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§1. Intreduction and statement of main results

The is the first part of the proof of the results announced in [8]. The
proof will be completed in the forthcoming Part II.

In this paper we work over an arbitrary algebraically closed field & of
characteristic 0. By Lefschetz’s principle we may assume A =C.

A nonsingular 3-dimensional projective variety X is called a Fano 3-fold
if the anticanonical divisor — K, is ample. We refer the reader to [9] §2 for
the basic results.

Let X be a Fano 3-fold. We say that — Ky has a splitting (resp. free
splitting) if there are two non-zero effective divisors (resp. two non-zero base-
point-free divisors) D, and D, such that D, + D, ~ — Ky (Definition 2.11).

The following three theorems are the main results to be proved by
combining this paper and the forthcoming Part II.

Theorem 1. There are exactly 87 classes of Fano 3-folds with By 22 up
to deformations (Tables 1-5 in {8]).

Theorem 2. The Fano 3-folds in each class (mentioned in Theorem 1)
are parametrized by an irreducible rational variety, that is, each “moduli
space” is irreducible and unirational.

Theorem 3. If X is a Fano 3-fold with B, 22, then — K has a splitting.
Furthermore, — K, has a free splitting if and only if | — K, | is base point free.

In the forthcoming Part I, it will be shown that an arbitrary Fano 3-
fold X with B, >2 belongs to one of the 87 classes (Tables 2-5 in [8]). In the
section 7 of this paper, the following assertions are proved:
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a) an arbitrary smooth 3-fold in each of the 87 classes is a Fano 3-fold
with B, >2,

b) the Fano 3-folds in each of the 87 classes are parametrized by a
non-empty irreducible rational variety,

c) arbitrary two Fano 3-folds in different classes are not deformation
equivalent to each other ((7.31)~(7.35)), and

d) —Kjy has a free splitting except for the cases (i) n°1 in Table 2 and
(ii) P! x S, in Table 5. In these two cases, — Ky has a splitting.

Theorems 1 and 2 follow from a), b) and c) modulo the forthcoming
Part II. In the cases (i) and (ii) of d), it is easy to see that | — K. « | has a base
point. Thus Theorem 3 follow from d) and Theorem 1.

Notation. A linear system is free from base points if it is free from fixed
components and base points. Hence the complete linear system |L| as-
sociated to a line bundle L is free from base points if and only if L is
generated by its global sections. The rational map associated to a linear
system | D|is denoted by #, ) : X—P" (N =dim| D|). For a locally free sheaf
E, P(E) (resp. V(E)) is the projective bundle (resp. vector bundle) associated
to E in the sense of EGA 11 A divisor D (resp. a curve C) on the product

M=P"x-..xP™

is of multi-degree (a;, - - -, a,,) if the line bundle ¢ ,(D) is isomorphic to
& T=1 p*0Op(a;) (resp. if (Cp2@p(1))=a, for every i=1, - - -, m), where piis
the projection of M onto the i-th factor.

This paper was prepared during authors’ stay at Harvard University
(first author in 1981), the Institute for Advanced Study (1981/1982) and
Max-Planck Institiit fiir Mathematik (1982). We are very grateful to these
institutes for their hospitality and support.
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§2. Blowing up and down of Fano 3-folds

Let f: X— Y be the blowing up of a smooth projective 3-dimensional
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variety Y along a (non-empty) smooth irreducible curve C on Y. We will
keep the meaning of these symbols in this section unless otherwise men-
tioned. We have an easy

Lemma 2.1. The following assertions hold:

(2.1.1) —Ky~f*(—Ky)— D for the exceptional divisor D of f,

(2.1.2) D=P(Ngy) and € (= D) is the tautological line bundle, where

N,y is the normal bundle of C and N &y its dual, and

(2.1.3) (D*)= —deg(Ney)=—(=Ky-C)+2-2p,(C),
(D* - Kx)=2p,(C)-2, (D( ‘Kx)2)=( Ky C)+2-2p(C),
(= KxP=(=Ky) =2{(= Ky C)=p(O)+ 1}, and

(2.1.4) By(X)=By(Y)+ 1, Bs(X)=B;(Y)+2p,(C).

Proof. (2.1.1) and (2.1.2) are well-known. Since ¢j,(— D) is the tau-
tological line bundle of N¢,, one has

(D¥)= —deg(Ncyy)
=(Ky-C)~—deg K,
=—(—K; C)+2-2p(C).

By the same reason, one has f,(D*)=—C, whence (D* f*(—Ky))=
—(C* —Ky). One also has (D- f*(—Ky)*)=0 because f,D=0. Thus one
immediately verifies equalities on (D?- — Ky), (D-(—K)?), and (- Ky)® by
(2.1.1). (2.1.4) is well-known. q.e.d.

Lemma 2.2, Assume that X is a Fano 3-fold. Then we have

22.1) (=Ky-C)>2p,(C)-2.

(2.2.2) When C is rational, one has (— Ky C) =0, where the equality
holds if and only if N ¥y = 0(1)®% (Ng,y = 0(—1)®2) (or equivalently D~P" x
P! and Gp(D)~C(—1, =1)), and

(2.2.3) (=Ky-C)>p(C)—1 and (- KyP*>(—Ky).

Proof. Since —K, is ample, one has (D:(—Ky)*)>0. Thus (2.2.1)
follows from (2.1.3).

Since — Ky is ample, so is ¢p(— Ky). Since €p(— Ky) is a tautological
line bundle of /| ,: D—C, the direct image F=(/f] ), €p(— Ky) is ample. If
C=~P!', Fis a sum of ample line bundles. Hence (( — Ky)?: D) =deg F>2 and
the equality holds if and only if F~¢@(1)®2, (2.2.2) follow from

FxN&,®C(—Ky)
=Nav®w51
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because deg N,y =(— Ky C)+2p,(C)—2. (2.2.3) follows from (2.1.3).
q.ed.

The following tells exactly when the blow-down of a Fano 3-fold is
again a Fano 3-fold.

Proposition 2.3. If X is a Fano 3-fold, then one and only one of the
Sfollowing holds:

(i) Y isa Fano 3-fold,

(i) C=P' and Ng,y~0(—1)®? (hence (C- — K,)=0), or equivalently
D=P'xP! and 6,(D)=0p(—1, —1).

Proof. Since X is a Fano 3-fold, the cone of curves NE(X ) is generated
by a finite number of extremal rational curves [71 (or, cf. §3). Since
St NE(X)->NE(Y) is surjective, NE(Y) is generated by a finite number of
half lines, and hence closed. Thus by Kleiman’s criterion for ampleness, — K,
is ample if and only if (— Ky Z)>0 for every irreducible curves Z on Y. If
Z#C, then the strict transform Z’ of Z by f'is not contained in D and

(=Ky Z)=(/"(—Ky)- Z')=(- Ky Z)+(D-Z')>0.
Hence, if (-~ Ky-C)>0, Y is a Fano 3-fold. Otherwise one has (ii) by (2.2.2).
q.e.d.

We give easy but useful necessary conditions for the blow-up X of a 3-
fold Y to be a Fano 3-fold.

Proposition 2.4. Assume that X is a Fano 3-fold and let E be an
irreducible reduced curve on Y. Then one has

(24.1) If(E-—Ky)=1I, then C=Eor CAE=(, and

(24.2) if(E-—Ky)=2,then C=E,CnE=, or CNE is one point p
at which E is smooth and E and C intersect transversally.

Proof. Assumethat(E-—K,)<2, C#E,andCn E# . Let E’ be the
proper transform of E by /. Then by (2.1.1), one has

0<(—Ky E)=(/*(—Ky)-E')—(D-E’)
=(—Ky E)—(D-E’).

Since C#F and CnE#{, it follows that (D-E’)>0 and hence
(—Ky E)22. Thus (= Ky E)=2 and (D E")=1. Hence the proposition is
proved.

By an exceptional line of f: X— Y, 'we mean an irreducible reduced
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curve F on X such that f(F) is a point.

Remark 2.5. Ler Z be an exceptional line of f with p=/(Z). Let
g: X=X (resp.h: Y'>Y) be the blow-up of X along Z (resp. Y at p) and
C’c Y’ the proper transform of C by A. Then it is well-known that X’
dominates Y’ and X’ — Y’ is the blow-up along C".

Corollary 2.6. Assume that X is a Fano 3-fold and that Y is the blow-up
g: Y= Z of a Fano 3-fold Z along an irreducible smooth curve Fc Z. Then
g C)n F= or Cis an exceptional line of g. If g': Y' > Z is the blow-up of Z
along g(C), then X is the blow-up f*: X— Y’ along the proper transform F’ of
F by g'. Then one of the following holds:

2.6.1) g(C)nF=,and Y and Y’ are Fano 3-folds, or

(2.6.2) C isan exceptional line of g, and Y is a Fano 3-fold, if Y’ is not a
Fano 3-fold, then F~P' and Ny;~6@0, (and hence (F- — K;) =2).

Proof. Applying (2.4.1) to an arbitrary exceptional line of g, one sees
that g(C) n F= & or g(C) is a point on F. Then it is well-known that X is the
blow-up of Y’ along F’' (Remark 2.5). If g(C)n F=(, one applies
Proposition 2.3 to f and sees that Y is a Fano 3-fold because (C- —Ky) =
(9(C)- = Kz)>0. Again by (F'- = Ky)=(F: —Kz)>0, Y’ is a Fano 3-fold.
This is (2.6.1). Assume that C is an exceptional line of g. Then Y is a Fano 3-
fold by Proposition 2.3 because (C-—K,)=1. If Y’ is not a Fano 3-
fold, then F’~P', Ng. . ~@(—1)®? by Proposition 2.3. Since Y’ is the
blow-up of Z at a smooth point of F, one sees

F~F and Npp=Npp@0(1)=0%2.
This is (2.6.2). q.ed.

Corollary 2.7. If Y contains S=P? such that O0x(S)=0g(—1) and if X
is a Fano 3-fold, then (i) Cn S=, (it) C& S and (C- S) =1, or (iii) Cis a line
in S~P2.

This follows from (2.4.2) applied to an arbitrary line £ in S because
(E-—Ky)=2.

Proposition 2.8. Assume that C~P' and (C- —Ky)=1. If X is a Fano
3-fold, then N¢yy ~0@0(—1).

Proof. Since degNgy=(—Ky C)+degNy=—1, one sees that
Neyy =0(n)@0(—1—n) for some n=>0.

