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Shigeru MUKAI

Abstract: This quartic was first found as the projective dual of Segre's
10-nodal cubic, the moduli of 6 points on the projective line. It was
re-discovered as moduli of p.p.a.s’s by Igusa(1962). | explain its new
interpretation (Contemp. Math., 2012) as the moduli of Enriques
surfaces of certain root type.

Two modular interpretations of Igusa (+ Steiner)

2-dim'l analogue of
X ()= Yy /ray = RN La) [A
X0= Y /e we 1\, B

moduli of genus 2 curves with (full) level 2 str.
Enrique's surface of HG-type

lgusa as moduli
of curves
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Image is a quartic 3-fold whose singular locus is
union of 15 lines.

Each q}t (z.) =2 cuts a(double) quadric
surface Q@Q.,, foreven m.
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This classical theorem gives X
a morphism

o s moduli of
[P~ —= | bielliptic

curves

onto one of 15 components in
lgusa.

Image of IP* is a Steiner
(Roman) surface.

tetrahedro Klein's
xyzt = 4 -group

Non-normal quartic surface < \'P
singular along (line)V(line)V(line).

Fact: Igusa quartic has 15 linear involutions ¢ with
Fix o Steiner surfaces
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lgusa quartic has a self-
morphism of degree 8.
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Q. Find X.
Answer by M.-Ohashi(2013):
X should be Hutchinson-Gopel (HG) type.

mini-history

Kummer(1864) Found 3-dim'l family of quartic
surfaces with 16 nodes (16 is maximal possible)

Borchardt(1877) Uniformized them by abelian
surfaces, or h.e. functions.

Kummer's equation is equivalent to Gopel's
one found in 1847.

Hutchinson(1901) Found a new equation of
Kummer quartic :E; (c) < IS’,S with

reference to Gopel subgroup @& < Qe C )(23 ,

which is invariant under standard Cremona
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More precisely, we have
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an involution

Quotient k.. Q/E is called Enriques of HG type if 84
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is free.

Enriques = X K3 surf./free inv.
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Rt (1) T s the zero locus of &
Borcherds' ®. (= quasi-projectivity of moduli)
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@) »©

_%% = o@to
‘2l natural embeddings \Ll |
[o
%@ = By f L L
Z

which is geometrically interpreted as follows:

Theoawm @ X (2 , C s the union

of 2 Steiner surfaces Y, 3« Hg . The

complement of N4 V Hy is moduli of Enriques
surfaces of HG-type. (Root type D¢+ A,)

@ (e, &) € Hq = J bielliptic involution o s.t.
G < k() <« B, <a7=% T <7,k




is the union of 2 conics.
Their strict transforms R, and R,
are disjoint on Km(C).

Contract R's to 2 nodes and
take quotient by o. Then one
obtains a Coble surface with two G={1234}
(1,1)/4 singular points (m=2).
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(Coble surfaces with m=1).
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(The next page was used at the beginning of my 3rd talk on 5(W) to
explain type Il & lll boundaries.)
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2 Steiner surfaces

These are nterior divisor when regarded as moduli

of ppAS's of covering K3's

True bdry = U .0.16_ True bdry = U 6 lines

J€i< 3y
Cayley- Remark Remaining 9 lines
Richmond = Sing Igusa, parametrize Enrique's
configuration . surfaces with extra
(155-154) (15 lines) automorphism.
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