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§ 3.10. The technique of tripodal transport

In the present §3.10, we re-examine inter-universal Teichmüller theory once

again, this time from the point of view of the technique of tripodal transport. Various

versions of this technique may also be seen in previous work of the author concerning

· p-adic Teichmüller theory,

· scheme-theoretic Hodge-Arakelov theory, and

· combinatorial anabelian geometry.

The proof given by

· Bogomolov [cf. [ABKP], [Zh], [BogIUT], as well as the discussion of §4.3,
(iii), below] of the geometric version of the Szpiro Conjecture over the complex

numbers

may also be re-interpreted from the point of view of this technique.

c⃝ 2020 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
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(i) The notion of tripodal transport: The general notion of tripodal trans-

port may be summarized as follows [cf. also Fig. 3.21 below]:

(1
trp

) One starts with a “nontrivial property” of interest [i.e., that one wishes to

verify!] associated to some sort of given arithmetic holomorphic structure —

such as a hyperbolic curve or a number field [cf. the discussion of §2.7, (vii)].

(2
trp

) One observes that this nontrivial property of interest [i.e., associated to the

given arithmetic holomorphic structure] may be derived by combining a “relatively

trivial” property, again associated to the given arithmetic holomorphic structure,

with some sort of alternative property of interest.

(3
trp

) One establishes some sort of parallel transport mechanism — which is typ-

ically not compatible with the given arithmetic [i.e., scheme-/ring-theoretic!] holo-

morphic structure— that allows one to reduce the issue of verifying the alternative

property of interest for the given arithmetic holomorphic structure to a “corre-

sponding version” in the case of the tripod [i.e., the projective line minus three

points] of this alternative property of interest.

(4
trp

) One verifies the alternative property of interest in the case of the tripod.

(5
trp

) By combining (1
trp

), (2
trp

), (3
trp

), (4
trp

), one concludes that the original non-

trivial property of interest associated to the given arithmetic holomorphic

structure does indeed hold, as desired.
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Here, we note that the steps (3
trp

), (4
trp

) are often very closely related, and, indeed,

at times, it is difficult to isolate these two steps from one another. This sort of argument

might strike some readers at first glance as “mysterious” or “astonishing” in the sense

that ultimately, one is able to

conclude the original nontrivial property of interest [cf. (1
trp

)] associated to

the given arithmetic holomorphic structure [cf. (5
trp

)] despite the fact

that the nontrivial content of the argument centers around the arithmetic

surrounding the tripod [cf. (3
trp

), (4
trp

)], in sharp contrast to the fact that

the argument only requires the use of a “relatively trivial” observation con-

cerning the given arithmetic holomorphic structure [cf. (2
trp

)].

Perhaps it is most natural to regard this sense of “mysteriousness” or “astonishment”

as a reflection of the potency of the parallel transport mechanism [cf. (3
trp

)] that

is employed. This “potency” is, in many of the examples discussed below, derived as

a consequence of various rigidity properties, such as anabelian properties. Such

rigidity properties may only be derived by
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applying the mechanism of parallel transport via rigidity properties —

not to relatively simple “types of mathematical objects” such as vector spaces

or modules, as is typically the case in classical instances of parallel transport!

— but rather to complicated mathematical objects [cf. the discussion of

[IUTchIV], Remark 3.3.2], such as the sort of Galois groups/étale fundamental

groups that occur in anabelian geometry, i.e., mathematical objects whose

intrinsic structure is sufficiently rich to allow one to establish rigidity proper-

ties that are sufficiently “potent” to compensate for the “loss of structure”

that arises from sacrificing compatibility with classical scheme-/ring-theoretic

structures.

