Fane 3-folds, Lagrangian fibration, and a supersingular OG10 with Co_{2} configuration

11/9/22(W) Nagoya Univ.
S.Mutaai
§1 Preliminary

$$
\begin{aligned}
& \text { K3 surface } S \longrightarrow X=S^{[n]} \longrightarrow \operatorname{Sym}^{n} S \\
&=\text { Hilbert scheme of } n \text {-pts } \\
&=\text { moduli of ideal of colength } n \\
&=M_{i c} S \oplus \mathbb{Z} S=P_{i c}(v) \text { with } v=(1,0,1-n) \\
& \begin{array}{c}
1 / 2 \text { of exceptional divisor } \\
\text { class }
\end{array} \\
& \begin{array}{l}
\text { Isomer as lattice } \\
\text { intersection form } \longleftrightarrow \text { Deauville form } q \text { s.t. } q^{\wedge} n \sim \text { self-int } \#
\end{array}
\end{aligned}
$$

Lagrangian fibration $\longrightarrow D$ with $q(D)=0$

gen. fiber
(Bayer-Macri)
Basic Example $S \xrightarrow[\pi]{2: 1} \mathbb{P}^{2} \supset B=(6)$

§2 Examples related with Fano 3-folds
(1) Very general $K 3$ of degree $8 \quad \boldsymbol{S}=\boldsymbol{X}_{\boldsymbol{P}}=(2,2,2) \subset \mathbb{P}^{\mathbf{5}}$

Rc $\mathbb{S}^{S}=\mathbb{Z} h$
$\oplus \mathbb{Z} \delta, f(\delta)=-2$.

$$
\left(h^{2}\right)=8
$$

Q.

What is the Lagrangian fibration of $X=S^{[i]}$ for $D=h-2 \delta$ with $q(D)=0$?
Answer. $\Phi_{|D|}: X \longrightarrow \mathbb{P}^{2, *}$ is Jacobian fibration over net $\left\langle Q_{1}, Q_{2}, Q_{1}\right\rangle=: \mathbb{D}_{\delta}^{2}$ of quadrics defining $S=S_{8}$.
\because In fact, Φ is O'Grady map. $\{p, q\} \in S \leadsto$ line $\overline{p q} \notin S_{8}$

$$
\overline{P q}{ }^{U} S_{8} \subset{ }^{3}!V_{4}=Q_{1}^{\prime} \cap Q_{2}^{\prime} \subset \mathbb{P}^{5} .
$$

$\Phi_{\mid D 1}$ is the map $\{p, q\} \longmapsto\left\langle Q_{1}^{\prime}, Q_{2}^{\prime}\right\rangle<\mathbb{B}_{S}^{2, *}$
subpencil

$$
\text { fiber }=\text { Fano variety of lines in a fixed } V_{4}
$$

$=$ Jacobian of curve of genus $2 \quad$ q.e.d.
(2) Very general K3 of degree 18, $g=10 \quad S=S_{18} \subset \mathbb{P}^{10}$
Q. What is the Lagrangian fibration of $X=S^{[2]}$ for $D=h-3 \delta$ with $q(D)=0$?
$\begin{gathered}\text { Key variety: } \\ \text { (of Barca) }\end{gathered} \quad \Sigma_{18}^{5}=G_{2} / P_{\text {adj }} \subset \mathbb{P}(g)=\mathbb{P}^{13}$
contact Fano manifold

$$
\left[S_{18} \subset \mathbb{B}^{10}\right]=\left[\quad[\quad]_{n} H_{1 n} H_{2 n} H_{3}\right.
$$

Hint 1. (1) and (2) are similar.
Hint 2. S_{8} in (1) is also a linear section:

$$
\begin{gathered}
S_{8}=\left[v_{2}\left(\mathbb{P}^{5}\right) \subset \mathbb{P}^{20}\right] \cap H_{1} \cap H_{2} \cap H_{3} . \\
S_{p}(6) / P_{a d j} . \mathbb{P}(\Delta p(6)) \\
\mathbb{P}^{\prime \prime}\left(S^{2} \mathbb{C}^{6}\right)
\end{gathered}
$$

Moreover, a linear section of contact Fano 5-fold!
KEY: Rational homogeneous contact manifold
has a unique conic property: for every pair $p, q \in X$ in general position, unique conic C Yon X passing through p , q .
 subalgebra or. C is the intersection with X and the 2-plane
$\mathbb{P}(\Omega)$. // $S_{18}{ }^{v} C_{p . g}$ is contained in a unique
Answer. Fans 3-Hid $V_{18}=\sum_{18 \cap H_{1}^{\prime} \cap H_{2}^{\prime} \text {. }}^{\text {. }}$
The Lagrangian fibcration $X=S^{[2]} \longrightarrow \mathbb{P}^{2}$
send $\mid P \cdot\{ \rangle$ to $\mathbb{P}_{1,6}^{\prime}=\left\langle H_{1}^{1}, H_{2}^{\prime}\right\rangle$, the oubpencil of $\mathbb{P}_{5}^{2}:=\left\langle H_{1}, H_{2}, H_{1}\right\rangle$ defining $S=S_{18}$.

$$
\begin{aligned}
& \text { fiber }=\text { Fano variety of conics in a fixed } V \\
&=\text { Int-Jac of } V=\text { Jacobian of curve of genus } 2 \\
& \text { (Kuznetsov et al) }
\end{aligned}
$$

REMARK: $\mathcal{I}_{\text {Conjecture. "contact Fanon }}^{\text {? }}$ homogeneous," which includes (Hartshorne's conj.=) Mori's theorem as special case.