Let S be the section of P'-bundle D =P(N¢,)— C corresponding to the
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exact sequence
0—Cp(n+1)——NEy —— Op(—n) —0.
Then one has
0<(-Ky-S)=(f*(~Ky)-S)—(D5)
=(—Ky C)+(O0p(—D)-S)p=1—n.
Thus n=0. q.ed.

For convenience, we state the point-blow-up version of Lemma 2.1 and
Proposition 2.3.

Proposition 2.9. Let g: U—V be the blow-up of a smooth projective 3-
Jold V at a point p, and let D=g~'(p)~P2. Then we have

(29.1) —Ky~g*(—K,)-2D,

(29.2) Op(D)=0p(—-1),

(29.3) (DY)=1,(D*- —Ky)= -2, (D- (- K,)*)=4,

("Ku)3=(—Kv)3—8a
(29.9) B,(U)=B,(V)+1, By(U)=B,(V), and
(2.9.5) If Uis a Fano 3-fold, then so is V.

Indeed (2.9.1) and (2.9.2) and well-known, (2.9.3) foliows from them,
and (2.9.4) is well-known. We omit the proof of (2.9.5), since it is very similar
to that of Proposition 2.3.

Proposition 2.10. Here we only assume that C is a smooth proper closed
subscheme of Y. Let I be the sheaf of ideals of C in Y, and let L be an
invertible sheaf of Y with the attached complete linear system | L|. Then the
Jollowing are equivalent:

(2.10.1) HYL®I)®0y—~L®I, and

(2.10.2) f*L(—D) is generated by global sections.

Proof. 1t is clear that (2.10.1) implies (2.10.2) because the natural
map f*(L®I)—f*L(—D) is surjective. Let us assume (2.10.2). Since
SL(/*L(— D)) =L®]I, there is a natural surjection

&, HAL®I)® Oy, —f*L(~D)D0y,

for all pe Y, where X, =/ "!(p)=P" (n=0, 1, or 2). Since dim X,=n, there
are n+1 elements s, * - -, s,€ H(L®1I) such that #,(So), * * +, a,(s,) generate
S*L(—D)®0y, . Since f*L(—D)®(9xp:0xp(l), a,(sp), . a,(s,) have to
generate H°(f"L(—D)®G)xp):k"'*". Thus H%g,) is surjective for all



502 S. Mori and S. Mukai

peY. Now
HO(@,): HUL®I )@k, —n LOI®K, .
whence follows (2.10.1). q.e.d.

Definition 2.11. (i) We say that Cis an intersection of members of | L |
when the equivalent conditions in (2.10) are satisfied.

(i) We say that a divisor D or its complete linear systemr | D] has a
splitting if there are two non-zero effective divisors D, and D, such that
D, + D, €| D|. The splitting is called free if | D, | and | D, | (given above) are
free from base points.

Proposition 2.12. Here C is only assumed to be a non-empty smooth
subvariety of pure codimension r (r=2,3) of Y. If C is an intersection of
members of a complete linear system | L| such that — Ky —(r— 1)L is ample,
then X is a Fano 3-fold. If, furthermore, | — Ky —(r—1)L| is non-empty (resp.
Jree from base points), then — K has a splitting (resp. a free splitting).

Proof. First of all, one has
2.12.1) Ky~ -Ky—(r—DL}+(r—-1D)(f*L-D)

by (2.1.1) and (2.9.1). The last assertion is clear from this. Since | f*L—D|is
free from base points and — Ky —(r— 1)L is ample, some multiple of — K is
free from base points. It is now enough to show that (— K- Z)>0 for all
irreducible reduced curves Z of X. If f(Z) is a point, then (—Ky Z)=
(r=1)(=D-Z)>0. If f(Z) is not a point, then (—Ky Z)=>
((-Ky=(r=1L)-f,{Z)>0. q.e.d.

Proposition 2.13. Here C is assumed to be a non-empty disjoint union of
irreducible smooth curves. Assume that Y has a structure of a P'-bundle
g: Y—S over a smooth surface S, and that g|.: C—S is an embedding. If
there is a very ample divisor N on S such thai C is an interesection of members
of | —Ky—g*N|,-then X is a Fano 3-fold and — Ky has a free splitting.

Proof. First of all,
(2.13.1) ~Kyx~{f*(—Ky—g*N)=D}+f*g*N

shows that — K, has a free splitting. Let Z be an irreducible reduced curve in
Y. If f(Z) is a point, then (—Ky-Z)=1. If f(Z) is a fiber of g: Y= S, then
(=Ky-Z)=2—(D-Z)=1 because g|c is an embedding. If ¢/(Z) is not a
point, then (- Ky Z)=(N-g,/f,Z)>0 by (2.13.1). q.e.d.
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Proposition 2.14. Assume that Y has a structure of a P>-bundle
g: YoP!, and that the curve CcY is an intersection of members of
| —Ky—g*@(1)| and g|c: C—P" is surjective and of degree <5. If there is
irredudible divisor Q of Y containing C such that the fiber Q, over every point
teP! is a smooth conic of Y,~P?, then X is a Fano 3-fold and — Ky has a free
splitting.

Proof. By
(2.14.1) =Ky~ {/*(— Ky—g*0(1))- D} +/*g* (1),
— K has a free splitting. Let Z be an irreducible reduced curve on X, We will
show (— K- Z)>0 in the following. If /(Z) is a point, then (— Ky Z)=1>0
as in the proof of Proposition 2.13. If f{Z) is a curve not in Q and if gf(Z) is
a point reP’', then
(Z-D)<(Z-f*Q)=(/,Z- Q)
because Dc f*Q and Z&f*Q. Therefore (—Ky-Z)2(f,Z-—Ky—0Q)
which is the degree of f,Z in Y,~P? and is positive. If f(Z) is a curve in Q
and if gf(Z) is a point 1P, then f,Z=0, and
(D-Z)=((D- Q") Z)g =(C" f,Z)g=(C- Q))g =det(g | ¢)

because O ~the proper transform Q’ of Q by fand f(D- Q)= C where (o
for example, is the intersection considered on Q. Thus

(=Kx*Z)=(—Ky," f,Z)—(D-Z)=6—deg(g|)>0
by (2.1.1) because f,Z=Q,. If gf(Z) is not a point, then
(= Ky Z)2(0,/,Z-6(1))>0
by (2.14.1) g.ed.

Definition 2.15. We say that a morphism g: U— V is a basic blow-up if
Uand V are Fano 3-folds and g is the blow-up along a non-empty irreducible
smooth curve in V. A morphism g: U~V is called a basic morphism or a
successive basic blow-up if g is the composition of a finite number (=1) of
basic blow-ups. In this case, U is called a successive basic blow-up of V.

§3. Extremal rays of Fano 3-folds

We recall [7] for Fano 3-folds. Let X be a Fano 3-fold with B, >2. Let
Nz(X) (resp. NEZ(X)) be the set of numerical equivalence classes of 1-cycles
(resp. effective 1-cycles) on X. Let N(X) =N (X)®,R and NE(X) the cone
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in N(X) generated by NE(X). Theorem 1.2 [7] says that NE(X) is a closed
polyhedral cone generated by a finite number of extremal rays, where an
extremal ray R of X in our case is just a half line which is an edge of the
polyhedral cone generated by a finite number of extremal rays, where an
a uniquely determined morphism (up to an isomorphism) to a normal
projective variety such that (i) f,('y =Gy and (ii) for any irreducible reduced
curve C on X, [C]e R if and only if f(C) is a point (Theorem 3.1 [7]). One
has p(X)=p(Y)+ 1 (Theorem 3.2 [7)).

Set ;4(R)=min{(—Kx-Z)|Z is a rational curve such that [Z]e R} and
let /=1Iy be a rational curve such that [/]Je R and (= Ky /) =pu(R).

Proposition 3.1.  There exists an exact sequence
0 —Picy Lpicx L2z .o,
where (-1} D)=(D-!) for DePic X.

The exactness is proved by Theorem 3.2 (7] except for the surjectivity of
(+1). In the following, R and f will be classified into several types and the
surjectivity of (/) will be checked in the cases where u(RY>1.

Case dim Y =3 (E-type): There exists an irreducible reduced divisor D
of X such that f ] x - p is an isomorphism an dim f(D) < 1. Such D is uniquely
determined by R and is called the exceptional divisor of R. Moreover fis the
blow-up Y by the ideal defining f(D) (given the reduced structure). fand D
satisfy one and exactly one of the following (Theorem 3.3 and Corollary 3.4

)

type of R f and D #(R) I

E, f(D) is a smooth curve, Y is 1 exceptional
smooth and /| ,: D—f(D) is a line
P'.bundle.

E, f(D) is a point, Y is smooth, 2 linein
D=~P?and € y(D)~Cp(—I). D~Pp?

E, /(D) is an ordinary double I sxP'inD
point. D~P' x P!, ¢ (D)~ (seP!)
@(—1, —1), and sx P! and

t x P! are numerically equivalent
for s, teP!.
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E, J(D) is a double point. D 1 generator of
is an irreducible reduced the cone D
singular quadric surface in
P2, 0x(D)=0,@0p(—1).

E; J(D) is a quadruple point of 1 line in
Y, D=P? and €p(D)~=Cp(—2). D~P?

If R is of E,-type, then (i) Y is a Fano 3-fold, or (ii) D~P' x P! and
Cp(D)~C(—1, —1) (Proposition 2.3). We say that R is of E, ,-type in the
case (i) and of E, ,-type in the case (ii). If B,(X)=2, then Y is always a
Fano 3-fold because Y is projective and p(Y)=1.

Proposition 3.2. If R is of E, ,-type for a Fano 3-fold X, then the
horizontal section s generates a different extremal ray of E| ,-type.

Proof. Let I be a fiber of /| 5. One has [s]¢ R by the property of /. It
follows from Theorem 1.2 of [7] that the cone NE(X) is spanned bys,/, and a
finite number of irreducible curves Z such that Z& D. One need to show S=
R,[s] is an edge of NE(X). If this is not the case, there are two positive
numbers @ and b and an effective 1-cycle Z on X such that Z& D and
asabl+Z. Since — Ky is ample and (— Ky 5)=(—Ky-/)=),one hasa=b +
(=Ky-Z)>b. From (D's)=(D-1)=—1, follows

—a=-b+(D-Z)=z -b.
This is a contradiction and S is an edge. q.ed.