Here, we note that it is necessary to sacrifice compatibility with classical scheme-/ring-

theoretic structures precisely because such structures typically constitute a fundamen-

tal obstruction to relating the arithmetic surrounding the given arithmetic holomor-

phic structure to the arithmetic surrounding the tripod. A typical example of this sort

of “fundamental obstruction” may be seen by considering, for instance, the case of two

[scheme-theoretically!] non-isomorphic proper hyperbolic curves over an algebraically

closed field of characteristic zero, which, nonetheless, have isomorphic étale fundamen-

tal groups. This point of view, i.e., of overcoming the sort of “fundamental obstruction”

to parallel transport that arises from imposing the restriction of working within a fixed

scheme/ring theory, is closely related to the introduction of the notions of Frobenius-

like and étale-like structures — cf. the discussion of §2.7, (ii), (iii); §2.8.
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Additional observations:

· The technique of tripodal transport constitutes a unifying theme/efficient mecha-

nism for documenting the remarkably similar conceptual framework underlying

various aspects of my work since the early 1990’s.

· The technique of tripodal transport shows explicitly how anabelian geometry is by

no means an isolated topic, but rather a topic that inextricably intertwined with

the rest of arithmetic geometry.

· The parallel transport portion of tripodal transport may be understood as a mech-

anism for documenting structures common — i.e., “∧” — to distinct holomorphic

structures. Such common structures may then be used to construct “containers” for

the distinct holomorphic structures that allow one to compare the distinct holomorphic

structures. One prime example of such a mechanism is anabelian geometry!

· The technique of tripodal transport may be regarded as a reflection of the the fact

that the tripod may be regarded as a sort of geometric representation of the inter-

twining between addition and multiplication in a ring structure — cf. the theory

of BGT! — hence is of fundamental importance to arithmetic geometry.
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(ii) Inter-universal Teichmüller theory via tripodal transport: We begin

our discussion by observing that, when viewed from the point of view of the notion

of tripodal transport, inter-universal Teichmüller theory may be recapitulated as

follows:

The fundamental log volume estimate (12
est

) [cf. (1
trp

)] is obtained in the

argument discussed in §3.7, (ii) [cf. (5
trp

)], by combining [cf. (9
est

), (10
est

),

(11
est

)] a relatively simple argument [cf. (2
trp

)] carried out in the arithmetic

holomorphic structure of the RHS of the Θ-link [cf. (1
est

), (7
est

)], involving

relatively simple operations such as the formation of the holomorphic hull [cf.

(6
est

), (7
est

), (8
est

)], with the parallel transport mechanism [cf. (3
trp

), as

well as the discussion of §3.1, (iv), (v)] furnished by the multiradial repre-

sentation [cf. (2
est

), (3
est

), (4
est

), (5
est

)], which is established by considering

various properties of objects [cf. §3.4, §3.6], such as the theta function on the

Tate curve [cf. §3.4, (iii), (iv); Fig. 3.9], on the LHS of the Θ-link [cf. (4
trp

)].

Here, we recall from the discussion of §3.4, (iii), (iv); Fig. 3.9, that

the theory surrounding the theta function on the Tate curve may be thought

of as a sort of function-theoretic representation of the p-adic arithmetic

geometry of a copy of the tripod for which the cusps “0” and “∞” are subject

to the involution symmetry that permutes these two cusps and leaves the cusp

“1” fixed.
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Also, we recall from the discussion of §3.7, (i) [cf. also the discussion of the prop-

erties “IPL”, “SHE”, “APT”, “HIS” in [IUTchIII], Remark 3.11.1] that the parallel

transport mechanism furnished by the multiradial representation revolves around the

following central property:

the algorithm that yields the multiradial representation converts any collection

of input data [i.e., not just the codomain data (aq), (bq), (cq) of the Θ-link!]

that is isomorphic to the domain data (aΘ), (bΘ), (cΘ) of the Θ-link — i.e., in

somewhat more technical terminology [cf. [IUTchII], Definition 4.9, (viii)], any

FI×µ-prime-strip — into output data that is expressed in terms of the

arithmetic holomorphic structure of the input data, i.e., of the codomain

of the Θ-link.

