Fano 3-folds, Lagrangian fibration, and a supersingular OG10 with Co, configuration

11/9/22(W) Nagoya Univ.

S. Mutaan

§1 Preliminary

K3 surface
$$S \longrightarrow X = S^{[n]} \longrightarrow Sym^n S$$

$$P_1$$
, $S \oplus \mathbb{Z} S = P_1$, X

1/2 of exceptional divisor

Isom. as lattice

= Hilbert scheme of n-pts

= moduli of ideal of colength n

$$= M_{S} (v)$$
 with v=(1, 0, 1-n)

intersection form \longleftrightarrow Beauville form q s.t. q^n ~ self-int #

Lagrangian fibration \longrightarrow D with q(D)=0

Basic Example

1) Very general K3 of degree 8 $S = S_0 = (2, 2, 2) \subset S^3$ 1) $S^{(2)} = S_0 = (2, 2, 2) \subset S^3$

Pr. S = Zh (4°)=8

What is the Lagrangian fibration of $X=S^{2^{-1}}$ for $D=h-2\delta$ with q(D)=0?

Answer. $\Phi_{1D1}: X \longrightarrow \mathbb{P}^{2,*}$ is Jacobson fibration over net $\langle Q_1, Q_2, Q_1 \rangle = : \mathbb{P}_s^2$ of practices defining $S = S_8$.

> fiber = Fano variety of lines in a fixed V_4 = Jacobian of curve of genus 2 q.e.d.

② Very general K3 of degree 18, g=10 $S : S_1 \subset P^{\bullet}$

What is the Lagrangian fibration of $X=S^{23}$ for $D=h-3\delta$ with q(D)=0?

Key variety: (of Borcea) $Z_{lg}^{s} = G_{2}/P_{adi}$ $CP(T) = P^{l3}$

contact Fano manifold

Hint 1. 1 and 2 are similar.

Hint 2. S_{\circ} in ① is also a linear section:

$$S_{8} = [V_{2}(B^{c}) \subset B^{2} \circ J_{0}H_{10}H_{20}H_{3}]$$

$$S_{10} = [V_{2}(B^{c}) \subset B^{2} \circ J_{0}H_{10}H_{20}H_{3}]$$

$$S_{10} = [V_{2}(B^{c}) \subset B^{2} \circ J_{0}H_{10}H_{20}H_{3}]$$

Moreover, a linear section of contact Fano 5-fold!

KEY: Rational homogeneous contact manifold

$$X = \mathcal{Q} \cdot [a] < \mathcal{D}(\mathcal{J}) \quad \mathcal{Z} : \text{algebra}$$

has a <u>unique conic property</u>: for every pair $p, q \in X$ in general position, unique conic C on X passing through p, q.

Pf. Put p=[u], q=[v]. Then u and v generate a 3-dim'l Lie subalgebra a. C is the intersection with X and the 2-plane

The Lagrangian Sibration X=S[2] -> P2

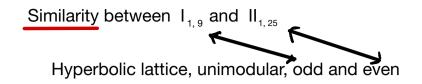
st 132:= < H., H2, H3 > do Pring 5: 518.

fiber = Fano variety of conics in a fixed V
= Int-Jac of V = Jacobian of curve of genus 2
(Kuznetsov et al)

REMARK: Conjecture. "contact Fano homogeneous," which includes (Hartshorne's conj.=) Mori's theorem as special case.

<u>Side Problem.</u> Does a contact Fano manifold satisfy a unique conic property? (Here "conic" means a curve of degree 2 with respect to the contact line bundle, whose (dim. - 1)/2-th power is anti-canonical.)

③ Very general K3 of degree 16, g= 9 (Omitted)



Both have beautiful fundamental domains & str. of orthog. grps

Coxeter group

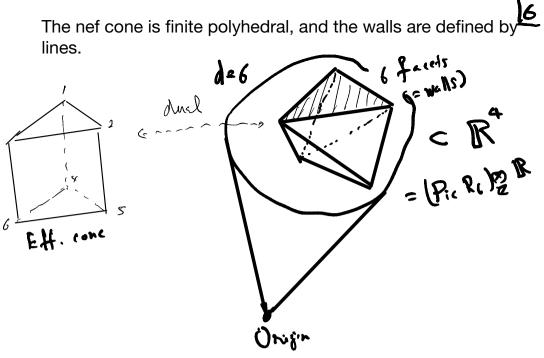
Symmetry of a fund, domain

(Conway '80's)

CAG (classical algebraic geometry)

 $I_{1,9}$ contains Pic R_d, the Picard lattice of a del Pezzo surface of degree d, as the orthogonal complement of the sum of d copies of <-1>.