If R is of E,-type, then Y is a Fano 3-fold by (2.9.5).
Proposition 3.1 for R of E,-type is obvious because (D-/) = —1.

Lemma 3.3. One has

(3.3.1) Op(—D)and wp' are both ample and every curve in D moves in
D, if R is not of E,_,-type,
and

(3.3.2) D is mapped to a point by every morphism g from X to a curve, if
R is not of E -type.

Proof. (3.3.1) is obvious from the description of D. If R is of type E,,
E,, or Eg, then D has no surjective morphism to a curve. Let R be of type E,
and g a morphism from X to a curve. Let S< D be a curve sent to a point by
¢, and T an arbitrary curve in D. Then R,[S]=R[T] and 4,5 =0, whence
¢, T=0. Thus g(D) is a point. q.ed.
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Case dim Y=2 (C-type): Y is a smooth projective surface and
f: X—>Y is a conic bundle (Theorem 3.5 [7]).

Lemma 3.4. For every irreducible reduced curve C on Y, f ~Y(C) is
irreducible reduced.

Proof. Reducedness follows from general theory of conic bundles. Let
D be an irreducible component of f~'(C), E an arbitrary irreducible
component of f ~!(x) for any xe C, and F a fiber of f such that f(F)¢ C. By
the property of f, R, [E]=R.[F] and (D-F)=0. Thus (D-E)=0. Hence
EcD or EnD=¢. Since E was an arbitrary irreducible curve in any

fibercf ~!(C), one has D=f""(C). q.e.d.
We have the following two cases:
type of R f #(R) !
o fhasa 1 an irreducible component
singular fiber of a reducible fiber or

a reduced part of a
multiple fiber

G, fis smooth 2 fiber

Proposition 3.5. (C,-type). Y is rational and f is a P'-bundle for
Zariski topology. (Thus Proposition 3.1 holds when R is of Cy-type.)

Proof. Since ¢(X) =0 and fis surjective, one has g(Y)=0. By (4.6), we
have the formula — 4K, = f,(— Ky)*. (we note that proofs of (4.5) and (4.6)
do not use any other results of this paper.) Thus some positive multiple of
— Ky is a non-zero effective divisor and hence all the plurigenera vanish.
Thus Y is rational by Castelnuovo’s criterion. Then the Brauer group of Y
vanishes and hence f'is a P'-bundle for Zariski topology. q.ed.

Case dim Y=1 (D-type): Y is a smooth curve and p(X)=p(Y)+1=2.
Every fiber of fis irreducible reduced and the generic fiber X, is a del Pezzo

surface (Theorem 3.5 [7]). We call (K‘\-")2 the degree of X,. We have the
following 3 cases:

type of R f R)

D, X, is a del Pezzo furface of ]
degree d (1 £d<6)
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D, J'is a quadric bundle, i.e. 2
every fiber is isomorphic to
a normal quadric surface in P?

D, fis a P2-bundle 3

Since g(X) =0 and fis surjective, one has g(¥)=0. Thus Y~P'! when
dim Y =1. Proposition 3.1 for R of D,-type and D,-type is reduced to the
existence of a k(n)-rational point on X,. If R is of D;-type this is obvious by
Tsen’s Theorem. If R is of D,-type, X, is a smooth quadric of P3. Since k()
is a C,-field [5], X, has a k(y)-rational point. Thus Proposition 3.1 is proved
now.

Definition 3.6. We say that a Fano 3-fold X is imprimitive if one of the
following equivalent conditions is satisfied

(3.6.1) X is obtained as the blow-up of a Fano 3-fold Y along an
irreducible smooth curve, and

(3.6.2) X has an extremal ray of E, ,-type.

If X is not imprimitive, we say that X is primitive.

Indeed, (3.6.2) implies (3.6.1) by the definition of E, -type. If f: X> Y
is the morphism in (3.6.1), then f'is a contraction of an extremal ray R by ({7],
Corollary 3.6) because p(X)=p(Y)+ 1. This R must be of E, ,-type by the
property of f.

The classification of Fano 3-folds with B, >2 starts with the following
fundamental.

Theorem 3.7. [f X is a primitive Fano 3-fold with p(X) =2, then X has
an extremal ray of type C thus X has a structure of a conic bundle.

Proof. Let us assume that X does not have an extremal ray of E, ,, or
C-type. Then we claim that X does not have an extremal ray R of D-type.
Indeed, if R is such an extremal ray, then p(X)=2 ([7]}, Theorem 3.5) and
NE(X) is spanned by two extremal rays. Let R’ be the other extremal ray.
Let I’ =1, and f=contg: X—P'. Then f(!’) =P"' because [')§R. If R’ is of
E-type, R’ has to be of E,, E,, E,, or Es-type (cf. the remark preceding
Proposition 3.2), and the associated exceptional divisor D’ dominates P! by f
because f(/")=P* and /"< D’. Thus contradicts (3.3.2), whence R’ has to be
of D-type. Let f'=contg.: X—»P!. Then g=(f,f): X—»P!xP' has the
property: if Z is an irreducible curve on X such that g(Z) is a point, then
[Z)e R ~ R" ={0}. This implies that g is finite which is absurd. Thus X has no
extremal rays of D-type and our claim is proved. Hence extremal rays of X
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are E, ,, E,, -+, or Es-type. Let R, -+, R, be all the extremal rays of X,
and let/,, ---, I, and D, - -, D, be the rational curves and the exceptional
divisors associated with them. We claim that

Let S=D;-D; assuming D;# D; and D;n D;# (. Then (S-D;) >0 be-
cause S moves in D; (3.3.1), and (S D)) =(S" 0p (D;)) <0 because ¢ (— D))
is ample (3.3.1). This is a contradiction and one gets (3.7.1). Let C=
(—Ky)’. Then Ce NE(X) and C=) a, for a; >0, whence

(C-D)=Yafli-D)=(;D) ¥ =0
i Di=Dj

for all j by (3.7.1). On the other hand, (C- D;)>0 by ampleness of — Ky. This
is a contradiction. Thus X has an extremal ray of C-type if X is primitive.
q.e.d.

We will need a description of the cone of curves for a cyclic branched
covering.

Theorem 3.8. Let g: U—V be an n-sheeted cyclic branched covering
between non-singular projective varieties over k of characteristic 0 with branch
locus B V. Then

(3.8.]) X.op(U)=nXlop(V)_ (n—1 )X(op(B)’

(3.8.2) Ky~f*K,+(n—1)R and nR=g*B, and

(3.8.3) if dim V>3 and B is ample on V, then g*: Pic VSPicU and
g*: NE(V)SNE).

Proof. (3.8.1) and (3.8.2) are well-known. Let us consider (3.8.3). If
dim ¥ >3 and R (resp. B) is ample on U (resp. V), one knows that the natural
maps Pic U—-Pic R and Pic V- Pic B=Pic R are injective and have torsion-
free cokernels [2). Thus g*: Pic V->Pic U is injective and the cokernel is
torsion-free, and the Galois group Z, of g acts trivially on Pic U because
PicUcPicB. Thus nLeg*PicV for all LePicU, and one sees
g*: Pic V3Pic U. Thusg*: N(V)=>N(U). The last assertion follows from [7,
(1.9)].

§4. Fano conic bundle
First we recall some general properties of a conic bundle f: X—S.

Definition 4.1. A morphism f: X—S from a smooth variety X onto a
smooth surface S is a conic bundle if every fiber is isomorphic to a conic, i.e.,
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a scheme of zeroes of a non-zero homogeneous form of degree 2 on P2,
The set {se S| f ~(s) is not smooth} is called the discriminant locus of f
and denoted by 4,.

Proposition 4.2. Let f: X— S be a conic bundle and wy,s the relative
dualizing sheaf of f. Then we have

(1) fisflat, f(wys) is a vector bundle of rank 3 and the natural map
X—P(f(wxy) is an embedding. In particular, X is projective if S is
projective.

(2) If Ay is non-empty, then it is a curve with only ordinary double points
and Sing 4, coincides with the set {se S | S ~(s) is non-reduced}.

(3) Let s be a singular point of A, and u, and u, the local equations
of the two branches of A, at s respectively. Then u, and u, form a regular
system of parameters of S at s, and the completion of U . is D=k[[u,, u,]]
and the base change f,: Xp—SpecD of f by Spec D—S is isomorphic to
Proj (D[U,, U,, W)/, U2 +u, U2 - W?2)), wt U, =wt Uy =wt W=1.

For the proof see [1] Chapter I. The proof works in the general case
though it was proven there only in the case S=P2.

If f: X—S is a conic bundle, then f is equidimensional and wy} is
relatively ample. The converse is also true:

Proposition 4.3. Let f: X— S be an equidimensional morphism Srom a
smooth 3-fold X onto a smooth projective surface S. If » " is f-ample then f is
a conic bundle.

Proof. We prove h®(0) =1 for every fibre C of f. Then the proposition
follows from the lemma below which is a characterization of conics. Since a
generic fibre is P! and f'is flat, (0c) =1 for every fibre of /. Hence for the
proof of 4°(@¢) =1 it suffices to show that h!(0) =0 for every fiber C of f,
that is, R'f,0,=0. Let M be a line bundle on S. By Leray's spectral
sequence,

HYS, M®R'f,0,)=H"(S, R\f f*M)

is a quotient of H'(X,f*M) if H*S, M)=0. Since w;' is f-ample,
wx'®f*M is ample if M is sufficiently ample. Therefore by Kodaira's
vanishing theorem, H'(X, f*M) is zero and hence so is H%(S, M@R'f,0y).
This implies R'f, 0y =0.

Lemma 4.4. Let C be a locally Gorenstein complete scheme of pure
dimension | over k such that wc' is ample and h°(O;)=1. Then C is
isomorphic to a conic of P2, as a scheme.
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Proof. By the Serre duality and the Riemann-Roch formula, we have
W)= — fwe)=— {Cc)—deg o .