Finally, at a more technical level, we recall from §3.3, (vi); §3.4, (ii); §3.4, (iii), (iv),
that this parallel transport mechanism is established by applying

· the theory of the étale theta function developed in [EtTh];

· the theory of [local and global] mono-anabelian reconstruction developed

in [AbsTopII], [AbsTopIII].

Here, it is of interest to observe that both the theory of elliptic cuspidalization,

which plays an important role in [EtTh], and the theory of Belyi cuspidalization,

which plays an important role in [AbsTopII], [AbsTopIII], may be regarded as essen-

tially formal consequences of the fundamental anabelian results obtained in [pGC].

The rigidity properties developed in [EtTh] also depend, in a fundamental way, on the

interpretation [i.e., as rigidity properties of the desired type!] given in [EtTh] of the

theta symmetries of the theta function on the Tate curve.
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(iii) p-adic Teichmüller theory via tripodal transport: When viewed from

the point of view of the notion of tripodal transport, a substantial portion of the p-adic

Teichmüller theory of [pOrd], [pTch], [pTchIn] may be summarized as follows:

One constructs a theory of canonical indigenous bundles, canonical Frobe-

nius liftings, and associated canonical Galois representations into PGL2(−)
[for a suitable “(−)” — cf. [pTchIn], Theorems 1.2, 1.4, for more details] for

quite general p-adic hyperbolic curves [cf. (1
trp

), (2
trp

), (5
trp

)] by establishing

a parallel transport mechanism [cf. (3
trp

)] that allows one to transport

similar canonical objects associated to the tautological family of elliptic curves

over the tripod [cf. (4
trp

)].

Here, we recall that, prior to [pOrd], the existence of such canonical objects associated

to a p-adic hyperbolic curve was only known in the case of Shimura curves, i.e., such

as the tripod. From the point of view of the notion of tripodal transport, it is also of

interest to observe that:

The notion of an ordinary Frobenius lifting [cf. [pTchIn], Theorem 1.3],

which plays a central role in [pOrd], [pTch], [pTchIn], may be understood as a

sort of p-adic generalization of the most fundamental example of a Frobenius

lifting, namely, the endomorphism

T 7→ T p

[where T denotes the standard coordinate on the projective line] of the tripod

over a p-adic field. This endomorphism is equivariant with respect to the sym-

metry of the tripod which permutes the cusps “0” and “∞” and leaves the cusp

“1” fixed.
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At a more technical level, we recall that the parallel transport mechanism employed

in p-adic Teichmüller theory revolves around the following two fundamental technical

tools:

· the fact that the natural morphism from the moduli stack of nilcurves [i.e.,

pointed stable curves equipped with an indigenous bundle whose p-curvature

is square nilpotent] to the corresponding moduli stack of pointed stable curves

is a finite, flat, and local complete intersection morphism of degree p to

the power of the dimension of these moduli stacks [cf. [pTchIn], Theorem 1.1];

· various strong rigidity properties, with respect to deformation, that

hold precisely over the ordinary locus of the moduli stack of nilcurves, i.e.,

the étale locus of the natural morphism from the moduli stack of nilcurves to

the corresponding moduli stack of pointed stable curves.

In this context, it is of interest to observe, considering the fundamental role played by

such notions as differentials and curvature in the classical differential-geometric ver-

sion of parallel transport, that both of these fundamental technical tools rely on various

subtle properties of the p-curvature and Frobenius actions on differentials. This

relationship with differentials is also interesting from the point of view of the funda-

mental role played by the theory of [pGC] in the discussion of [EtTh], [AbsTopII], and

[AbsTopIII] in (ii), since differentials, treated from a p-adic Hodge-theoretic point

of view, play a fundamental role in [pGC]. Finally, we observe that although anabelian

results do not play any role in the parallel transport mechanism of p-adic Teichmüller

theory, it is interesting to note that p-adic Teichmüller theory has an important appli-

cation to absolute anabelian geometry [cf. [CanLift], §3, as well as the discussion

of [IUTchI], §I4; [IUTchII], Remark 4.11.4, (iii)].
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(iv) Scheme-theoretic Hodge-Arakelov theory via tripodal transport:

