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ABSTRACT. First we construct a cubic 4-fold whose singularities are 11 cusps and which has an
action of the Mathieu group M11, all over the ternary field F3. We next consider a certain moduli
space of bundles on a supersingular K3 surface of Artin invariant one in characteristic 3. We show
that it has 275 (−2) Mukai vectors which form the McLaughlin graph, and ask questions on it and
on its relation with our M11-cubic 4-fold.

The classification of finite simple groups singles out 26 sporadic groups. We are interested
in realizing some of these very large and complicated groups geometrically, as acting on K3-like
varieties, namely, a higher dimensional analogue of K3 surfaces, in positive characteristic. In this
note we investigate the case of McLaughlin groupMcL, relating its defining graph with the Fermat
quartic surface and a certain cubic 4-fold both in characteristic 3 (cf. Remark 20).

Our model case is the Fermat cubic 4-fold
∑6

1 x
4
i = 0 ⊂ P5

(x) in characteristic 2. Its automor-
phism group, that is, the finite unitary group U6(2), is important in two respects: firstly it extends
to the Fisher group Fi22 and secondly it contains the Mathieu group M22. We show an analogue
of the latter for the smallest Mathieu group M11 in our main theorem. We note that M11 is one of
the maximal subgroups of McL and that neither M11 or M22 has an action on a cubic 4-fold in
characteristic 0 (cf. Remark 12).

Now we start to work over an algebraically closed field in characteristic 3, but varieties are
mostly defined over F3 or F9. A general inseparable triple covering

(1) V → P4
(x), τ3 = G(x0, x1, x2, x3, x4), deg G = 3.

of the projective 4-space is a cubic 4-fold in P5
(xτ) with 11 cusps, i.e., simple singularities of type

A2 (Lemma 6). Among such cubic 4-folds, highly symmetric one is obtained from the Segre cubic
3-fold

Seg3 :
6∑
i=1

yi =
∑

1≤i<j<k≤6
yiyjyk = 0 ⊂ P5

(y),

which has the maximal number (=10) of nodes (e.g., [8]), in the following way:
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Example 1. The inseparable triple covering

(2) Seg4 → P4, τ3 =
∑

1≤i<j<k≤6
yiyjyk, with P4 :

6∑
i=1

yi = 0 ⊂ P5
(y),

with formal branch Seg3 has 10 cusps over its nodes, and one more at (y : τ) = (111111 : −1).
The automorphism group S6 of Seg4 (and also of Seg3) acts on the 11 cusps with two orbits of
length 10 and 1.

A little bit surprisingly there is a more symmetric cubic 4-fold with 11 cusps in the sense that
the automorphism group, which is M11, acts transitively on the cusps. The following is our main
result of this note, and is regarded as a characteristic 3 analogue of the fact that the Fermat cubic
4-fold has an action of the Mathieu group M22 over F4 and the M22-action on a set of 22 planes in
it is (triply) transitive ([10], [4, p. 39]):

Theorem 2. The cubic 4-fold

(3) V : z3 =
∑

i∈Z/5Z

(xi−1xixi+1 − xi−2xixi+2) in P5
(xz)

has an action of the Mathieu group M11 over F3 Moreover, V has cusps at 11 F3-points, on which
the M11 acts (quadruply) transitively. V is smooth elsewhere.

In §1 we prepare the singularity of purely inseparable covering of the projective space. In §2,
we prove our main theorem by simplifying arguments in Adler[1]. Two cubic 4-folds Seg4 and
V in Theorem 2 are closely related with a supersingular K3 surface of Artin invariant one, whose
standard projective model is the Fermat quartic surface. Though it does not have an action of M11,
there is a chance for a suitable moduli space of bundles over it to have a birational action of M11.
In §3, we give an 8-dimensional candidate and ask two questions.

Acknowledgement. The author would like to thank the hospitality of the Morningside Center
of Mathematics, Chinese Academy of Sciences, in Beijing where this work was partly done. The
author also would like to thank the referees who gave him many helpful comments.

1. PRELIMINARY

Let V be an n-dimensional smooth hypersurface of degree d over the complex number. Then
the primitive Betti number of its middle cohomology Hn(V ) is equal to

bn(V )pr = (d− 1)J (d)
n

by [9, Corollary 1.12], where we put

J (d)
n :=

1

d
((d− 1)n+1 + (−1)n).