Hence —degwe=2y(C¢)=2{1 —h'(C)}. Since ws' is ample, one sees that
h'(Gc)=0 and degw¢ ' =2. We claim that an arbitrary irreducible reduced
curve Z contained in C is isomorphic to P'. Indeed, if / is the sheaf of ideals
of (¢ defining Z, then the exact sequence 0—/— @ —0,—0 shows H'(0,) =
0 because H'(0c)=H*(/)=0. Thus Z=P"' and the claim is proved. Hence
from the ampleness of wg' and degw¢' =2, it follows that C is (i)
isomorphic to P!, (ii) C, v C, where C, and C, are distinct curves
isomorphic to P, or (iii) 2C, as a cycle, where Cy = C,.g =P'. In case (i), we
are done. In case (ii), from the exact sequence

0—C¢ 0o, ®@Cc, —C¢, e, —0,

we have y(C¢, .c,) =2(Cc) + 1(C¢,)— x(Cc)=1. Hence C, and C, intersect at
one point and transversally. In case (iii), let / be the sheaf of defining ideals of
Co in C. Then 7 is an invertible sheaf on C, because C=2C, as a cycle and €'
has no embedded components. Since x(/)=x(C¢)—x(C¢,) =0, we have
1= G (—1). The obstruction to extend id: C,—C, to a morphism C-C,
lies in H' (T, ®Cc (—1)). But since

H (T, ®Cc(—1)=H'(C(,(1)=0,

C has a structure of a Cy-scheme and €'¢ as € -algebrais O ®C (— 1) with
(€ (—1))* =0. This shows that C is exactly a double line in P2,
Now we investigate some properties of 4, as a divisor on S.

Proposition 4.5. Let f: X—S be a conic bundle and Ky s the relative
canonical class of f. Then we have

A]E —./‘*(Kf\’/s) [}
where Ky,s=Ky—f*Ks.

Proof. Let C be a smooth curve on § intersecting 4, transversally and
such that the surface Y=/ "'(C) is smooth, It is easy to see that linear
equivalence classes of such curves generate Pic S. Hence it suffices to show
(4, C)=(—f(Kx,s)* - C) for every such curves C. Since Y is isomorphic to
the blow up of a P*-bundle, —(Ky,)? is rationally equivalent to the sum of
the singular points of fibers with all coefficients 1. It follows that
—f(Ky. 0P ~ 4;- C. Since wy (- is canonically isomorphic to wy g | y» we have

4p C~ —fu(Ky el ~ = [l Kis V)~ =Sl Kxs [*O)~ = ([ K%9)- C.
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In particular, (4,-C)= —(f,K%;s-C), that is, 4,= —f,(Kys)*. q.e.d.
Since Ky,s=Ky—/*Ks and f,Ky ~ =28, we have
S KysP ~[(Kx—f*Ks) ~ [ K3 +4Ks .
Hence we have by the proposition
Corollary 4.6, —4Ks=f,(Kx)' +4;,.

Proposition 4.7. Let f: X— S be a conic bundle.

(1) If a smooth rational curve C is a connected component of 4;, then
S ~YC) is reducible.

(2) Let C be an irreducible component of A; and C the closure in X of the
set of singular points of f ~'(s), s€ Ceg. Then we have

~ 1
(Kxs C)=n+—(C-4,-C),

where n is the number of ordinary double points of C.

Remark. We use the notation of (3) of Proposition 4.2 and make
the identification X, =Proj(D[U,, U,, W){(u, U} +u, U3 — W?)), where D=
k([1;, u,]], and denote the origin of Spec D again by s. Then 4 is the union of
4, and 4, and f;'(4,) is the union of F, =f ~!(4,) and F, =f ~'(4,), where
4; is defined by u;=0 in SpecD (i=1,2). Let 4; be the closure of
{Sing /()| 1€ 4,;— {s}} in Xp. Then we have

a) 4, is defined by u;=U, _;=W=0. In particular, 4, intersects with
F;_; only at #; (defined by u; =u, =U,_,=W=0) and the intersection is
transversal, and

b) let n;: Xp— X}, be the blow up along 4,, 7, the strict transform of
F,, and E; the exceptional divisior of n;. Then E; n T is a double cover 4; and
ramifies exactly at ;.

Proof. Let C be a smooth rational curve which is a connected
component of 4,. By (2) of Proposition 4.2, f ~(s) is a union of two smooth
rational curves for every se€ C. Let €< Hilb X be the parametrizing space of
those rational curves. Since C=P? and C is an etale double cover of C, € is
disconnected. Hence f ~'(C) is reducible, which shows (1).

Let C be an irreducible component of 4, and p,, - - -, p, the ordinary
double points of C. By a) of the previous remark, C is smooth and meets
S ~'(p;) transversally at two distinct points, say ¢; and r;, fori=1, - - -, n and

/| ¢ is just the normalization of C. Let n: X— X be the blow-up of X along C,
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E the exceptional divisor n"'(C) and T the strict transform of £ ~}(C). We
show (2) by calculating the arithmetic genus of D=7 E in two different
ways:

i) It is easy to see that n|,: D—C is an etale double cover over
(f|&)""(Cwg). By the previous remark, D contains the exceptional lines
n~!(q;) and n~!(r)) for every i=1, - --, n,

5=D-.Z (™ Yg)+n" ()

is smooth and the morphism 7| 5: D—C branches at g, r; (i=1, - --, n) and
Cnf ! (closure of (4,—C)). Hence by the Hurwitz formula we have

@.7.1) PD)=p(D)+2n

=2p,(C)-1 +n+-;—(é'f*(A,—C))+2n

=2p(C)—1+n +—;-(C-A,—C).
ii) By the adjunction formula, wp=@p(Kg+T+E). Since Kgp~
n*Ky+ F and T~n*f*C—2E, we have
wp=Op(M* Ky + ¥ *C)=(n| p)* O Ky +/*C) .
Since |, is of degree 2, we have
2p,(D)—2=degw,
=AKy+/*C-C)
=2Kys+/*(Ks+C)-C)
=2{(Kys' O)+(Ks+C- 1,00}
=2{(Ky;s- C)+2p,(C) -2} .
It follows that
4.7.2) PAD)=2p(C)—1+(Ky;s ().

(2) of the proposition follows inmediately from (4.7.1) and (4.7.2).
q.ed.

Next we investigate some properties of a conic bundle f: X—S such
that £ ~}(C) is reducible for an irreducible curve C on S.
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Proposition 4.8. Let f': X— S be a conic bundle over a projective surface
S and Z a curve in a fibre. Then the followings are equivalent:

(1) f~YC) is irreducible for every irreducible curve C on S,

(2) p(X)=p(S)+), and

(3) A=R.[Z]is an extremal ray and f=com,.

Proof. (1) =(2) Let / be the generic fibre of /. Assuming (1) we show
that every divisor D with (D-/)=0 is linearly equivalent to f *C for a divisor
Con S. It is clear that (2) follows from this. In the case D is effective and
irreducible, (D-/)=0means that D n /=, thatis, C=f(D)is a curve. Hence
by our assumption D=f*C. Therefore if D is effective and (D-/) =0, then
D =f*C for an effective divisor C on S. In the case D is general, we consider
the direct image £, ,(D). If (D-/) =0, then the sheaf S 0x(D) is non-zero.
Hence for a sufficiently ample divisor 4 on S, we have
HUX, O(D+f*A) = H(S, (f,0x(D)®A)#0, that is, |D+f*A4] is not
empty. Hence by what we have shown, D+/*4 is linearly equivalent to f *C
for a divisor C on S. This completes our proof of (1) = (2).

(2) =(3) See [7] Corollary 3.6.

(3)=(1) We have proved it in Lemma 3.4. g.e.d.

By the proposition, there is an irreducible curve C such that f “!(C) is
reducible if p(X) > p(S)+ 1.

Proposition 4.9. Let f: X— S be a conic bundle over a projective surface
S and C an irreducible curve on S such that £ ~)(C) is reducible. Then we have

(1) Cis a smooth connected component of 4;,

(2) f7NC) is a union of effective divisors E, and E, such that
S|&: E~Cis a P'-bundle for i=1, 2,

(3) there are a conic bundle g;: Y;—~ S and a morphism o;: X— Y, which
is the contraction of all fibres of f | g, such that g;>a;=f for both i=1, 2,

4 4,=4,]]C and p(X)=p(Y)+]1 for i=1, 2,

(5) 4, =4,, and p(Y,)=p(Y,), and

(6) (—Ky,s°C)+(—=Ky,s C)=(C?)s, where C;=a(E) for i=1, 2.

Proof. Since every fibre of fis a conic, f ~(C) = E, + E, for irreducible
divisors E, and E;. Let/; be a generic fibre of f | ¢, : £,~C,i=1, 2. Then/,=P"
by (2) of Proposition 4.2 and (/- E))=(/, E;)=1. Since (/, +15,-E)=0,
(l- E)=—1fori=1,2.1f mis a double line of f | s-1c), then m=ryJ; for some
r,eQ, and i=1, 2. Hence f | £-c) has no double line (otherwise /, and /, are
numerically equivalent). Therefore C is a smooth connected component of
4; by (2) of Proposition 4.2 and f | , is a P!-bundle for i=1, 2 because every
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fibre of f |, is isomorphic to P', which shows (1) and (2). Since /| z, isa P'-
bundle and (E;- /)= — 1, there is a contraction a;: X— Y; (in the category of
algebraic spaces) of all fibres of f| - Then Y; is projective by (1) of
Proposition 4.2. It will be clear that there is a morphism g;: ¥;— S such that
g;oo;=fand that g; is a conic bundle which satisfies (4) and (5). It remains to
prove (6). Put C=E, n E,. By (2) of Proposition 4.7 and (1), we have
(Ky;s* €)=0. On the other hand we have

(4.9.1) 2Ky s~oyKy stafKy, s+f*C
because Ky,s~ ¥ Ky, s+ E; fori=1, 2. Since %,C=C; fori=1, 2, (6) follows
immediately from (4.9.1). q.e.d.

By an induction on p(X)—p(S), we obtain the following from
Propositions 4.8 and 4.9:

Proposition 4.10. Ler f:X—S be a conic bundle over a projective
surface S and n=p(X)—p(S)—1. Then there exist n distinct smooth irre-
ducible curves C,, - - -, C, on S such that f ~'(C,) are reducible. C,, -+, C,
are connected components of 4, and f~'(C) is irreducible for every irre-
ducible curve C other than C,, -+, C,.

The elementary transformation of P'-bundles are generalized to conic
bundles.

Definition 4.11. Let g: Y—S be a conic bundle. A curve Con Yisa
subsection if g | ¢ is an embedding. A subsection is regular if C is smooth and
does not meet any singular fiber of g.