When viewed from the point of view of the notion of tripodal transport, the fundamen-

tal theorem of Hodge-Arakelov theory, i.e., the natural isomorphism reviewed

at the beginning of §3.9, (i) [cf. also Example 2.14.3; [HASurI]; [HASurII]], may be

understood as follows:

One verifies [cf. the discussion of [HASurI], §1.1] that the natural morphism

obtained by evaluating sections of an ample line bundle over the universal vec-

torial extension of an elliptic curve at torsion points [cf. the discussion at the

beginning of Example 2.14.3] is indeed an isomorphism [cf. (1
trp

), (5
trp

)] by

verifying that it is an isomorphism in the case of Tate curves by means of an

explicit computation involving derivatives of theta functions [cf. (4
trp

)] and

then proceeding to parallel transport this isomorphism in the case of Tate

curves to the entire compactified moduli stack of elliptic curves in characteris-

tic 0 by means of an explicit computation [the leading term portion of which is

reviewed in §3.9, (i)] of the degrees of the vector bundles on this compactified

moduli stack that constitute the domain and codomain of the natural morphism

under consideration [cf. (2
trp

), (3
trp

)].
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Here, we recall from the discussion of (ii) above; §3.4, (iii), (iv); Fig. 3.9, that

the theory surrounding the theta function on the Tate curve may be thought

of as a sort of function-theoretic representation of the [not necessarily p-

!]adic arithmetic geometry of a copy of the tripod for which the cusps “0” and

“∞” are subject to the involution symmetry that permutes these two cusps and

leaves the cusp “1” fixed.

In this context, it is also perhaps of interest to recall that there is an alternative approach

to the parallel transport mechanism discussed above [i.e., computing degrees of vector

bundles on the compactified moduli stack of elliptic curves], namely, the parallel trans-

port mechanism applied in the proof of [HASurII], Theorem 4.3, which exploits various

special properties of the Frobenius and Verschiebung morphisms in positive char-

acteristic. Finally, we observe that although the scheme-theoretic Hodge-Arakelov

theory of [HASurI], [HASurII] is not directly related, in a logical sense, to anabelian

geometry, it nevertheless played a central role, as was discussed in detail in §3.9, in

motivating the development of inter-universal Teichmüller theory, which may be

understood as a sort of reformulation of the essential content of the scheme-theoretic

Hodge-Arakelov theory of [HASurI], [HASurII] via techniques based on anabelian ge-

ometry.
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Example 2.14.3. Finite discrete approximation of harmonic analysis on

complex tori. Let E be an elliptic curve over a field F of characteristic zero, E† → E

the universal extension of E, η ∈ E(F ) a [nontrivial] torsion point of order 2, l ̸= 2 a

prime number. Write E[l] ⊆ E for the subscheme of l-torsion points, L def
= OE(l · [η])

[where “[η]” denotes the effective divisor on E determined by η]. Here, we recall that

E† → E is an A1-torsor [so E[l] may also be regarded as the subscheme ⊆ E† of l-torsion

points of E†]. In particular, it makes sense to speak of the sections Γ(E†,L|E†)<l ⊆
Γ(E†,L|E†) of L over E† whose relative degree, with respect to the morphism E† → E,

is < l. Then the simplest version of the fundamental theorem of Hodge-Arakelov

theory states that evaluation at the subscheme of l-torsion points E[l] ⊆ E† yields

a natural isomorphism of F -vector spaces of dimension l2

Γ(E†,L|E†)<l ∼→ L|E[l]

[cf. [HASurI], Theorem Asimple].
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(v) Combinatorial anabelian geometry via tripodal transport: Let F be

a number field, F an algebraic closure of F , X a hyperbolic curve over F , n ≥ 1 an

integer. Write Xn for the n-th configuration space of X [cf., e.g., [MT], Definition 2.1,

(i)]; Πn for the étale fundamental group of Xn×F F [for a suitable choice of basepoint];

Π
def
= Π1; Π

tpd for “Π” in the case where X is the tripod [i.e., the projective line minus

three points]; GF
def
= Gal(F/F ); OutFC(Πn) for the group of outer automorphisms of

Πn satisfying certain technical conditions [i.e., “FC”] involving the fiberwise subgroups

and cuspidal inertia subgroups [cf. [CombCusp], Definition 1.1, (ii), for more details].