The case d = 3, that is,

Jn = J (3)
n = 1, 1, 3, 5, 11, 21, 43, 85, . . . for n = 0, 1, 2, 3, 4, 5, 6, 7, . . .

is known as the Jacobsthal sequence (OEIS A001045).
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J
(d)
n is also equal to the top Chern number cn(ΩP(d)) of the twisted sheaf of differentials of the

n-dimensional projective space Pn by the exact sequence

(4) 0→ ΩP(d)→ OP(d− 1)⊕n+1 → OP(d)→ 0.

This number cn(ΩP(d)) has the following meaning in algebraic geometry of positive characteristic.
Assume that d is a power of a prime p and consider a hypersurface of the special form

V : τd −G(x) = 0 ⊂ Pn+1
(x0:...:xn:τ)

for a homogeneous polynomial G of degree d over an algebraically closed field of characteristic
p. This hypersurface is special in the sense that its polar at (0 : . . . : 0 : 1) is identically zero but
not a cone in general. The projection from (0 : . . . : 0 : 1) induces a purely inseparable covering
π : V → Pn of degree d. So we can say that a hypersurface V ⊂ Pn+1 has (0 : . . . : 0 : 1) as its
inseparable point.

The following is obvious.

Lemma 3. The singular locus of V is bijected by π onto the critical locus of G(x), that is, the
common zero locus of all partials ∂iG of G(x).

Since
∑n+1

0 xi∂iG = 0, we have the well-defined differential map

(5) d : H0(Pn,OP(d))→ H0(Pn,ΩP(d)), G 7→ dG

by (4). The critical locus of G is the zero locus of dG.

Lemma 4. The unique singular point of V over a critical point p ∈ Pn is a simple singularity of
type Ad−1 if and only if dG ∈ H0(Pn,ΩP(d)) has a reduced isolated zero at p.

Proof. Since the assertion is local and since we can add the d-th power of linear forms freely to
G, we may assume that G(x) is of the form q(x) + (higher order terms) in a neighborhood of p.
(τd = G(x) and τd = G(x) + L(x)d define coverings which are isomorphic to each other.) Then
dG has a reduced isolated zero at p if and only if the quadratic term q(x) is non-degenerate. Hence
we have our lemma. �

The author does not know the general answer of the following:

Question 5. Is the zero locus of dG reduced and of dimension 0 for a general homogeneous poly-
nomial G?

If this holds true, then V has only simple singularity of type Ad−1 and the number of singular
pints is the generalized Jacobsthal number J (d)

n . Since the reducedness and 0-dimensionality is an
open condition and since we have an example of a goodG, say, the Segre cubic or Klein’s, we have
the following:

Lemma 6. The inseparable triple covering (1) of P4 has 11 cusps for general cubicG(x0, . . . , x4).
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2. CUBIC 4-FOLDS WITH ACTION OF M11 OVER F3

2.1. From Klein’s to the pentagon-pentagram cubic. We start our study with Klein’s cubic 3-
fold

(6) U :
∑

i∈Z/5Z

y2i yi+1 = 0 ⊂ P4,

which is invariant under the transformation A′ = diag[ζ, ζ9, ζ4, ζ3, ζ5] of order 11 and cyclic
permutation B′ = yi 7→ yi+1 of order 5, where ζ is a primitive 11-th root of unity, assuming that
the base field is of characteristic 3. The minimal polynomial of ζ over F3 is of degree 5 and there
are two possibilities, among which chooseX5+X4−X3+X2−1. In studying the automorphism
of U the following is crucial:

Lemma 7. The critical locus of Klein’s cubic 3-fold (6) consists of the 11 points

Pi (ζi : ζ9i : ζ4i : ζ3i : ζ5i), i ∈ Z/11Z

and the inseparable triple covering V ′ : τ3 =
∑

i∈Z/5Z y
2
i yi+1 ⊂ P4 has 11 simple singularities

of type A2 over them.