Let C be a regular subsection of a conic bundle g: Y-S and «: X=Y
be the blowing up along C. Then f=a-g: X—S is a conic bundle. Since
g~ "(g(C)) is reducible, we have by Proposition 4.9 that there are a conic
bundle g’: Y’'—S and a morphism a’: X— Y satisfying the two conditions
(a)goa=g’oa’ and (b) & is birational and an irreducible reduced curve Z on
X is contracted to a point by «’ if and only if Z is a strict transform of a
smooth fibre of g meeting C. This conic bundle g’: Y-S is called the
elementary transform of g with center C.

Proposition 4.12. Let the situation be as above. Then we have
(1) A4,=4,and p(Y')=p(Y), and
Q) (—Ky Y =(—Ky) +29(CY)s—4(— Ky;s° C).

Proof. (1) will be obvious. Applying (2.1.3) for « and a’, we have
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(=K P =(—Ky) =2{(= Ky C)=p,(C)+ 1}
=(—Ky ) =2{(= Ky C)=p(C)+1},

where C” is the center of the blowing up «’: X— Y. Since C= (" 2¢(C) and
(9*Ks- C)=(¢"* K- C), we have

(- Ky")s:( - Ky’ -2(- Kys:C)+2(—Ky 5 C).
Hence (2) follows from (6) of Proposition 4.9. g.e.d.

We compute the Euler-Poincaré characteristic Z1ep(X) and the Betti
numbers B/(X) of a conic bundle f: X—8.

(4-13) a) Zlop(X)=2{Zmp(S) _pa(df)'*' I }v
by B,(X)=B,(S), and
) By(X)=2{B\(S)+(B,(X)— By(S)) +p,(4))~2}.

(We understand p(A,)=1 if A, is empty.)

Proof. a) S is the disjoint union of S— Ay, (4p)eeg and (d;)ang. Hence
we have

H1oo{X) = Lol T (S = A + Lol T (AP g+ Lo T (A Damg))
=2710p(S — A} + 3110p((Ap)reg) + 210p((BDsing)
=2510p(S) + Lropl(ds)reg)
=2{J10p(S) —p(d)+1} .

b) Since fis a conic bundle, R'f,&y=0. Hence we have B,(X)=
2g(X)=24(8) = B,(S).
¢) c) follows immediately from a) and b). q.e.d.

Next we study some propertics of Fano conic bundles.

Definition 4.14. A conic bundle (resp. P'-bundle) /: X—S is a Fano
conic bundle (resp. Fano P*-bundle) if X is a Fano 3-fold, ie., ~ K ¥ 1s ample.
The following is an immediate consequence of Proposition 4.3.

Proposition 4.15.  Let f: X—S be a morphism from a Fano 3-fold onto
a smooth surface S. If [ is equidimensional, then f is a Fano conic bundle.

Proposition 4.16. If f: XS is a Fano conic bundle, then S is a del
Pezzo surface.

Proof.  We claim that some multiple of — K is numerically equivalent
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to an effective divisor and that {( — K- C) > 0 for every irreducible curve C on
S. The proposition will follow from this and Nakai’s criterion. By Corollary
4.6, we have

(4.16.1) H—K=f(— Kyl +4,.

Since — K is ample, | m(— K) | is very ample for a positive integer m. Let D,
and D, be two distinct general members of |m(—Ky)|. Then by (4.16.1),
4m*(— Kg) is numerically equivalent to the effective divisor f (D, D;)+
m*4 -, which shows the first half of our claim. Let C be an irreducible curve
on S. If C is not contained in 4, then by (4.16.1), we have

4~ Ks O)=(f(—Kx)* O)+(4,-C)
2((—Ky)f*C).
If C is an irreducible component of 4,, then by Proposition 4.7, we have
(= K5 O)=(f*(—K5)C)
=(— Ky C)+(Kx;s'C)
2(—Ky-0).

Since — K, is ample, (— K- C) is positive in both cases. This shows the
second half of our claim. q.ed.

Proposition 4.17. Let the situation be the same as in Proposition 4.9 and
assume, in addition, that X is a Fano 3-fold. Then we have

(1) If Y, is not a Fano 3-fold, then C=P', E,=P'xP' and
O (E)=0(=1, ~1).

(2) Either Y, or Y, is a Fano 3-fold.

Proof. (1) is an immediate consequence of (2.3).

Assume that neither Y, nor Y, is a Fano 3-fold. Since every fibre of fis
connected, s = E, N E, is not empty. Since @ (£,) is negative by (1), we have
that (s-E,)=(s-E, | g)g, is negative. On the other hand (s-E,) is non-
negative because s can move in E, =P x P'. This contradiction shows (2).

q.ed.

The following is another important property of Fano conic bundles:

Proposition 4.18. Let f: X—S be a Fano conic bundle and E an
exceptional curve of the st kind on S such that f ~'(E) is irreducible. Then we
have
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() flf-vg is a P'-bundle over E, and
(2) there are Fano conic bundle {*: X' S’ and a morphism A: X—X’

which is the contraction of the horizontal sections of f ] 7-\& (ef. (1)) such that
J=f" xS, where a: S—S’ is the blow down of E.

Proof. Let Z be a curve on X such that {(Z)=E. By [7, (1.2))], there are
extremal rational curves C; such that Za) [_, 4,C; for some positive
rational numbers a;, i=1, - -+, n. Since (f,Z-E) is negative, (f,C;-E) is
negative for some i. It follows that there is an extremal rational curve C
belonging to an extremal ray R such that f(C)=E. Since (C-f~(E)) is
negative, Ris of type E,, E,, E,, E, or E; and f'(E) is the exceptional divisor
of R by the classification of extremal rays. Since f ~'(E) has a morphism ¢
onto E, Ris not of type E,, E, or E;. Moreover, since fibres of the morphism
@ are not numerically equivalent to C, R is not of type E;, either. It follows
that R is of type E,. Hence f ~!(E) has a P-bundle structure y: f " (E)>T
over a smooth curve T which contracts C to a point. It is easy to see that the
morphism (¢, ¥): f “'(E)—>Ex T is an isomorphism and both E and T are
rational, which shows (1). Since N 1,y is isomorphic to ¢*Ng and is not
negative, the contracted variety X’ in 4 =contg: X=X’ is a Fano 3-fold by
(2.3). It is clear that there is a morphism f”: X’—»S§’ withf" e A=aof, f'isa
conic bundle and f=f" x 3.S. g.e.d.

Corollary 4.19. Let f: X—S be a Fano conic bundle. If E is an
exceptional curve of the first kind on S, then E is disjoint from 4, or a
connected component of A,.

Proof. If f~Y(E) is irreducible, E is disjoint from 4; by (1) of
Proposition 4.18. If f ~'(E) is reducible, £ is a connected component of 4 by
(1) of Proposition 4.9. q.ed.

The goal for the moment is to prove the following:

Theorem 4.20. If f: X—S is a Fano conic bundle and S%P?, F, or
P! x P!, then fis trivial, i.e., X=P"' x S and f is the projection to the second
Sactor.

The following is the first step for the proof of the theorem:

Lemma 4.20.1. If f: X—S is a Fano conic bundle and S£P?, F, or
P! x P!, then f is a P'-bundle.

Proof. By our assumption and Proposition 4.16, there is a morphism
a: S»P' x P! which is a blowing up at n points x,, ---, x,, where n=
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p(S)—221. Put E;=a~'(x;)), x;=(»;,z;) and let L; and M; be the strict
transforms of y; x P! and P' x z; by «, respectively, for i=1, - - -, n. Then E,,
L; and M, are exceptional curves of the first kind.

Claim: 4, is. disjoint from E;, L; and M, for every i.

Assume that 4, meet E;. Then by Corollary 4.19, 4, contains E; as a
connected component. Hence 4, meets L,. But L; is a connected component
of neither E; nor 4, — E;, which contradicts Corollary 4.19. It follows that 4,
is disjoint from E,. In the cases of L; and M, the proof is same.

By the claim, 4, is contained in

S—UEI-UL,_UM,;Pl XPI_U_""XPI—UPl XZ,'.

Since this surface is affine and 4, is complete, 4, is empty, which shows the
lemma. g.ed.

So the proof of the theorem is reduced to the case fis a P!-bundle.

Lemma 4.20.2. Letn: T-P' beaP'-bundle and g: Y— T a P'-bundle
over T. Then we have

m Ifg ly- 1y I8 trivial for every fibre C of n, then g=go x p: T for a P'-
bundle gy: Yo—P! over P

(2) If Y is a Fano 3-fold, then one of the following holds:

a) g YC)=P'xP! for every fibre C of =, or

b) ¢ ' (C)=F, for every fibre C of n.

Proof. (1) Since Tis rational. the Brauer group of T is zero. Hence Y
is isomorphic to P(E) for a vector bundle E of rank 2 on 7. We consider the
natural homomorphism ¢: n*n E— E. By the base change theorem and by
our assumption, 7 E is a vector bundle of rank 2 and ¢ is an isomorphism
on every fibre of n. Hence ¢ is an isomorphism and we have P(E)=
P(n E)xpT.

(2) The P!-bundle g "}(C) is a fibre of nog: Y—P! and hence a del
Pezzo surface. Hence g~ '(C) is isomorphic to P' x P! or F,. Since P! x P!
and F, cannot be deformed to each other, we have either a) or b). q.e.d.

(4.20.3) Proof of the theorem: We may assume that fis a P'-bundle
by Lemma 4.20.1 Let «, y;, 2;, L; and M, be as in the proof of the lemma. By
using (2) of Proposition 4.18 repeatedly, there is a Fano P'-bundle
g: Y-P!'x P! such that f=g X pi.py. Since f| vy, and [y, are
trivial P'-bundles by (1) of Proposition 4.18, so are g|g-;(,..,p., and
g|lg- 1@t xz,y- HENCE g 4= 1y xpy is trivial for every ye P! by (2) of Lemma
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4.20.2 and there is a P'-bundle g,: Y,~P! such that g =g, x p:(P' x P') by
{1} of Lemma 4.20.2 Since

Yo=g '(P'xz,)=P!xP!',
go is trivial. It follows that g and f are trivial P!-bundles. q.e.d.