Thus, it follows from the definition of “OutFC” that the natural projection Xn+1 → Xn

given by forgetting the (n+ 1)-st factor determines a homomorphism

ϕn+1 : OutFC(Πn+1) → OutFC(Πn)

[cf. the situation discussed in [NodNon], Theorem B]; the natural action of GF on

Xn ×F F determines an outer Galois representation

ρn : GF → OutFC(Πn)

[cf. the situation discussed in [NodNon], Theorem C]. Write ρ
def
= ρ1, ρ

tpd for “ρ” in the

case where X is the tripod.
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Then

the proof of the injectivity [cf. [NodNon], Theorem C] of

ρ : GF → OutFC(Π)

given in [NodNon] is perhaps the most transparent/prototypical example of

the phenomenon of tripodal transport.

Indeed, this proof may be summarized as follows:

One makes the [“relatively trivial”! — cf. (2
trp

)] observation that ρ admits a

factorization

ρ = ϕ2 ◦ ϕ3 ◦ ρ3 : GF → OutFC(Π3) → OutFC(Π2) → OutFC(Π)

— which allows one to reduce [cf. (2
trp

)] the verification of the desired injectivity

of ρ [cf. (1
trp

), (5
trp

)] to the verification of the injectivity of ϕ23
def
= ϕ2 ◦ ϕ3 [cf.

(3
trp

), (4
trp

)] and ρ3 [cf. (4
trp

)].
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Then:

· One observes that the injectivity of ϕ23 depends only on the type

“(g, r)” [i.e., the genus and number of punctures] of X, hence may

be verified in the case of — i.e., may be “parallel transported”

[cf. (3
trp

)] to the case of — a totally degenerate pointed stable

curve, i.e., a pointed curve obtained by gluing together some collec-

tion of tripods along the various cusps of the tripods [cf. (4
trp

)]. On

the other hand, in the case of such a totally degenerate pointed stable

curve, the desired injectivity [i.e., of the analogue of “ϕ23”] may be

verified by applying the purely combinatorial/group-theoretic tech-

niques of combinatorial anabelian geometry developed in [Com-

bCusp], [NodNon] [cf. [NodNon], Theorem B].

· One verifies the injectivity of ρ3 by applying a certain natural ho-

momorphism called the tripod homomorphism

τ : OutFC(Π3)→ OutFC(Πtpd)

[cf. [CbTpII], Theorem C, (ii)], which satisfies the property that

ρtpd = τ ◦ ρ3 : GF → OutFC(Π3) → OutFC(Πtpd) and hence allows

one to conclude the injectivity of ρ3 from the well-known injectivity

result of Belyi to the effect that ρtpd is injective [cf. (4
trp

)].
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Here, it is interesting to note, especially in light of the discussion of anabelian results

and differentials in the final portions of (i), (ii), (iii), the central role played by combi-

natorial anabelian geometry — i.e., in particular, various combinatorial versions of

the Grothendieck Conjecture such as [NodNon], Theorem A — in the parallel trans-

port mechanism discussed above. Such combinatorial versions of the Grothendieck

Conjecture concern group-theoretic characterizations of the decomposition of a pointed

stable curve into various irreducible components glued together along the nodes of the

curve. This sort of decomposition may be interpreted as a sort of discrete version

of the notion of a differential, i.e., which may be thought of as a decomposition of a

ring/scheme structure into infinitesimals. Finally, we emphasize that this proof of the

injectivity of ρ is a particularly striking example of the phenomenon of tripodal

transport, in the sense that the issue of relating the injectivity of ρ for an arbitrary

