous surjective group homomorphism

φηY ′ : ΠXη
Y ′

→ ΠYη
Y ′

over ΓηY ′ (where we regard XηY ′ and YηY ′ as curves over ηY ′). Now we would like to
apply Theorem A again. This Theorem tells us that φηY ′ arises geometrically from some
ηY ′ -morphism XηY ′ → YηY ′ .

Remark. Note that in the argument of the preceding three paragraphs, it was absolutely
essential to invoke Lemma a1.1 before we could apply Theorem A. In fact, if the variety
“on the left” (i.e., in this case, XηY ′ ) is not geometrically connected over the base field
(i.e., in this case, L), then it is not difficult to see that Theorem A does not hold. Indeed,
to construct such a counterexample, suppose that YK is proper, and let HK ⊆ YK be a
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hyperplane section (with respect to some projective embedding of YK) such that HK is
smooth and geometrically connected over K, and π1(HK) → π1(YK) is surjective. (Such
an HK exists by the Lefshetz hyperplane theorem.) Write ηH for the generic point of
HK , and take for our “XηY ′ ” any hyperbolic curve over ηH . Then note that (if HK is
sufficiently generic so that every fiber of HK → Y ′

K contains at least one point at which
HK → Y ′

K is étale, then) the induced morphism π1(ηH) → π1(YηY ′ ) is also surjective, so we
get a surjective morphism π1(XηY ′ ) → π1(YηY ′ ) (by composing the (necessarily surjective)
structure morphism π1(XηY ′ ) → π1(ηH) with π1(ηH) → π1(YηY ′ )). But this surjective
morphism does not arise from a dominant morphism XηY ′ → YηY ′ .

This completes the portion of the proof which is an application of (the nontrivial, sur-
jectivity part of) Theorem A. The remainder of the proof will consists of using elementary
algebraic geometry to show that the morphism XηY ′ → YηY ′ constructed above extends to
a morphism XK → YK .

Lemma a2.2. The morphism XηY ′ → YηY ′ above extends to a morphism XK → YK .

Proof. First, observe that there exists a finite étale covering VK → YK with the following
properties:

(1) VK is a hyperbolically fibered surface that admits a parametrizing mor-
phism VK → V ′

K that fits into a commutative diagram:

VK −→ V ′
K⏐⏐� ⏐⏐�

YK −→ Y ′
K

(2) The fibers of VK → V ′
K have genus ≥ 2.

Let UK → XK be the finite étale covering that corresponds (via φ) to VK → YK . Let
V K → V ′

K be the family of proper hyperbolic curves that compactifies VK → V ′
K (as in

Definition a2.1). Write ηV ′ for the generic point of V ′
K . Note that there exists a natural map

UK → V ′
K covering XK → Y ′

K , and that both UK and VK are geometrically connected over
ηV ′ (cf. the argument used above to show that X̃K → Ỹ ′

K is geometrically connected).
Thus, we may form (geometrically connected) ηV ′ -curves UηV ′ , VηV ′ . Moreover, by the
definition of UK , we have a commutative diagram

UηV ′ −→ VηV ′ −→ V ηV ′⏐⏐� ⏐⏐�
XηY ′ −→ YηY ′
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Thus, in particular, we obtain a morphism UηV ′ → V ηV ′ (over ηV ′). I claim that this
morphism extends to a morphism UK → V K . Indeed, by the elementary theory of surfaces
– “elimination of indeterminacy” (see, e.g., Theorem 5.5 of Chapter V of [Harts]) – it follows
that there exists some ŨK → UK (obtained by successively blowing up smooth points) such
that the birational transformation from UK to V K defined by UηV ′ → V ηV ′ extends to a
morphism ŨK → V K . On the other hand, any exceptional curve in ŨK necessarily maps
into a fiber of V K → V ′

K (this follows since UK → V ′
K is already a morphism). Thus, any

exceptional P1 in ŨK maps quasi-finitely into a fiber of V K → V ′
K (which will always be a

smooth, proper, hyperbolic curve) – which is clearly absurd. This contradiction completes
the proof of the claim.

