Holomorphic symplectic 6-folds associated with Kummer quartics

10/21/24(M), Beijing Sino-French Conf. on Alg. Geom.

Abstract: The orthogonal group of the lattice $II_{1,17}(2^{+6})$ has a fundamental domain with 896+64 facets by Borcherds(2000). This is the Picard lattice (w.r.t. Beauville form) of the holomorphic symplectic 6-fold Jac IhI of a very general Kummer quartic surface (S, h). I will explain the following

Theorem: The birational automorphism group Bir(Jac IhI) is generated by 864 reflections among the 896 above and a 2-group whose center is Rapagnetta(2007)'s involution.

§1 Reflective lattices

(L, <>) lattice, i.e., free Z-module L with <> : L×L \rightarrow Z sgn (1,*), {<x^2>>0} = C^+ \square C^- \subset L \otimes R positive cone C^+

L is *reflective* \Leftrightarrow Subgroup <all reflections r_m of L> is of finite index in O⁺(L).

Exists only up to rk L = 22 (Esselmann[E]). Conway-Vinberg[CS] chain U+D_20 maximal $U+D_20$ U+D_18 U+D_17

are reflective.

Notation A_n, D_n, E_{6,7, 8} negative root lattices, $U = (Z^2, {\circ \\ 0 \\ 0 \end{pmatrix})$, Disc(L) = Coke[L \rightarrow Hom(L, Z)] (with Q/2Zvalued quadratic form), II_{1,*}(**): even lattice of signature (1, *) with discriminant type **.

§2 Known geometric realization

II_{1,17}(2^{+2a}) is realized as Pic(S), S:K3, and gives explicit description of Aut(S) for a = 0,1,2.

1) II_{1,17}(2^{+2}) S \rightarrow P^1 x P^1 with branch

Aut(S) \sim Z (Horikawa, Dolgachev, Brth-Peters, Namikawa-M. etc.). Here " \sim " means "the same up to finite groups".

(-4)-walls \Leftrightarrow Each (-4)-reflection is realized by an involution of S coming from a Cremona transformation of P^1 x P^1, after multiplying a suitable g $\epsilon \bigcirc_{4,4}$.

Thm(Keum-Kondo[KK]) Aut(Km(E_1 x E_2)) for general E_1 and E_2 is generated by the above 24 involutions.

3) The next lattice II_{1,17}(2^{+6}) is no more Pic (K3), but

§3 Main theorem

II_{1,17}(2^{+6}) = Pic(Jac^2 IhI) with Beauville form (S, h): min. res. of Kummer quartic Km(C) ⊂ P^3 embedded by I2ΘI Jac^d IhI = $\coprod_{D \in IhI}$ Jac^d D ↓ ↓ ↓

Jac^d IhI = $M_S(0, h, d-2)$ hol. symplectic 6-fold of K3^[2]deformation type d: odd birationally equivalent to (Km C)^[2] d: even not

X := Jac^2 IhI = M_S(0, h, 0) Pic X = (h^L in U + Pic S) = U + Kum, where Kum denotes the (negative definite) Kummer lattice

Thm(Borcherds[B2]): $O^{+}(II_{1,17}(2^{+}+6)) = \begin{pmatrix} 896 \ (-4) - reflections \\ 64 \ (-2) - reflections \end{pmatrix} \times (2-group).$

Main Thm: Birational automorphism group Bir(X) is the semidirect product

<864 (-4)-reflections> \mathbf{X} (2-group),

where the 2-group is an extended extraspecial group 2⁴[1+8].2 with center Mongardi-Rapagnetta-Sacca[MRS] involution.

§4 Sketch of proof

Similar to $\$ (case of Km(E_1xE_2)), that is, find a geometric meaning for each reflection r_m: either

 ${f s}$ the mirror m is represented by an effective divisor, or

r_m is represented by an invoultion.

One difference is that not only (-2) classes but some of (-4)classes are also represented by effective divisors.

In our case,

```
64 (-2)-classes come from Kummer's (16_6-16_6) configuration
and their complements. These divisors appear in (16+16)
reducible fibers of two Lagrangian fibrations in pairs:
```

X = Jac^2 lhlX = Jac^2 lhl
$$\downarrow$$
 and its Fourier-M. \downarrow transform $P^{4,*}$

896 (-4)-reflection (This part is subtle.)

Claim: 32 (-4)-mirrors are represented by effective divisors others are not

5

By general theory of MMP for $M_S(v)$ for v=(r, *, s) (Bayer-Macri[BM], Hassett-Tschinkel[HT]), there are 3 types of divisorial contractions:

- Brill-Noether induced from rigid objects like (-2)P^1's on S
- Hilbert-Chow $S^{n}[n] \rightarrow S^{n}(n)$ is typical.
- Li-Gieseker-Uhlenbeck Original one is the contraction (moduli of Gieseker-semi-stable rank 2 sheaves)

 \rightarrow (Uhlenbeck-Yau compactification of μ -stable moduli).

(HC)-type does not happen in our case since M. vector v=(0,h,0) has divisibility 2.

(LGU)-type happens for 32 (-4)-mirrors in our case in the following manner:

The divisor \Re is contracted to $S \times S =$ by the extremal contraction $X = Jac^{0} lhl \rightarrow X$ of (LGU)-type.

Let t be one of 16 tropes of $S \in P^3$. Tensoring the line bundle $O_S(-t)$ we obtain an isomorphism

Jac^2 lhl → Jac^0 lhl.

Hence we have 16 divisorial contractions and another 16's by replacing Jac^0 lhl by Jac^0 lhl.

The remaining 864 (-4)-reflections are realized by involutions by virtue of Torelli-type theorem. (Explicit constructions are desirable.)

References

[K] Kondo, S.: The automorphism group of a generic Jacobian Kummer surface, J. Alg. Geom. **7**(1998), 589-609.

§1 [E] Esselmann, F.: Über die maximale Dimension von Lorentz-Gittern mit coendlicher Spiegelungsgruppe, J. Number Th., 61(1996), 103-144.

[N2] Nikulin, V.: Integral symmetric bilinear forms and some of their applications, Math. USSR Izv., **14**(1980), 105-167.

[CS] Conway, J.H. and Sloane, N.J.A,: Leech roots and Vinberg groups, Proc. Roy. Soc. London, A384(1983), 233-258.

§2 [B1] Borcherds, R.: Automorphism groups of Lorentzian lattices, J. Algebra 111(1987), 133-153.

[KK] Keum, J. and Kondo, S.: The automorphism groups of Kummer surfaces associated with the product of two elliptic curves, Trans. AMS., **353**(2000), 1469-1487.

§3 [N1] Nikulin, V.: On Kummer surfaces, Math. USSR Izv., 9(1975), 261-275.

[B2] Borcherds, R.E.: Reflection groups of Lorentzian lattices, Duke Math. J., **104**(2000), 319-366.

[MRS] Mongardi, G., Rapagnetta, A. and Sacca, G.: The Hodge diamond of O'Grady's sixdimensional example, Comp. Math. **154**(2018), 984-1013.

§4 [BM] Bayer, A. and Macri, E.: MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations, Invent. math. **198**(2014), 505-590.

[HT] Hassett, B. and Tshinkel, Y.: Extremal rays and automorphisms of holomorphic symplectic varieties, in *"K3 surfaces and their moduli"*, Progr. in Math., 2016, pp. 73-95.

6