X to the injectivity of ρtpd, i.e., in the case of the tripod, seems, a priori, to be entirely

intractable, at least so long as one restricts oneself to morphisms between schemes [cf.

the discussion in the final portion of (i)].
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(vi) Tripodal transport and Bogomolov’s proof: Often, as in the examples

discussed in (ii), (iii), (iv), above, the tripod that appears in instances of the phe-

nomenon of tripodal transport is a tripod in which the cusps “0” and “∞” play a

distinguished, but symmetric role, which is somewhat different from the role played by

the cusp “1”. When considered from this point of view, the tripod may thought of

as the underlying scheme of the group scheme Gm [with its origin removed], hence, in

particular, as a sort of algebraic version of the topological circle S1. If one thinks of

the tripod in this way, i.e., as corresponding to S1, then the proof given by

Bogomolov [cf. [ABKP], [Zh], [BogIUT], as well as the discussion of §4.3, (iii),
below] of the geometric version of the Szpiro Conjecture over the complex num-

bers may also be understood as an instance, albeit in a somewhat generalized

sense, of the technique of tripodal transport.
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To explain further, we introduce notation as follows:

· Write Autπ(R) for the group of self-homeomorphisms R ∼→ R that commute

with translation by π ∈ R. Thus, if we think of S1 as the quotient R/(2π·Z), then
Autπ(R) may be understood as the group of self-homeomorphisms of R that lift

elements of the group Aut+(S1) of orientation-preserving self-homeomorphisms

of S1 that commute with multiplication by −1 on S1. In particular, we have a

natural exact sequence 1→ 2π · Z→ Autπ(R)→ Aut+(S1)→ 1.

· Write Autπ(R≥0) for the group of self-homeomorphisms R≥0
∼→ R≥0 that

stabilize and restrict to the identity on the subset π · N ⊆ R≥0.

· Write R|π| for the set of Autπ(R≥0)-orbits of R≥0 [relative to the natural

action of Autπ(R≥0) on R≥0]. Thus,

R|π| =
(∪

n∈N { [n · π] }
)
∪
(∪

m∈N { [(m · π, (m+ 1) · π)] }
)

— where we use the notation “[−]” to denote the element in R|π| determined

by an element or nonempty subset of R≥0 that lies in a single Autπ(R≥0)-orbit;

we use the notation “(−,−)” to denote an open interval in R≥0; we observe

that the natural order relation on R≥0 induces a natural order relation on R|π|.
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· Write δsup : Autπ(R) → R|π| for the map that assigns to α ∈ Autπ(R) the

element sup(δ(α)) ∈ R|π|, where we observe that

δ(α)
def
= { [ |α(x)− x| ] | x ∈ R } ⊆ R|π|

is a finite subset [cf. the definition of Autπ(R)!] of R|π|, and that [as is easily ver-

ified, by observing that for any β ∈ Autπ(R) and x, y ∈ R such that x ≤ y, there
exists a γ ∈ Autπ(R≥0) such that β(y)−β(x) = β((y−x)+x)−β(x) = γ(y−x)]
the assignments δ(−), δsup(−) are Autπ(R)-conjugacy invariant.

· Write SL2(R)∼ for universal covering of SL2(R). Thus, we have a natural

central extension of topological groups 1 → Z → SL2(R)∼ → SL2(R) → 1. By

composing the natural embedding S1 ↪→ R2× def
= R2 \ {(0, 0)} with the natu-

ral projection R2× � R2∠ def
= R2×/R>0, we obtain a natural homeomorphism

S1 ∼→ R2∠, hence [by considering the natural action of SL2(R) on R2×, R2∠]
natural actions

SL2(R) y S1; SL2(R)∼ y R

[where we think of R as the universal covering of S1 = R/(2π ·Z)], the latter of

which determines a natural injective homomorphism

SL2(R)∼ ↪→ Autπ(R)