Proof. By Lemma 3, the singular locus of V ′ is bijected onto the common zero locus of partials
−y2i−1 + yiyi+1 = 0 for i ∈ Z/5Z and hence consists of the 11 points above. Since J4 = 11, our
claim follows from and from Lemma 4. �

We make the following change of coordinates of P4

y0 = ζx0 + ζ9x1 + ζ4x2 + ζ3x3 + ζ5x4

y1 = ζ9x0 + ζ4x1 + ζ3x2 + ζ5x3 + ζx4

y2 = ζ4x0 + ζ3x1 + ζ5x2 + ζx3 + ζ9x4(7)

y3 = ζ3x0 + ζ5x1 + ζx2 + ζ9x3 + ζ4x4

y4 = ζ5x0 + ζx1 + ζ9x2 + ζ4x3 + ζ3x4

so that the six critical points P1, P9, P4, P3, P5 and P0 become the five coordinate points and (−1−
1− 1− 1− 1), respectively. In this new coordinate system (x), Klein’s cubic (6) is defined by

(8) U :
∑

i∈Z/5Z

(−x3i + xi−1xixi+1 − xi−2xixi+2) = 0.

The cyclic group 〈B′〉 of order 5 in (y)-coordinate is generated by B : xi 7→ xi+1 in our new
(y)-coordinate. The transformation A′ of order 11 becomes

A =


−1 −1 0 0 1
−1 1 0 0 0
1 0 0 1 1
0 1 0 0 −1
1 −1 1 0 −1

 ,
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in (y)-coordinate by computation. In particular, it is defined over F3. (This is not surprisng because
A′ induces a permutation of critical points all of which are defined over F3.)

Now we are ready to explain that U and V ′ have extra automorphisms. Firstly the permutation

x1 ↔ x4, x2 ↔ x3

of type (2)2 is an automorphism ofU since it preserves the pentagon supporting
∑

i∈Z/5Z xi−1xixi+1

and also the pentagram supporting
∑

i∈Z/5Z xi−2xixi+2 in (8). Together with the cyclic group 〈B〉,
this involution generates a dihedral group D10 of order 10.

Secondly what is more crucial in characteristic 3 is to consider the cyclic permutation

x1 7→ x2 7→ x4 7→ x3(7→ x1)

of type (4) whose square is the involution above. Since this permutation interchanges the pentagon
and pentagram above, we consider the signed permutation

C : x1 7→ −x2 7→ x4 7→ −x3(7→ x1)

instead and observe the following:

Lemma 8. The pentagon-pentagram cubic form (8) is preserved by the linear transformations A
and B. It is not preserved by C but transformed under C to

(9)
∑

i∈Z/5Z

(x3i + xi−1xixi+1 − xi−2xixi+2).

In particular, it is invariant under the action of 〈A,B,C〉 modulo cubes of linear forms.

Remark 9. Similar claims, especially the last one, in Lemma 8 were first found in Adler[1, Lemma
3.1] for Klein’s cubic.

2.2. Proof of Theorem 2. In order to eliminate the modulo cubes ambiguity, we introduce a new
independent variable τ and consider the cubic 4-fold

(10) V : τ3 +
∑

i∈Z/5Z

(−x3i + xi−1xixi+1 − xi−2xixi+2) = 0

in P5, or equivalently, the cubic 4-fold in Theorem 2 by change of variables τ = −z+
∑

i∈Z/5Z xi.
We extend the action of A,B,C to P5 by

Ã : τ 7→ τ, B̃ : τ 7→ τ and C̃ : z 7→ z −
∑

i∈Z/5Z

xi.

By Lemma 8, this action of Ã, B̃ and C̃ preserves V .
In our (xz)-coordinate system, the singularity of V locates at 11 points

(x0 : . . . : x4 : z) =

(10000; 0), (01000; 0), (00100; 0), (00010; 0), (00001; 0), (−1− 1− 1− 1− 1; 0),(11)

(01− 1− 11; 1), (101− 1− 1; 1), (−1101− 1; 1), (−1− 1101; 1), (1− 1− 110; 1),
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which are the 11 points 1, 2, 3, 4, 5, 6 and a, b, c, d, e in the notation of [15, p. 406]. By Coxeter-
Todd ([6], [15]), the automorphism group of the 12-pointed projective space

(P5; 1, 2, . . . , 6, a, b, . . . , f)

is known to be the Mathieu group M12, where we put f(00000 : 1). Furthermore the permutation
action of M12 on the 12 points is quintuply transitive.

Lemma 10. An automorphism of V preserves the point f(00000 : 1).