For the classification of imprimitive Fano 3-folds (cf. §3) with B, =3, it
is necessary to classify the curves C on a Fano conic bundle Y such that the
blow-up of Y along C is a Fano 3-fold. Propositions 4.22 and 4.23 give
strong necessary conditions on Cc Y,

Proposition 4.21. Ler g: Y-S be a conic bundle and C a smooth
irreducible curve on Y. Assume that the blow-up X of Y along C is a Fano 3-
fold. Then we have

(1) C does not meet any singular fibre of g:
and

(2) C is either (i) a smooth fibre of g or (ii) a regular subsection of g
(Definition 4.11). In the case (i) X is a conic bundle over S’, the blow-up of S at
g(C). In the case (ii) f=g o is a conic bundle such that A, =Ag[_[g(C ), where
o: X—= Y is the blowing up along C.

Proof. (1) Assume that C meets a singular fibre. Then C meets Z, an
irreducible component of a reducible fibre or a reduced part of a multiple
fibre. In both cases, (— Ky-Z)=1. Hence if C#Z, then X is not a Fano 3-
fold by (2.4.1). If C=Z and Z is an irreducible component of a reducible
fibre, C meets another component of the reducible fibre and hence X is not a
Fano 3-fold. If C=Z and Z is a reduced part of a multiple fibre, then
Ney=€(1)@0(—2) [7, (3.25)]) and hence X is not a Fano 3-fold by (2.8).

(2) Ifg(G)isa point, then Cis a smooth fibre by (1). Assume that g(C)
is not a point and that X is a Fano 3-fold. Since (97 '(s)- — K,)=2, C is
disjoint from g ~*(s) or meet C transversally at one point (2.4.2). Therefore
g ¢ is an embedding and by (1), C is a regular subsection. The latter half of
(2) is almost clear. q.e.d.

Corollary 4.22. Letg: Y—S be a Fano conic bundle and A: X—Y be a
successive basic blow-up. Then X has a conic bundle structure f: X—S’ such
that g- A=a-f, where x: §'—S is a blowing up of S at a finite set of poinis.

Corollary 4.23. Let g: Y-S be a conic bundle and C a smooth
irreducible curve on Y. If every curve on S meets the discriminant locus A, of g
and if the blow-up X of Y along C is a Fano 3-fold, then C is a smooth fibre of g.
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Theorem 4.20 and Corollary 4.23 give us the following criteria.

Proposition 4.24. Let g: Y-S be a non-trivial Fano conic bundle over
S=F, or P'xP'. If every curve meets A,, then no blow-up of Y along
irreducible smooth curve is a Fano 3-fold.

Proof. Let C be a smooth irreducible curve on Y and X the blow-up of
Y along C. If C is not a smooth fibre of g, then X is not a Fano 3-fold by
Corollary 4.23. If C is a smooth fibre, then X has the conic bundle structure
S=gx%s8": X=S§", where S is the blow-up of S at the point g(C). Since g is
not trivial, fis not trivial either. Hence by Theorem 4.20, X is not a Fano 3-
fold. Therefore the blow-up of Y is not a Fano 3-fold for any C. q.ed.

Proposition 4.25. Let g: Y-S be a Fano conic bundle and C an
irreducible regular subsection of g. If the blow-up X of Y along C is a Fano 3-
fold, then the elemeniary transform g’: Y’ S satisfies one of the following:

(1) Y’ isalso a Fano 3-fold, or

2 C=P', ¢|,- wgen i a trivial P'-bundle and (—Ky5 C)=
2{(g(CY)s+ 1.

Proof. Leta’: X— Y’ be the contraction of the strict transforms of the
fibres of ¢ meeting C, E’ the exceptional divisor of &’ and C'=a’(E’)
(Proposition 4.12). Assume that Y’ is not a Fano 3-fold, then C’=P?, the
P'-bundle «’| . : E'~C’ is trivial and (- Ky.- C") =0 by (4.17). Since C=C’
and g|,- 1=’ | g we have that C=P' and g|,-1,c is a trivial P!-
bundle. The last equality of (2) follows from (6) of Proposition 4.9:

(= Kys- C)=(9(C))s—(—Ky.,5C")
=@(CY)s—(g*Ks- C)—(~Ky.- C")
=(g(C)P)s— (K5 g(C))
=2{(g(CP)s+ 1}
because (g(C)?*) +(g(C)- Kg)= — 2 by g(C)=P". q.e.d.

Proposition 4.26. Let E be a rank 2 vector bundle on a surface S and L
the tautological line bundle of the P'-bundle n: X =P(E)—S. Then we have

(1) wy=L"?@na*ws® det E), and

(2) assume that i) E is generated by its global sections and i)
og'@(det E)™! is ample and generated by its global sections. Then X is a
Fano 3-fold and — K has a free splitting.

Proof. (1) Let Qy be the sheaf of differentials of X over S. Then
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assertion follows from the two natural exact sequences

0 n*Qg Qy Qs 0

and

-1
0—Qys—— L' @n*E L8

0.\' —0 ’

where a: a*E— L is the homomorphism induced from the natural isomor-
phism n L= E.
(2) By (1), we have

(*) —Ky~2L+n*(—Ks— det E).

By the assumption, both |L| and |n*(—K5— det E)| are free from base
points. Hence (*) is a free splitting of — Ky and | — K| is free from base
points. Let Z be a curve on X. If Z is a fibre of =, then (—K,:Z)=2.
Otherwise, we have

(—Ky-Z)2(n*(— Ks— det E)- Z) =(— Ks— det E-n,Z) >0,

because | L | is base point free and — Ks— det E is ample. Therefore, — K is
ample and X is a Fano 3-fold. q.e.d.

§5. Some comments on Fano 3-folds with B,=1 and index=1.

In this section, we shall show that a Fano 3-fold with B,=1 and
index =1 is terminal in the following sense.

Definition S.1. A Fano 3-fold X is terminal if X satisfies the following
equivalent conditions:

1) the blow-up B(X) of X is not a Fano 3-fold for any smooth
irreducible curve C,

2) the blow-up B(X) of X is not a Fano 3-fold for any smooth curve,
C, and

3) if a morphism f: Y- X from a Fano 3-fold Y is a composition of
blow-ups along a smooth curve, then fis an isomorphism.

The equivalence of these three conditions follows from Corollary 2.6.

Theorem 5.2. An arbitrary Fano 3-fold X with B, =1 and index =1 is
terminal.

We recall the following results (A) and (B) in [4] and [11] on Fano 3-
folds X with B, =1 and index =1, which are essential for our proof of the
theorem:
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(A) if (— Ky)* =8, then the anticanonical linear system | — Ky | is very
ample and the image of @ _x , is a (scheme-theoretic) intersection of
quadrics [4], and

(B) under the situation of (A), the image of &, _ | contains a line [11].

(B) is equivalent to saying that X contains a smooth rational curve /
such that (— Ky -/)=1.

Let C be a smooth irreducible curve on X. In the sequal we shall show
that the blow-up B(X) is not a Fano 3-fold. We have the following 4 cases:

a) (—Ky)’<6,

b) (—KyY¥=8and (—Ky-C)>1,

€) (—Ky)P28,(—Ky-C)=1, C=P" and Ng;x & Cp@®Cp(—1), and

d) (—Ky)’=8,(—Ky-C)=1, C=P" and Ngy = 0p@0p(—1).

In the case c), the blow-up Y of X along C is not a Fano 3-fold by
Proposition 2.8. In the case a), we have (— K,)* <(— K;)* =6 by Lemma 2.2
and hence (— Ky)’ <4. By [4), if Y is a Fano 3-fold with (= K;)> =2 (resp. 4),
then Y is isomorphic to a double cover of P* (resp. a smooth quartic
hypersurface in P* or a double cover of a smooth quadric hypersurface in
P*%) and, in particular, B,(Y)=1 by Theorem 3.8. In our case B,(Y)=2,
hence Y is not a Fano 3-fold. In the case b), by virtue of (B), there exists a
curve /~P* with (— Ky -/)=1. Since 1°(N,;y) — h'(N,;x) >0, / can move in X.
Let S be the union of all deformations of /. Then dim §=2 and C intersects
with S because B,(X)=1. Hence C intersects with a deformation /’ of /. Since
(—KxI")=(—Ky'1)=1 and since — K, is ample, /" is irreducible. Therefore,
the blow-up Y of X along C is not a Fano 3-fold by Proposition 2.4. In the
remaining case d), Y is not a Fano 3-fold by Proposition 2.4 and the
proposition below, because the ampleness of — K, is an open condition
under the deformation of X.

Propesition 5.3. Let X be a Fano 3-fold with very ample — Ky and C a
smooth rational curve with N¢y~Cpo@Cu(—1). Let Ty be an irreducible
component of Hilby,, which contains (C). Let S be the union of all deformations
C,, te Ty and assume that (S-C)=0. Then, if te T, is general, C, intersects
with another C,. (#£C), t'eT,.

Proof. Since h°(Ngx)=1 and h'(Ngy)=0, T, is smooth and I-
dimensional at the point [C]. Let T— 7, be the normalization of T, and put
Z=Ux 7, TcXxT, where UcXx Hilby, is the universal closed sub-
scheme. Denote by n: Z— X (resp. ¢ : Z—T) the restriction of the projection
of X' x T onto the Ist (resp. 2nd) factor. For every re T, we denot Zn X' x ¢
(or ¢ ~'(#)) by Z, and =(Z,) by C.,.



Classification of Fano 3-Folds 523

Claim: For every te T, C, is isomorphic to P'.

Let C? be the l-cycle associated to C,. Then we have (C;-—Ky)=
(C-—Ky)=1. Since — Ky is very ample, C; is isomorphic to P'. Since y is
flat, we have y(0c)=x(Cc)=1=x(Cc;). Hence the natural surjection
a: G, ~COc: is an isomorphism because the support of Kerx is 0-dimen-
sional. Thus the claim is proved.

By the claim, y is a P!-bundie. We have the following 3 cases for the
morphism n: Z->X:

case 1) degn>1,

case 2) degm=1 and = is not finite, and

case 3) n is finite and birational onto the image S=n(Z).

In the case 1), n distinct C,’s pass through the generic point of n(Z),
where n=deg n> 1. In the case 2), every C, passes through the fundamental
points of 7' : ©(Z)- - —»Z. In both cases, our proposition is clear. Hence we
consider the case 3). Let 4< Z be the closed subscheme of Z defined by the
conductor ideal of n. Let f be the generic fiber of . By the adjunction and
the residue formulae, we have

¥ (wy(S)) = *wg > w,(4)
and hence
(C:S)— =) S+K)=(fKz+ )= =2+(f-4).