[which, at times, we shall use to think of SL2(R)∼ as a subgroup of Autπ(R)]. We

may assume without loss of generality that the generator “1” of Z ↪→ SL2(R)∼

was chosen so as to act on R in the positive direction.
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· Write SL2(Z)∼
def
= SL2(R)∼×SL2(R) SL2(Z). Thus, we have a natural central

extension of discrete groups 1 → Z → SL2(Z)∼ → SL2(Z) → 1. One shows

easily [e.g., by considering the discriminant modular form, as in [BogIUT]] that

the abelianization of SL2(Z)∼ is isomorphic to Z, and hence that there exists a

unique surjective homomorphism

χ : SL2(Z)∼ � Z

that maps positive elements of Z ↪→ SL2(Z)∼ to positive elements of Z.

In some sense, the fundamental phenomenon that underlies Bogomolov’s proof is the

following elementary fact:

Whereas the SL2(Z)-conjugacy classes of the unipotent elements

τm
def
=

(
1 m

0 1

)
∈ SL2(Z)

differ for different positive integersm, the SL2(R)-conjugacy classes of these

elements coincide for different positive integers m.
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In the context of Bogomolov’s proof, if one thinks of SL2(Z) as the topological fun-
damental group of the moduli stack of elliptic curves over the complex numbers, then

such unipotent elements arise as the images in SL2(Z) — via the [outer] homomorphism

induced on topological fundamental groups by the classifying morphism associated to

a family of one-dimensional complex tori over a hyperbolic Riemann surface S of finite

type — of the natural generators of cuspidal inertia groups of the topological funda-

mental group of S. In this situation, the positive integer m then corresponds to the

valuation of the q-parameter at a cusp of S. Next, we recall [cf., e.g., [BogIUT], (B1)]

that unipotent elements of SL2(R) admit canonical liftings to SL2(R)∼. In par-

ticular, it makes sense to apply both δsup and χ to the canonical lifting τ̃m ∈ SL2(Z)∼

of τm. Since χ is a homomorphism, we have

χ(τ̃m) = m

[cf., e.g., [BogIUT], (B3)]. On the other hand, since δsup(−) is Autπ(R)- [hence, in

particular, SL2(R)∼-] conjugacy invariant, we have

δsup(τ̃m) < [π]

[cf., e.g., [BogIUT], (B1)] for arbitrary m.
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It is precisely by applying both χ and δsup(−) to a certain natural relation [arising from

the image in SL2(Z) of the “usual defining relation” of the topological fundamental

group of S] between elements ∈ SL2(Z) lifted to SL2(Z)∼ that one is able to derive the

geometric version of the Szpiro inequality, that is to say, to bound the height of

the given family of one-dimensional complex tori — i.e., more concretely, in essence, the

sum of the “m”’s arising from the various cusps of S [cf., e.g., [BogIUT], (B4)] — by a

number that depends only on the genus and number of cusps of S and not on the “m”’s

themselves [cf., e.g., [BogIUT], (B2), (B5)]. From the point of view of the technique of

tripodal transport, one may summarize this argument as follows:

one bounds the height [i.e., essentially, the sum of the “m”’s] of the given

family of one-dimensional complex tori [cf. (5
trp

)] — which is a reflection

of the holomorphic moduli of this family [cf. (1
trp

)] — by combining a

“relatively trivial” [cf. (2
trp

)] object χ arising from the holomorphic struc-

ture of the moduli stack of elliptic curves over the complex numbers [i.e.,

from the discriminant modular form] with the parallel transport mecha-

nism [cf. (3
trp

)] given by passing from the “holomorphic” SL2(Z), SL2(Z)∼

to the “real analytic” SL2(R), SL2(R)∼, i.e., in essence, by passing to the

Aut+(S1)-invariant geometry of S1, as reflected in the Autπ(R)-conjugacy
invariant map δsup : Autπ(R)→ R|π| [cf. (4

trp
)].
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From the point of view of the analogy [cf. the discussion of (ii) above; [BogIUT]]

between Bogomolov’s proof and inter-universal Teichmüller theory, we observe that:

· The canonical lifts discussed above of unipotent elements ∈ SL2(Z) to

SL2(Z)∼ correspond to the theory of the étale theta function [i.e., [EtTh]]

in inter-universal Teichmüller theory.