Proof. As we saw in §1, the point f is an inseparable point of V ⊂ P5. It suffices to show there are
no other inseparable points. This is obvious since the five partials −y2i−1 + yiyi+1 of Klein’s cubic
are linearly independent. �

An automorphism of V induces a permutation of its singular locus. Hence, by the lemma, the
automorphism group of V ⊂ P5 is contained in M11, the stabilizer of M12 at f . The following
completes our proof of Theorem 2.

Lemma 11. The three linear transformations Ã, B̃ and C̃ generate M11 in PGL(6,F3).

Proof. Le G ⊂ M11 be the subgroup generated by Ã, B̃ and C̃. Since Ã, B̃, C̃ are of order 11, 5,
4, the order of G is divisible by 220. By the classification of maximal subgroups of S11 (e.g., [4]),
G is isomorphic to either M11 or L2(11). The latter is impossible since the subgroup 〈B̃, C̃〉 ⊂ G
is the semi-direct product 5 : 4 or Hol(C5) by our construction but L2(11) does not contain such a
semi-direct product. �

Remark 12. (1) The cubic 4-fold τ3 −
∑

i∈Z/5Z y
2
i yi+1 = 0 ⊂ P5

(τy) is also interesting over the
complex number field C in the sense that its automorphism group L2(11) is maximal among all
finite groups with a symplectic action on a smooth cubic 4-fold ([12]). Similar holds for for Klein’s
cubic 3-fold

∑
i∈Z/5Z y

2
i yi+1 = 0 ⊂ P4

(y) ([16]).
(2) The stabilizer group M10 of the standard permutation action of M11 is also maximal among

all finite groups with a symplectic action on a smooth cubic 4-fold ([12]).

3. CONJECTURAL SYMPLECTIC 8-FOLD AS MODULI OF BUNDLES ON FERMAT QUARTIC

3.1. Two questions. The Fermat quartic surface Fer4 :
∑4

1 x
4
i = 0 ⊂ P3

(x) has an action of the
finite unitary group PGU4(3). The action of a subgroup of index 4, namely, of U4(3) := PSU4(3)
is symplectic. Though U4(3) does not contain M11 as a subgroup, the moduli space MFer(v) of
(semi-)stable sheaves on the Fermat quartic Fer4 might have a birational action of M11, or even a
much larger finite simple group, for suitable Mukai vector v = (r, ∗, s) ∈ Z⊕ Pic⊕ Z. A hopeful
candidate, in view of symmetry of the Leech lattice, is 8-dimensional, i.e., 〈v2〉 = 6, and the group
containing M11 should be the McLaughlin group McL.

Question 13. Does the moduli space MFer(3, α,−3) have a birational action of McL, where α is
a (−12)-divisor class attached to Segre’s hemisystem (see §3.2)?

Remark 14. As is explained e.g. in [4, p. 100], the McL is the pointwise stabilizer of a triangle
ABC of type 322 in the Leech lattice Λ. This means that the orthogonal complement L of a
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negative root lattice ' A1 + A2 in U + Λ(−1) has an action of McL. Since the Picard lattice of
Fer4 has a primitive embedding into L and its orthogonal complement is generated by an element
of norm −6, it is natural to seek the possibility above, namely 〈v2〉 = 6 and 8-dimensioonal.

McL contains the simple groups U4(3) and M11 as maximal subgroups, and hence it is gener-
ated by these two subgroups. The action of the former on the moduli space is not surprising since
its Q-twisted expression is MFer(3, 0,−1) (Proposition 18). Seeking after an action of the latter,
we pose the following

Question 15. Is MFer(3, α,−3) birational to the conjectural LLSvS 8-fold associated with the
M11-cubic 4-fold V ?

Remark 16. The LLSvS 8-fold in the question is conjectural since it is constructed in [13] only for
smooth cubic 4-folds over C which does not contain a plane. Our M11-cubic 4-fold has 11 cusps,
defined in characteristic 3 and the author does not know whether it contains a plane or not.

3.2. Segre’s hemisystem and the McLaughlin graph in a Picard lattice. The Fermat quartic
surface Fer4 has 280 F9-(rational) points, with weight distribution 2: 24, 3: 64 and 4: 192. For
each F9-point p, the tangent plane Tp cuts out the union of 4 lines passing through p from Fer4.
Since every line has ten F9-points, the number of lines in Fer4 is 280 × 4/10 = 112. The Picard
lattice is generated by these line classes. Its discriminant group Disc(Fer4) is isomorphic to Z/3⊕
Z/3 (see e.g. [11]).