By our assumption, we have (f-4)=(C-S)+1>0. Hence fn4 is not
empty. Let zef n 4. Then S is not normal at the point n(z). On the other
hand = is unramified near f, because N,y = 0Op@Up(— 1) by our assump-
tion and the natural map

H%xn(f), Nn(fl/X) h— Nn(fux®k(l’)

is an isomorphism for every pe n(f). Therefore, there exists a point z° such
that zs2” and n(z) =n(z"). Since the restriction x| ,: f— X is an embedding,
z’ does not lie on f. Hence C,.., is different from n(/) and intersects with
n(f) which is a generalization of C. q.e.d.

Now the proof of Theorem 5.2 is finished, but it heavily depends on the
existence of lines. Let us comment that it is used only in case b) and that the
proof of the existence of lines in [11] needs an extract argument using a very
precise projective geometry in the case (—Ky)*<12. So we give an alter-
native proof of case b) under the assumption (- K,)*<12.
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Proposition 5.4. Let X be a Fano 3-fold with B,=1, index=1 and
(—Kyx)*=8, 10, 12 and C a smooth curve on X with (—Ky-C)> 1. Then the
blow-up Y of X along C is not a Fano 3-fold.

Proof. Assume that Y is a Fano 3-fold.
Claim: H'(C, 06— Ky))=0.

By (2.1.1), H¥(X, €x(—- Kyx)®Ic) is isomorphic to H(Y, 0,(—Ky)),
where /¢ is the defining ideal of C. Since X and Y are Fano 3-folds, we have

HY(X, O (= K)®I)=H'(X, Ox(— Ky))=0

by Kodaira’s vanishing and Serre’s duality. Hence the claim follows from the
natural exact sequence

0 —“@x(- Kx)®lc _’@x(_Kx) _"@c(—Kx) —0.
By (2.1.3) and the Riemann-Roch theorem, we have the formula
(5.4.1) (=K =(—Ky)’ =20~ Ky)) .

Since (— Ky~ C)>1 and — Ky is very ample, h°(@c(~ Ky)) =3. Hence by the
claim and by our assumption, we have (— Ky)* <12—-6=6.

Claim: | — Ky| has no base points.

By (4], if | — Ky | has base points, then Y is isomorphic to P! x S, or the
blow-up 7, of ¥, along a complete intersection Z of two members of
| —=4Ky,|, where S, is a del Pezzo surface with (— Kg,)>=1 and ¥, is a Fano
3-fold of index 2 with (— 1K, )’ =1. Since B,(Y)=2, Y is not isomorphic to
P! x §,. The Picard number of ¥, is equal to 2 and hence ¥, has exactly two
extremal rays (§3). One corresponds to the blowing up ¥, -V, and the
other to the del Pezzo fibration ¥, »P' induced by H(C,,(—}K, )®L,),
which follows from (7] Corollary 3.6. Hence P, is not isomorphic to the
blow-up of a Fano 3-fold # V,. Therefore, | — K, | has no base points.

By the claim, @, _, is a morphism. Since (— Ky)* <6, the image &, _ Kyl
is a complete intersection if Y is not hyperelliptic. If Y is hyperelliptic, then
the image is either P*, a smooth quadric Q =P* or the Segre embedding
P! x P2cP® by [4]. Since B,(Y)=2, the last case is possible. Let us denote
the double cover Y—P' x P2 by ¢. Then — K, ~¢*0(1, 0)+¢*0(0,1)is a
free splitting of — Ky, which induces a splitting of — K. This contradicts the
assumption that B,(X) =1 and index (X)=1. q.e.d.
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§6. Curves on Fano 3-folds

In this section, we consider the irreducibility and unirationality of the
several families of pairs of a Fano 3-fold of index =2 and a curve on it.
These will be used in section 7.

Lemma 6.1. Let T be an affine algebraic scheme over k of characteristic
0 and Z<TxP3 a closed subscheme flat over T such that Z,=P} is an
irreducible smooth curve for an arbitrary geometric point t& T, Then the set V
of geometric points te T such that Z, is the scheme-theoretic intersection of
cubics of P? containing Z, is open.

Proof. One may assume that T is irreducible and reduced. Let
f: X>TxP? be the blow-up along Z, Dc X the exceptional divisor, g =
pref: X=T, and L= f*p30p(3)®@0,(— D), where p;: TxP3—P3 is the i-
th projection. Then for a geometric point te T, 1€ V if and only if L,, the
induced invertible sheaf on X, (the blow-up of P} along Z,) is generated by
global sections. Now let a be a geometric point of Tin ¥. Then X, is a Fano
3-fold by Proposition 2.12, and hence L,®0(— Ky ) is ample. By Kodaira
vanishing theorem, one has H{X,, L,)=0 for i>0. Now by Grothendieck’s
base change theorem, the natural map g,L®k,—»HO(X,, L,) is surjective.
Thus there is an open neighbourhood U of a in T such that L, is generated by
global sections for re U. Whence Uc V, and V is open. q.e.d.

We consider 2 families of curves on P3.

Corollary 6.2. Let L be a fixed projective 3-space P3. Let U, (resp. U,)
be the set of irreducible smooth curves C, (resp. C,) in L of degree 7 (resp. 6)
and genus 5 (resp. 3) which are scheme-theoretically intersections of cubics.
Then U, and U, are irreducible unirational algebraic sets.

Proof. By the genus formula for plane curves, C, and C, span L. Let
M;=0,®C(1) for i=1, 2. Let us consider U,. By the Riemann-Roch
formula: y(M,)=7-4=3, whence h'(M,)#0 and K. —M, ~ P for some
PeC,. Since M, is very ample,

dim|K;, — P—Q~—R|=dim|K. —P| -2 forall Q, ReC,,
ie. h'(O(P+Q+R))=h'(O(P)+2 by Serre duality. This implies that
dim|P+Q+R| =0 for all Q, ReC,, i.e. C, is not hyperelliptic or trigonal.
By reversing the argument, one sees that K. — P, with pe C, is very ample if C

is a non-singular curve of genus 5 which is not hyperelliptic or trigonal. Such
pairs (C, P) form an irreducible set by the irreducibility of mg, and hence U,
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is an irreducible algebraic set by the preceding lemma. For unirationality, it
is enough to see that there is a rational variety parametrizing general
(C, P)'s. So let W, be the set of triples (Q,, Q,, Q) of quadrics Q,, Q,, @, of
P* passing through (1, 0, 0, 0, 0) such that @, n Q, N Q, is a smooth curve.
Then

(@1, @2, 23)— (211 0,1 05, (1,0,0,0, 0))

gives a parametrization of general (C, P)’s by a rational variety W, because
general canonical curve of genus 5 is a complete intersection in P* of type
(2, 2,2). Thus U, is unirational. Let us now consider U,. By the Riemann-
Roch formula, one has #°%(M,)=4 and #'(M,) =0. Since M, is very ample,

dim|M, - P—Q|=dim| M,|-2=1I forall P, QeC,.

Since deg(M, — P— Q)=4=deg K,, this implies that there are no P, Qe C,
such that M, — P—Q ~ K,,. Again by reversing the argument, one sees that
an arbitrary line bundle M of degree 6 on C of genus 3 is very ample if there
are no P, Qe Csuch that M ~ K-+ P+ Q. The rest is similar to the argument
for U,. One only has to see that general (C, M)’s are parametrized by an
open dense subset of

Wy={(p\, * - *, Pe» F)| F is a quartic curves of P?, p,, ---, pse F},

because general curves of genus 3 are plane quartic curves. W, is rational
because dim|@p,(4)|=14>6. q.e.d.

Remarks 6.3. (i) It is known 3] that the image C in P* of a curve C
of genus 3 by a very ample line bundle M of degree 6 is scheme-theoretically
an intersection of cubics if C is not hyperelliptic. This shows U, # 7.

(ii) Proposition 7.4 shows that U, # & andU, # .

We recall

Theorem 6.4 ([10]). Let Cc P be an embedding of a complete non-
singular curve of genus g by a complete linear system of degree d. If d >2g+2,
then C is projectively normal and a scheme-theoretic intersection of quadrics.

Proposition 6.5. Let S be an irreducible reduced quadric surface of P>
which is singular at a point p. Let C<P? be an irreducible smooth (closed)
curve in S of degree m. Then

piO=[ 3 m-22].
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where [r} denotes the integer n such that n<r<n+1.

Proof. Theblow-upp: FoSof SatpisF,, and let f = F be a fiber and
sc< F the negative section so that (f2)=0, (f-s)=1, and (s*)= —2. Let C’ be
the proper transform of C by p. Then (C’-5)=0 or 1 since C is smooth.
Whence

C'~n(s+2f)+&f forsome neZ and &=0,1.
It is well-known that K.~ —2s5—4f and p*0(1)~s+2/. Thus
m=(C"-s+2f)=2n+e¢
and
PAO)=1+(CV24+(C" Kp)2=(n—1Y +en— 1) =[(n— 1 +¢/2°],
whence p,(C)=[(m —2)*/4]. q.e.d.
We consider next 3 families on Q.

Corollary 6.6. Let L be a fixed projective 4-space P*. Let Co (resp.
Cy, C,) be an irreducible smooth curve of degree 4 (resp. 5, 6) and genus 0 (resp.
1, 2) lying in a smooth quadric 3-fold Q < L. Then

(6.6.1) C, and C, span L and are intersections of quadrics,

(6.6.2) the algebraic set U, (resp.U,) of such pairs (C,, Q)
(resp.(Cy, Q)) is non-empty, irreducible, and unirational,
and

(6.6.3) G, is scheme-theoretically an intersection of quadrics if C, spans
L, and the algebraic set U, of pairs (Cy, Q) of such Cy and Q> C, is non-
empty, irreducible and unirational.