· The Aut+(S1)-invariant geometry of S1, as reflected in the Autπ(R)-
conjugacy invariant map δsup : Autπ(R) → R|π|, corresponds to the theory

of mono-analytic log-shells and related log-volume estimates [cf. (12
est

);

§3.7, (iv); [IUTchIV], §1, §2] in inter-universal Teichmüller theory. In partic-

ular, Aut+(S1)-/Autπ(R)-indeterminacies in Bogomolov’s proof — in which

both the additive [i.e., corresponding to unipotent subgroups of SL2(R)] and
multiplicative [i.e., corresponding to toral, or equivalently, compact subgroups

of SL2(R)] dimensions of SL2(R) are “confused” within the single dimen-

sion of S1 — correspond to the indeterminacies (Ind1), (Ind2), (Ind3) of

inter-universal Teichmüller theory.

· The role played by SL2(Z), SL2(Z)∼, χ corresponds to the role played by

the fixed arithmetic holomorphic structure of the RHS of the Θ-link [cf.

(1
est

), (6
est

), (7
est

), (8
est

), (9
est

), (10
est

), (11
est

)] in the argument of §3.7, (ii).
By contrast, the role played by SL2(R), SL2(R)∼, δsup(−) corresponds to the

role played by the multiradial representation [cf. (2
est

), (3
est

), (4
est

), (5
est

)]

in the argument of §3.7, (ii).
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In particular, one has natural correspondences

SL2(R), SL2(R)∼, δsup(−) ←→ [IUTchIII], Theorem 3.11;

SL2(Z), SL2(Z)∼, χ ←→ [IUTchIII], Corollary 3.12 (⇐= Theorem 3.11)

— i.e., where, more precisely, the RHS of the latter correspondence is to be under-

stood as referring to the derivation of [IUTchIII], Corollary 3.12, from [IUTchIII], The-

orem 3.11. These last two correspondences are particularly interesting in light of the

well-documented historical fact that the theory/estimates in Bogomolov’s proof related

to SL2(R), SL2(R)∼, δsup(−) were apparently already known to Milnor in the 1950’s

[cf. [MlWd]], while the idea of combining these estimates with the theory surround-

ing SL2(Z), SL2(Z)∼, χ appears to have been unknown until the work of Bogomolov

around the year 2000 [cf. [ABKP]].
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Moreover, these last two correspondences — and, indeed, the entire analogy between

Bogomolov’s proof and inter-universal Teichmüller theory — are also of interest in the

following sense:

Bogomolov’s proof only involves working with elements ∈ SL2(R), SL2(R)∼

that arise from topological fundamental groups, hence may be applied not only to

algebraic/holomorphic families of elliptic curves, but also to arbitrary topolog-

ical families of one-dimensional complex tori that satisfy suitable conditions

at the points of degeneration, i.e., “bad reduction”.

This aspect of Bogomolov’s proof is reminiscent of the fact that the initial Θ-data of

inter-universal Teichmüller theory [cf. §3.3, (i)] essentially only involves data that arises

from various arithmetic fundamental groups associated to an elliptic curve over a

number field. In particular, this aspect of Bogomolov’s proof suggests strongly that

perhaps, in the future, some version of inter-universal Teichmüller theory could be de-

veloped in which the initial Θ-data of the current version of inter-universal Teichmüller

theory is replaced by some collection of topological groups that satisfies conditions anal-

ogous to the conditions satisfied by the collection of arithmetic fundamental groups

that appear in the initial Θ-data of the current version of inter-universal Teichmüller

theory, but that does not necessarily arise, in a literal sense, from an elliptic curve over

a number field.