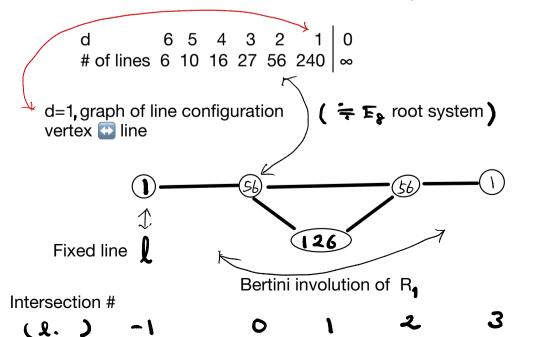
R_d= Bl-up of the plane at 9-d points in general position



3

Remark (1) -K is the Weyl vector in the sense that (-K. I)=1 for all wall defining vectors I.

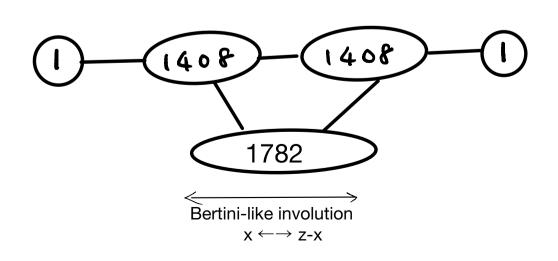
(2) The Weyl vector is isotropic for both and and ...



Leech analogy of degree 1 del Pezzo is the double Conway graph

$$\int_{z}^{z}$$
 vertex (1, x, -1), both x and z-x have min. norm (# = 4600) suitable adjacency by intersection number

in the orthogonal complement of sum of two copies of <-2>, one is generated by (1, 0, 1) and the other by (1, z, -1), for a fixed z of min. norm.



The double Conway graph has symmetry of the 2nd Conway group Co. The vertex stabilizer group is the unitary group

Sub-task: Find a K3-like object of Picard number 24 which incarnates the double Conway graph.

§4. Relation between §2 and §3

§3 is partly inspired by the unfinished/untreated case of §2. namely the case of genus 8

Case

①. ②. ③.

Sympl. Var. S^[2] S^[3] OG10?

a=8

4

Fano Quartic dP g=10 g=9

Partial answer: The Leech analogy of degree 1 del Pezzo surface must be an OG10-like symplectic variety (with a Lagrangian fibration) related with the Fermat cubic 4-fold in characteristic 2.

Another supporting fact: the number 1782 in the graph is twice the number (=891) of 2-planes in the 4-fold.

I hope I will have another chance to discuss about this topic in near future.

Thank you for your attention, and the organizers, both Sho Tanimoto and Shigeyuki Kondo, for the wonderful conference.

References

(12/02/22)

§1

Bayer-Macri, MMP for moduli of sheaves on K3s via wall-crossings: nef and movable cones, Lagrangian fibrations, Invent. math., 2014.

§2

Kuznetsov-Prokhorov-Shramov, Hilbert schemes of lines and conics and automorphism groups of Fano threefolds, Japanese J. Math., 2018.

Beauville, A., Holomorphic symplectic geometry: a problem list, in "Complex and differential geometry", pp. 49-63, Springer-Verlag, 2011. (See Sect. 3 for the conjecture "contact+Fano implies homogeneous".)

§3

Conway, J.H., The automorphism group of the 26-dimensional even unimodular Lorentzian lattice, J. Algebra, 1983. Chap. 27 of [SPLG].

Brouwer-Maldeghem, Strongly regular graphs, Camb. Univ. Press, 2022. (Conway graphs are explained in Chap. 10.)

§4

Laza-Sacca-Voisin, A hyper-Kahler compactification of the intermediate Jacobian fibration associated with a cubic 4-fold, Acta Math., 2017.

Li-Pertushi-Zhao, Elliptic quintics on cubic fourfolds, O'Grady 10, and Lagrangian fibration, Adv. in Math., 2022.

Edge, W.L., Permutation representations of a group of order 9196830720, J. London Math. Soc., 1970.

Dolgachev-Kondo, A supersingular K3 surface in characteristic 2 and the Leech lattice, IMRN, 2003.