Thus, we have a morphism UK → V K . Let Y K → Y ′
K compactify YK → Y ′

K (as in
Definition a2.1). Then clearly VK → YK extends to a finite (in general, ramified) morphism
V K → Y K . Thus, to summarize, we have a rational map from XK to Y K which is covered
by a morphism UK → V K , where UK (respectively, V K) is finite over XK (respectively,
Y K). By elementary algebraic geometry, this implies that we get a morphism XK → Y K

(covered by UK → V K).

To complete the proof of the Lemma, we must verify that this morphism XK → Y K

factors through YK . To do this, we simply choose VK → YK in the above argument
such that VK is ramified, with very large (say, compared to the degree of XK → Y K)
ramification index, over all of the divisor Y K − YK . (Note that such coverings exist, by
the exact sequence of fundamental groups following Definition a2.1, plus the well-known
fact from topology that the fundamental group of a compact surface with finitely many
punctures has coverings with arbitrarily large ramification index at those punctures.) Then
since XK → Y K is covered by UK → V K , and UK → XK is finite étale, we see that we
obtain a contradiction, unless XK → Y K maps into YK . Thus, we conclude that we have
a morphism XK → YK , as desired. ©

Let us summarize what we have done so far. We started with a continuous group
isomorphism

φ : ΠXK
→ ΠYK

over ΓK . From φ, we constructed a K-morphism XK → YK , which we denote by α. Since
φ is invertible, we thus see that we have also constructed a K-morphism β : YK → XK

from φ−1. Since everything we have been doing is functorial, it follows that π1(β ◦ α)
is the identity on ΠXK

(up to composition with an inner automorphism arising from an
element of ΔX). Thus, by Lemma a2.3 below, we conclude that β ◦ α is the identity on
XK . Similarly, α ◦ β is the identity on YK .

Lemma a2.3. Let γ : XK → XK be a K-morphism such that π1(γ) is the identity
on ΠXK

(up to composition with an inner automorphism arising from an element of ΔX).
Then γ is the identity.
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Proof. First observe that π1(γ) is trivially compatible (up to composition with a geometric
inner automorphism) with the map induced by π1’s by XK → X ′

K . Thus, (the injectivity
part of) Theorem A tells us that γ is compatible with XK → X ′

K . Let ηX ′ be the
generic point of X ′

K . Then γ defines a morphism γηX′ : XηX′ → XηX′ which induces the
identity (up to composition with a geometric inner automorphism) on π1’s. Applying (the
injectivity part of) Theorem A again then tells us that γηX′ is the identity. Thus, it follows
that γ is the identity, as desired. ©

Thus, α and β are isomorphisms. Moreover, it follows from the construction of α that
π1(α) coincides with φ (up to composition with an inner automorphism arising from an
element of ΔY ), and it follows from Lemma a2.3 that α is the unique such K-isomorphism
XK

∼= YK . Thus, we see that we see that we have proven the following result:

Theorem a2.4. Let K be sub-p-adic (cf. Definition 15.4 (i)). Let XK and YK be
hyperbolically fibred surfaces over K. Let IsomK(XK , YK) be the set of K-isomorphisms
(in the category of K-schemes) between XK and YK. Let IsomΓK (ΠXK

,ΠYK
) be the set of

continuous group isomorphisms ΠXK
→ ΠYK

over ΓK , considered up to composition with
an inner automorphism arising from ΔY . Then the natural map

IsomK(XK , YK) → IsomΓK (ΠXK
,ΠYK

)

is bijective.
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[Jou] J.-P. Jouanolou, Théorèmes de Bertini et Applications, Progress in Mathematics 42,
Birkhäuser (1983).

[Kato] K. Kato, Logarithmic Structures of Fontaine-Illusie, Proceedings of the First JAMI
Conference, Johns-Hopkins University Press (1990), pp. 191-224.

[Knud] F. F. Knudsen, The Projectivity of the Moduli Space of Stable Curves, II, Math. Scand.
52 (1983), pp. 161-199.

[Kobl] N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta Functions, Graduate Texts in
Mathematics 58, Springer Verlag (1977).

[Lang] S. Lang, Abelian Varieties, Springer Verlag (1983).

[Mats] H. Matsumura, Commutative Algebra (Second Edition), The Benjamin/Cummings
Publishing Company (1980).
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