Kummer quartics and associated symplectic 6-folds

5/25/23(Th) Univ. Milano Shigeru MUKAI Corrected on 10/11/24(M).

Abstract: Kondo(1998) described the automorphism group of the generic Jacobian Kummer surface Km(C) using a Conway-Borcherds chamber in the nef cone. As a sample of higher dimensional analogue, we describe the binational automorphism group of a certain holomorphic symplectic 6-fold associated with Km(C) using the Borcherds(2000) reflection group. Bir-Aut is generated by 864 involutions and an extended extraspecial group 2^{1+8} . 2 whose center is Rapagnetta(2007)'s involution.

§1 Motivation/Introduction

General Study Bir-Aut(IHS) similarly to Aut(K3), replacing the nef cone Nef(K3) with the movable cone Mov(IHS)

Peculiar (today) 1. Higher dimensional analogue of Kondo(1998)'s description of Aut(generic Jacobian Kummer)
2. 5 reflection groups in R^{1,17}

L := $II_{1,17}(2^{+2a})$, a = 0, 1, 2, 3, 4 even integral lattice of signature (1, 17), 2-elementary, and

$$q_{I}: L^{V}/L = Z/2Z^{2A} \rightarrow Q/2Z$$
 is even

a = 0, 1, 2 \rightleftharpoons L is realized as the Picard lattice of a K3

	Table	today
2a 0	2 4	6 8
L unimodular	U+E8+D8 U+D8+D8	U+Kum U+BW
realization $S \longrightarrow P1$ with 2E8	double Km(E1×E2 P1×P1) today not (yet)
# of (-2)'s 19 and (-4)'s 0	20 24 2 24	64 0 896 ∞
branch -	Barth Potors	ŧ / /
	surface	

Fact: Reflections generate a subgroup of finite index in $O_{\mathbb{Z}}(L)$ in each case.

Remark II_{1, 17}(2^{+2}), 2a=2, belongs to the Conway-Vinberg chain, on which I gave a talk in the last JES(2022).

Notation $U = (\mathbf{Z}^2, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}),$

An, Dn, E6, E7, E8: negative definite root lattices, An etc.: affine negative definite **Kum** 16A1 Kummer lattice rank 16 **BW** Barnes-Wall lattice, (Leech lattice) Borcherds(2000, 2a=6)

(*) $\mathcal{O}_{\mathbb{Z}}^{+}(II_{1,17}(2^{+6})) = \begin{pmatrix} \text{group generated by} \\ 960 \text{ reflections} \end{pmatrix} \mathcal{A} G.L_{4}^{(2)}$ G. L₄(2) = (symmetry of fundamental domain), #G = 2^10, L₄(2) $\cong \mathcal{V}_{8}^{-1}$

Today Give a geometric interpretation of (*), that is, describe Bir-Aut(X) for holomorphic symplectic 6-fold X=X(S, h) associated with (Picard general) Kummer quartic surface (S, h).

 $\rho(S)=17$, h: pull-back of $O_{\mathbf{F}}(1)$ S = Km(C)Jac C/±1 \rightarrow **P**^3 12**0**1 **Kum** is an overlattice of $16A1 = \bigoplus \mathbb{Z}e_{\underline{i}}$, $(e_{\underline{i}}^{A}2) = -2$ $\underline{i} \in \mathcal{T}_{(\underline{i})}$ $T = \mathbb{C}^{A}2/\Gamma$, $\Gamma \cong \mathbb{Z}^{A}4$, $T_{\underline{i}}$: group of 2-torsions $Kum = \bigoplus Ze_{i} + Z \begin{cases} I \\ \Sigma \\ H \\ H \end{cases} e_{i} \mid H \subset T_{(2)} \text{ subgroup of order 8, 16} \subseteq \bigoplus Qe_{i} \\ \bigcup i \in T_{(2)} \end{cases}$ **BW** sublattice of index 2 and of Leech type, i.e., $\frac{1}{4}$ (-2)-element §2 Another background $X_{a} = M_{S}(0, h, a), a = 0, 1, holomorphic symplectic 6-fold$ ξ birationally equivalent to S when a = 1not equivalent when a = 0Birational double cover of K_{T} (0, 2 Θ , 2a), which is OG6 (symplectic resolution of Albanese fibration $M_{Jac}(2v) \longrightarrow Jac \times \widehat{Jac}, \ v = (0, \Theta, a)$ of moduli of sheaves on Jac = Jac C. (Studied by Rapagnetta(2004, thesis), Mongardi-Rapagnetta-Sacca(2018), etc.)

3

BW is also constructed from the Reed-Muller code of length 16 (cf. [Conway-Sloane]).