Segre’s hemisystem is a set H of 56 lines, among the 112, which covers Fer4(F9) doubly, that
is, every F9-point is contained in exactly two members of H . There are 648 hemisystems and they
are divided into 4 orbits of length 162 by the action of U4(3). These 4 orbits corresponds to the
four elements of norm 2/3 modulo 2Z in the discriminant group Disc(Fer4) as we will see below.
We choose one of them. Then the intersection size |H ∩H ′| of two among our 162 hemisystems
are either 20 or 32 ([3, §10.34]).

Proposition 17. ([3, §10.61]) The graph with the following three types of vertices and a suitable
adjacency is a strongly regular graph srg(275, 112, 30, 56), isomorphic to the McLaughlin graph:
(i)∞, (ii) the 112 lines in Fer4 and (iii) the 162 hemisystems. (See [7, §7] for the adjacency.)

We realize this graph inside the extended Picard lattice U(−1)⊕PicFer4 of the Fermat quartic
surface, or more precisely, in the sublattice (3, α,−3)⊥, which is expected to be the Picard lattice
of the conjectural moduli symplectic 8-fold ([14], [17], [18] but only over C). Here U denotes the
standard hyperbolic lattice of rank 2. The intersection pairing (D.D′) on the Picard lattice extends
to the orthogonal sum Z⊕ Pic⊕ Z obviously but with changing the sign of U , namely,

(12) 〈(r,D, s), (r′, D′, s′)〉 = −rs′ + (D.D′)− sr′, (r, s), (r′, s′) ∈ U(−1).

Now we define a divisor class for a hemisystem H . Consider the sum
∑

m∈H m of its all members
in the Picard grup PicFer4. Then we have

(13) (
∑
m∈H

m. l) =

{
8 if l ∈ H ,
20 otherwise.
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In particular,
∑

m∈H m is divisible by 4 in the Picard group. So we define

αH := 2h− 1

4

∑
m∈H

m ∈ PicFer4,

where h is the hyperplane section class of Fer4. Since (αH .l) is divisible by 3 for all lines l, αH/3
defines an element in the discriminant group, whose norm is 2/3 since (α2

H) = −12.

Proposition 18. The graph on the following three types of (−2)-vectors in (3, 0,−1)⊥ ⊗Q, adja-
cent when non-orthogonal, is isomorphic to the McLaughlin graph:

• (3, h, 1),
• (0, l, 0) for the 112 lines l in Fer4 and
• (1,−αH

3 ,
1
3) for the 162 hemisystems H chosen as above.

Proof. We just check adjacencies here and that in [7, §7] are the same. For example, (3, h, 1) has
inner product 1 with (0, l, 0) and hence they are adjacent in (3, 0,−1)⊥ ⊗ Q. The corresponding
∞ and all 112 lines are adjacent in [7, §7] by definition. Other cases are similar but tedious and we
omit it. (The MOG computation in [19, §5.5.2] may be useful for a better proof.) �

Geometrically, these are the Mukai vectors of the rank 3 bundle TP3(−1) restricted to Fer4,
torsion sheaves supported on lines and Q-line bundles on Fer4, respectively.

Now we fix a hemisystem F among our 162, put α = αF and take twist by tensor product of
the Q-line bundle OFer(α3 ). Then all the vertices in the proposition become integral. Since the the
tensor of a line bundle preserves the inner product (12), we have

Corollary 19. The graph on the following three types of (−2) Mukai vectors in (3, α,−3)⊥, adja-
cent when non-orthogonal, is isomorphic to the McLaughlin graph:

• (3, h+ α,−3),
• (0, l, ∗) for the 112 lines l in Fer4 and
• (1, α−αH

3 , ∗∗) for the 162 hemisystems H ,
where ∗ is equal to 0 if l ∈ F and 1 otherwise, and ∗∗ is equal to 1,−1,−2 according as H =
F, |H ∩ F | = 20 and |H ∩ F | = 32.

Proof. α−αH is divisible by 3 since both α/3 and αH/3 defines the same element in Disc(Fer4).
Hence the vertices are Mukai vectors of a rank 3 bundles, torsion sheaves and the 162 line bundles
OFer(α−αH

3 ). �

Remark 20. Two more strongly regular graphs are similarly realized by taking (−2) Mukai vectors
as their vertices in characteristic 2 and 5, which will be discussed elsewhere.
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