
Fano 3-folds, Lagrangian fibration, and a supersingular OG10 with 
Co  configuration
                                                                  11/9/22(W) Nagoya Univ.

§1 Preliminary

K3 surface 
min. resolution

= Hilbert scheme of n-pts

= moduli of ideal of colength  n

with  v=(1, 0, 1-n)
1/2 of exceptional divisor
class

Isom. as lattice
intersection form ←→ Beauville form  q  s.t. q^n ~ self-int #

Lagrangian fibration          D  with  q(D)=0

gen. fiber 
= Lagrangian  A.V.

(Bayer-Macri)

(p, q) → π(p)π(q)

indetermanacy

line

flop

Basic Example
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§2 Examples related with Fano 3-folds

①　Very general K3 of degree 8 = (2, 2, 2) 

What is the Lagrangian fibration 
of  X=S   for  D = h - 2δ  with  
q(D) = 0?

In fact, Φ  is O’Grady map.  {p, q}   S      line  pq      S

{p, q}
subpencil

fiber = Fano variety of lines in a fixed  V
        = Jacobian of curve of genus 2

② Very general K3 of degree 18,  g= 10

What is the Lagrangian fibration of  X=S   for  D = h - 3δ  
with  q(D) = 0?

Answer.

q.e.d.

ヒ

S =S cが
' ⊕ 区8,818)=2.

Pie S = Zh

(E) =8
Q

。
朗

やが X > が* is Jacobson

fbnctionover.net 〈 Q, Q ,

Q
,
> = : 昈

dfpadricsdefnir.gs
'
=

g.

い E → 4 g

TUSg く
ヨ ! V4 = QI 。がくが

2,
*

"いっ 、 is
the map 1-3 〈QI, 2 ERS

4

両

Sははくが
Q

.

m



Key variety:
(of Borcea)

contact Fano manifold

Hint 1.   ① and ② are similar.
Hint 2.   S   in  ①  is also a linear section:

Moreover, a linear section of contact Fano 5-fold!

KEY: Rational homogeneous contact manifold

              
has a unique conic property: for every pair  p, q   X  in general 
position,   unique conic  C  on  X  passing through p, q.

simple Lie
algebra

Pf. Put p=[u], q=[v]. Then  u  and  v  generate a 3-dim’l Lie 
subalgebra   .  C  is the intersection with  X  and the 2-plane 

Answer.
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fiber = Fano variety of conics in a fixed  V
        = Int-Jac of  V   = Jacobian of curve of genus 2

REMARK:      Conjecture. “contact Fano   →  homogeneous,”
which includes (Hartshorne’s conj.=) Mori’s theorem as special 
case.

Side Problem.  Does a contact Fano manifold satisfy a unique 
conic property? (Here “conic” means a curve of degree 2 with 
respect to the contact line bundle, whose (dim. - 1)/2-th power 
is anti-canonical.)

(Kuznetsov et al)

③ Very general K3 of degree 16,  g= 9 (Omitted)
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§3 Leech-K3 analogue of del Pezzo surfaces

   Similarity between  I     and  II1, 9 1, 25

Hyperbolic lattice, unimodular, odd and even

Both have beautiful fundamental domains & str. of orthog. grps

(Conway ‘80’s)

Leech
lattice O(Leech)

CAG (classical algebraic geometry)

I      contains  Pic  R , the Picard lattice of a del Pezzo surface of 
degree  d,  as the orthogonal complement of  the sum of   d  copies 
of  <-1>.

1, 9 d

R  =  Bl-up of  the plane at  9-d  points in general positiond

Coxeter group Symmetry of a 
fund. domain
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The nef cone is finite polyhedral, and the walls are defined by 
lines.

Remark (1) -K  is the Weyl vector in the sense that (-K. l)=1 for all 
wall defining vectors  l.
(2) The Weyl vector is isotropic for both          and 

d               6   5    4    3    2      1    0
# of lines  6  10  16  27  56  240   ∞

d=1 graph of line configuration
vertex 

↔

 line

Bertini involution of  R

Fixed line

Intersection #

root system
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Task: Geometrize.          as possible as one can
in the framework

where  *  is a K3 surface, K3-like object/
category, etc.

 negative definite 
Leech lattice Extended 

Leech lattice

Leech analogy of degree 1 del Pezzo is the double Conway graph

　　　vertex (1, x, -1), both x and z-x have min. norm  (# = 4600)
Γ         
           suitable adjacency by intersection number

in the orthogonal complement of sum of two copies of  <-2>, one is 
generated by  (1, 0, 1) and the other by  (1, z, -1),  for a fixed  z  of min. 
norm.

quad. form

z

Bertini-like involution
           x ←→ z-x

1782

Λ
(r,    x,    s)

   (x )   - 2rsΛ
2

(

De ( 水 ) ↳I。津区 ⊕
V

⊕R

)
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The double Conway graph has symmetry of the 2nd Conway 
group  Co   The vertex stabilizer group is the unitary group

Sub-task: Find a K3-like object of Picard number 24 which 
incarnates the double Conway graph.
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§4.  Relation between §2 and §3

  §3  is partly inspired by the unfinished/untreated case of  §2, 
namely the case of genus 8

Case            ①.               ②.        ③.       ④
Sympl. Var.   S^[2]          S^[2]   S^[3]   OG10?
Fano            Quartic dP  g=10   g=9      g=8

  Partial answer: The Leech analogy of degree 1 del Pezzo surface 
must be an OG10-like symplectic variety (with a Lagrangian 
fibration) related with the Fermat cubic 4-fold in characteristic 2.  

  Another supporting fact: the number 1782 in the graph is twice the 
number (=891) of 2-planes in the 4-fold.

  I hope I will have another chance to discuss about this topic in 
near future. 

  Thank you for your attention, and the organizers, both Sho 
Tanimoto and Shigeyuki Kondo, for the wonderful conference.
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