******)

4
ξ∈M _S (0, h, a) torsion sheaf on S T I
This morphism is a Lagrangian fibration. Generic fiber is Pic ⁴ D (Abelian 3-fold).
(Pic X , Beauville form) $\stackrel{\checkmark}{=} (0, h, a)^{\perp}$ in $\mathbb{Z} \oplus \text{Pic S} \oplus \mathbb{Z}$ $\stackrel{\frown}{=} \begin{cases} \text{Pic S} + <-4> & \text{when } a = 1 \\ U + (h^{\perp} \text{ in Pic S}) = U + \text{Kum} & \text{when } a = 0 \end{cases}$
$X := X_{o} = M_{S}(0, h, 0) \text{ from now on}$
Advantage of X: Fourier-M. transform with Kernel of Poincaré
descends to $S \times S = S \times M_{S}(2, -\frac{1}{2}\sum_{j}^{N_{S}} e_{\frac{1}{2}}, -2)$ Jac × Jac
interchanged $\bigwedge^{\Phi_{I}} = \Phi_{IH_{I}} : X \rightarrow P^{3}, * S, \xi \mapsto \text{Supp } \xi$
transf. $\Phi_2 = \Phi_1 : X \rightarrow \mathbf{P}^3 \hat{S} = S, \ \xi \mapsto \text{Supp } \hat{\xi}$
Pic X $>$ U(2) + BW H H $>H$ H H $>H$ H $>H$ H $>H$ H $>$ H H $>H$ H $>$ H H $>H$ H H $>$ H H H $>H$ H H H H H H H H H
Rapagnetta's OG6
birational \rightarrow +1 -1 \rightarrow $\otimes O_{S}(-\frac{i}{2}\sum_{i}^{S}e_{i})$ involution

§3 Main Theorem

960 reflections = 64 (-2) refl's and 896 (-4) refl's

 (-2)'s : **1** effective irreducible divisors DC X with Beauville norm (D^2)=-2

Kummer (16 (-2)P1's \subset S nodes, $\Phi_{\mathbf{j}}: X \longrightarrow P^3$, has 16A1 (16 (-2)P1's \subset S tropes, $\Phi_{\mathbf{z}}: X \longrightarrow P^3$ has 16A1 (-2) effective divisors = 32 A1 \bigcirc

(-4)'s: 3 (-4)-divisor classes with divisibility 2, #=896=32×28
 864 corresponding to birational involutions of X
 32 represented by irreducible effective divisors on X

Main Theorem (S, h): Picard general Kummer, $X = M_{S}(0, h, 0)$ (1) Bir-Aut(X) = group generated G, where G is Borcherds' by 864 involutions (Corrected on Aug. 18, 2024.) group of order 2^10.

(2) (Geom. interpretation of G) G is the semi-direct product H.C₂ of an extraspecial group, i.e., finite analogue of Heisenberg group,

1 \rightarrow Rapagnetta's inv. \rightarrow H \rightarrow (Jac \times Jac) \rightarrow 0

by C, generated by FM transf. (cf. Mongardi-Wandel(2017)).

(3) 328 curves of genus $2 C - C_1, C_2, \dots, C_{28}$ such that $X \stackrel{\sim}{=} M_1(0, h_2, 0)$ for i=1, ..., 28 (by Torelli type theorem). Each C_2 i+1, gives 32 birational involutions of X. Honce we have 864 involutions. 16 (so)tropes of Km(C) yields 32 irred. divisors. 5

References

§1 Motivation/Introduction

Kondo, S.: The automorphism group of a generic Jacobian Kummer surface, J. Alg. Geom. **7**(1998), 589-609.

Borcherds, R.: Reflection groups of Lorentzian lattices, Duke Math. J., **104**(2000), 319-366.

Nikulin, V.V.: On Kummer surfaces, Math. USSR Izv., **9**(1975), 261-275.

Nikulin, V.V.: Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections. Algebrogeometric applications, J. Soviet Math., **22**(1983), 14-1-1475.

Conway, J.H. and Sloane, N.J.A.: Sphere packings, lattices and groups, Springer-Verlag, 1988.

§2 Another background

Rapagnetta, A.: Topological invariants of O'Grady's six dimensional irreducible synplectic variety, Math. Z., **256**(2007), 1-34.

Mongardi, G., Rapagnetta, A. and Sacca, G.: The Hodge diamond of O'Grady's six-dimensional example, Comp. Math., **154**(2018), 984-1013.

§3 Main Theorem

Mongardi, G. and Wandel, M.: Automorphisms of O'Grady's manifolds acting trivially on cohomology, Alg. Geom., **4**(2017), 104-119.

6

			R		or	Ľ		'n	d	Ň	20	ri	Ė	2	Ń	Ń	D,	fo	r r	nc	d	uli		fc	b				Or	, k	(`Q		vis			L	7,
•	•	•	Ui Wa	ayı all	-CI	ros	ss	in	u as	s: r	າຍ າຍ	f a	ים מחמ	 d-i	m	VC	ı at			or	ne	s.	La	30	ra	sa no	ve lia	n ·	fib	ora	tio	s on	s.	а.	•	•	•
			In		nt	'n	na	th	90	19	R ('	20	112	1)	5	۰. ۱	5_5	50	n [.]					~9 ·													
				v C			·					_0		•ب	Č	, ,		÷																			
•	•					•			•	•		•	•		•	•			•	•	•	•	•		•						•	•		•	•		
•													•						•		•	•	•								•						
•																																					
•																																					
•	•	•	•		•			•	•	•			•		•	•	•			•	•		•			•					•		•	•	•	•	•
•	•												•						•	•	•	•	•								•	•		•	•	•	
		•		•			•			•		•		•					•			•			•	•						•	•			•	
																																					•
•	•	•				•			•	•		•			•	•				•					•	•					•	•	•	•	•	•	
•		•	•		•	•	•	•				•	•	•			•			•	•		•		•	•					•		•	•	•	•	•
•																																					
•	•	•				•			•	•		•	•		•	•			•	•	•	•	•		•	•					•	•	•	•	•	•	•
•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•					•	•	•	•	•	•	•
						•	•					•		•											•												
																																					•
•	•	•				•			•	•		•			•	•				•					•	•					•	•	•	•	•	•	•
•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•			•		•		•	•	•	•	•