Side Problem. Does a contact Fano manifold satisfy a unique conic property? (Here "conic" means a curve of degree 2 with respect to the contact line bundle, whose (dim. - 1)/2-th power is anti-canonical.)
(3) Very general K 3 of degree $16, \mathrm{~g}=9$ (Omitted)

§3 Leech-K3 analogue of del Pezzo surfaces

Similarity between $\mathrm{I}_{1,9}$ and $\mathrm{I}_{1,25}$
Hyperbolic lattice, unimodular, odd and even
Both have beautiful fundamental domains \& str. of orthog. grps

Coxeter group

Symmetry of a fund. domain
(Conway ‘80’s)

$$
\prod_{\substack{\text { Leech } \\ \text { lattice }}}^{\substack{O(\text { Leech })}}
$$

CAG (classical algebraic geometry)
$I_{1,9}$ contains Pic R_{d}, the Picard lattice of a del Mezzo surface of degree d , as the orthogonal complement of the sum of d copies of <-1>.
$R_{d}=\mathrm{Bl}$-up of the plane at 9-d points in general position

The nef cone is finite polyhedral, and the walls are defined by lines.

Remark (1) -K is the Weyl vector in the sense that $(-K$. I) $=1$ for all wall defining vectors I.
(2) The Weyl vector is isotropic for both \square 4 and

Task: Geometrize $\downarrow \not \downarrow$ as possible as one can

 in the frameworknegative definite
Leech lattice

Extended
Leech lattice $P_{i c}(*) \hookrightarrow \mathbb{I}_{1,25}=\mathbb{Z} \oplus \wedge \oplus \mathbb{Z}$
where * is a K3 surface, K3-like object/ category, etc.
quad. form

Leech analogy of degree 1 del Pezzo is the double Conway graph $\Gamma_{z}\left\{\begin{array}{l}\text { vertex }(1, x,-1), \text { both } x \text { and } z-x \text { have min. norm (} \#=4600) \\ \text { suitable adjacency by intersection number }\end{array}\right.$
in the orthogonal complement of sum of two copies of <-2>, one is generated by $(1,0,1)$ and the other by $(1, z,-1)$, for a fixed z of min. norm.

$$
x \longleftrightarrow \rightarrow z-x
$$

The double Conway graph has symmetry of the 2nd Conway group Co_{2} The vertex stabilizer group is the unitary group $U_{6}\left(\mathbb{F}_{4}\right)$.

Sub-task: Find a K3-like object of Picard number 24 which

 incarnates the double Conway graph.§4. Relation between §2 and §3
§3 is partly inspired by the unfinished/untreated case of §2, namely the case of genus 8 .

Case
(1).
(2).
(3).
(4)

Sympl. Var. $\mathrm{S}^{\wedge}[2]$
$S^{\wedge}[2] \quad S^{\wedge}[3]$
OG10?
Fano Quartic dP $\quad \mathrm{g}=10 \quad \mathrm{~g}=9 \quad \mathrm{~g}=8$

Partial answer: The Leech analogy of degree 1/del Pezzo surface must be an OG10-like symplectic variety (wit a Lagrangian fibration) related with the Fermat cubic 4-fold in characteristic 2.

Another supporting fact: the number 1782 in the graph is twice the number ($=891$) of 2-planes in the 4 -fold.

I hope I will have another chance to discuss about this topic in near future.

Thank you for your attention, and the organizers, both Sho Tanimoto and Shigeyuki Kondo, for the wonderful conference.

References

(12/02/22)

§1
Bayer-Macri, MMP for moduli of sheaves on K3s via wall-crossings: nef and movable cones, Lagrangian fibrations, Invent. math., 2014.
§2
Kuznetsov-Prokhorov-Shramov, Hilbert schemes of lines and conics and automorphism groups of Fano threefolds, Japanese J. Math., 2018.

Beauville, A., Holomorphic symplectic geometry: a problem list, in "Complex and differential geometry", pp. 49-63, Springer-Verlag, 2011. (See Sect. 3 for the conjecture "contact+Fano implies homogeneous".)
§3
Conway, J.H., The automorphism group of the 26-dimensional even unimodular Lorentzian lattice, J. Algebra, 1983. Chap. 27 of [SPLG].

Brouwer-Maldeghem, Strongly regular graphs, Camb. Univ. Press, 2022. (Conway graphs are explained in Chap. 10.)
§4
Laza-Sacca-Voisin, A hyper-Kahler compactification of the intermediate Jacobian fibration associated with a cubic 4-fold, Acta Math., 2017.

Li-Pertushi-Zhao, Elliptic quintics on cubic fourfolds, O'Grady 10, and Lagrangian fibration, Adv. in Math., 2022.

Edge, W.L., Permutation representations of a group of order 9196830720, J. London Math. Soc., 1970.

Dolgachev-Kondo, A supersingular K3 surface in characteristic 2 and the Leech lattice, IMRN, 2003.