Proof. Let us prove (6.6.3). Modulo AutL, there is only one C,
spanning L: the image of P'—P* by (s, 1) —(s*, 571, 5212, 513, 1%). C, is an
intersection of quadrics, and quadrics containing C,, form a projective space,
whence U, is non-empty, irreducible, and unirational. Let us consider
(6.6.1). If C, (resp. C,) does not span L, then it lies in a quadric surface S in
L. This is impossible, because the degree and the genus do not match by the
genus formula for curves in P2, P! x P!, or a quadric cone (Proposition 6.5).
Then C, and C, are embedded in L by complete linear systems and (6.6.1)
follows from Theorem 6.4. Let us consider the irreducibility. If M is a line
bundle of degree 5 (resp. 6) on a curve C of genus 1 (resp. 2) with a basis s=
(So+ $14  +*, 54) of HY(C, M), then M is very ample, s defines an embedding
Co L~P*, and the image C is projectively normal and an intersection of
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quadrics (6.4). Let /- be the sheaf of ideals for C in L. Thena quadric 0> C
is defined by a non-zero element of H°(L, I:QC(2))~k> (resp.k*). Thus
U, #J (resp. U, # &) and the irreducibility of U, (resp. U,) follow from
the irreducibility of m, (resp. m,). For unirationality, it is enough to see that
general pairs (C, M) as above are parametrized by a rational variety. Let

Wy={(ps, -+, ps, C)| C is a cubic curve in P2, p,, - -+, p,eC},

C is a curve of degree 6 in Q(1, 1, 3)
pV2={(plh“'op6» C) N

P pe€C
(cf. Remark 6.7 for Q(1, 1, 3)). These are rational varieties because
dim|0p,(3)| =9>5 and dim|Cg, ,.;(6)| =11>6

(cf. Remark 6.7). An open dense subset of W, (resp. W,) parametrizes
general (C, M)’s (cf. Remark 6.7 for W,) in the obvious ways. g.e.d.

Remark 6.7. Let k[x, y, z] be the graded polynomial ring with deg x =
degy=1, degz=3, and let Q(l, 1, 3)=Projk[x, y, z]. The singular locus is
one point {x=y=0}, and | O , ;,(6)| is the base-point-free linear system
associated to k[x, y, zJs, the homogeneous part of degree 6. On affine set
D, (X), the generic member C of the linear system is written as 2 =g5(y)Z +
9s(7), where §=y/x, Z=z/x*, and g, ) is a polynomial of degree i (i=3, 6).
Thus C is a general curve of genus 2. (cf. [6] for general results.)

Let X be an irreducible smooth algebraic variety over & and = =(L,V)a
linear system over X, where L is an invertible sheaf on X and ¥ a vector
subspace of H(X, L). The base locus Bs(Z) of £ is, by definition, the
scheme-theoretic intersection of all members of X.

Proposition 6.8 (Characteristic 0), Assume that Bs(Z) is of dimension
<1 and has only isolated singularities, and

emb-dim, Bs(Z)<dim X —1 Jor all xeBs(Z),

where emb-dim, Bs(X) denotes the embedding dimension of Bs(Z) at x. Then
the generic member of X is smooth.

Proof. Let n=dim X. We first assume that C =Bs(X) is smooth and of
pure dimension 1. Let f: Y—X be the blow-up along C and Dc Y the
exceptional set. Since C=Bs(Z), one sees that V< HY( f*L(—D)) and the
induced map V®0@,—f*L(—D) is surjective. Thus the linear system
(/*L(— D), V) on Y is free from base point. By Bertini's theorem, the generic
member E of (f*L(— D), V) is smooth and intersects transversally with D,



Classification of Fano 3-Folds 529

We claim that E-D does not contain any fiber F of the P"~2bundle
morphism D—C. Indeed if E-D>F, then Fis an irreducible component of
F-D and E-D can not be smooth because O(E-D) is a tautological line
bundle of D—C. This is a contradiction and hence E does not contain any
fiber of D—C. Now E=f(E)< X is the generic member of Z and f*(£)=
E+D. E is smooth in X— C. E is smooth at any point of C because E does
not contain any fiber of D—C.

Let us now consider the general case. Let S be the union of singular
points and the isolated points of Bs(Z). Let X*=X—S and =* the induced
linear system by X on X*. The pervious case applied to Z* shows that the
generic member E of X is smooth outside S. Let v,, - - -, v, be a basis of V.
Let x be an arbitrary point in S, then one can write v, as v;=e;s (1 <i<m),
wheree,, - -+, e, €0y, , and s a generator of L®U0y .. Then E is defined near
x by the generic linear combination of e, - - -, ,,, and Bs(Z) is defined by €,
“* ", €. Since emb-dim, Bs(Z) <n—1, there is an i such that ¢, ¢ /2, where I
is the maximal ideal of @y .. Thus the equation of E does not belong to /2
and E is smooth at x. q.ed.

Proposition 6.9. Let Z be a smooth conic on a Fano 3-fold Q <P*,
VacP®, or VcPS, or a twisted cubic on V,cPS. Then Z is scheme-
theoretically the intersection of hyperplane sections containing Z.

Remark 6.10. ¥V, (d=4, 5) actually contains a line, a smooth conic,
and a twisted cubic. Let S be a smooth hyperplane section of V4. Then Sisa
del Pezzo surface of degree d and is the blow-up of P2 at 9—4 points in
general position. Let C,, be a line in P? passing through exactly m points
(m=0, 1, 2) of the center of the blowing up. Then the proper transform Z,,
on § is a smooth rational curve of degree 3—m.

Proof. Let {(Z) be the linear span of Z. Since X = Vs (resp. V,, Q) is
defined by quadrics, so is (Z) n X in {Z). Since Pic X~Z [4]), X does not
contain {Z). Thus

(Z)nX=Z foraconic Z because (Z>nX>Z.

Let Z be a twisted cubic and assume that (2> A Vs2Z.{Z) n Vj is defined
by quadrics and there are at most «0? quadrics of (Z) passing through Z,
Hence one sees that {(Z) ~ Vj is either a quadric surface, the union of Z and
a line /, or Z. The first case does not occur because Pic Vs is generated by
hyperplane section and deg V5 =5. Let us assume that second case. Let X be
the linear system of hyperplane sections of ¥ passing through Z. Then
Bs(£)=(Z) n V5=Z U1 has only planer singularities because Z and / are
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smooth. By Proposition 6.8 applied to Z, & has a smooth member S. Now
TrgZ has fixed component Z+/ and TrgXc| — K| by the adjunction
formula, whence |—-K¢—Z-1/| is free from base points. Let
Ce| —Kg— Z—1|. Since — K is very ample of degree 5 and (— Ks-Z+/) =4,
one sees that C is a line by

(=Ks' C)=(=Ky —(—Ks-Z+D)=1.

Then (C*)= —1 by (C?)+(Ks- C)=2p,(C)—2= —2. This is a contradiction
because | C| is base point free. Thus the second case does not occur, and one
has Z={Z)n V. q.ed.

We finally consider families of V together with curves on it.

Proposition 6.11. Let d be 3, 4, or 5, and L, a fixed projective space
Pe*'. Let A(d, 1) (resp. A(d, 2), A(d, 3)) be the algebraic set of pairs of a line
(resp. smooth conic, twisted cubic) Z in Ly and a Fano 3-fold V, in L, such that
ZcV, Then A3, 1), A4, 1) (i=1,2), A5.j) (j=1,2,3) are, non-empiy,
irreducible, and unirational.

Proof. The proof for A(3,1), A(4,1), A(4,2) are similar, and we
consider A(4, 2) only. By Proposition 6.9, A(4, 2) is parametrized by an open
dense subset U of {(Q,, Q,, W)|Q,. @, are quadric hypersurfaces, W a 2-
dimensional linear subspace of L, and Q,>W}. Indeed general
(0, Q,. W)e U gives V,=0Q,nQ, and Z=0Q, n W. It is clear that U is,
non-empty, irreducible, and rational. Let d=5 now. It is known that V,c L
is Ly nGr(4, 1) for some linear embedding L, —P°®, where Gr(4, 1), P? is
the Grassman variety embedded by Pliicker coordinates. Hence Z< Vs in Ly
is induced by Z<=Gr(4, 1) and a linear subspace H~P® of P° containing Z,
and an isomorphism H=~[L, such that H~Gr(4,1) is a transverse in-
tersection. Hence it is enough to show the non-emptiness, irreducibility
and unirationality of the set of lines Z (resp. conics, twisted cubics) in
Gr(4, 1)< P?®, which lie on some V,. By Propositions 6.8 and 6.9, one can
see that Z lies on some V; iff (Z) nGr(4, 1)=2Z. Thus by (i) < (iii) of
Proposition 6.12, one can see that Z is unique modulo AutGr(4, 1). q.ed.

Proposition 6.12. Let Q (resp. S) be the universal quotient bundle (resp.
universal subbundle) of Gr (4,1), and Gr(4, 1)< P® the Pliicker embedding. Let
[ P'=Gr(4, 1)< P® be amorphism, 0=1*Q, and S=f*S. Assume that m =
degf*Cp(1) is 1, 2, or 3. Then the following are equivalent:

(i) [fis an isomorphism of P! to a curve C < P? such that the linear span
{C>of CisP™and C={C) nGr(4, 1) as a scheme,
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(i) O=a()@C(m—1) and S=~C3""®O(- D)™, and
(i) QO~(1)®C(m—1)and the natural map (> - Q induces a Surjection

k*—HXQ).

Proof. We consider the case m= 3 only. Other cases are similar and
easier.

()= (ii): Since C is defined by hyperplanes by (i), /;®Cps(1) and
hence N2®@,,(m) are generated by global sections, where I (resp. N) is
the defining ideal (resp. normal bundle) of Cin Gr (4, 1). Hence N, is a direct
sum of @p(i)’s with i<m=3. Since the tangent bundle of Gr(4,1) is
S*®0, $*®Q fits in the exact sequence

»S*®@0 —— N, —0.

0—— T,

Thus $*®Q is a direct sum of Cp,(i)’s with i<3. On the other hand
@=~C@®C3) or (D), $*~C2*@C3), ¢@C(1)DE(2), or ¢(1)®
because deg=degS*=m=3 and Q and $* are generated by global
sections. Hence 0 ~((1)@(2) and §*~@(1)®3.

(i) = (iii):  Since #°($)=0, the map k°~HO(C %) > HY(Q)~k® is in-
jective, whence follows (iii).

(iii) = (i): Modulo the action of AutP! and Aut Gr(4, 1), there exists
only one morphism f with property (iii). It is, therefore, enough to show that
there is one f with property (i) because we settled (i) = (iii). This is done in
Remark 6.10.

§7. 3-folds in Tables 2-5 are Fano 3-folds.

(7.0)  We will show (7.1)-(7.29) that an arbitrary smooth X described
in each class in Tables 2, 3, 4, 5 is a Fano 3-fold with described (—Ky), B,,
and B;, and that X’s in cach class (N** 1 through 36 in Table 2, N* 1 through
31 in Table 3, N> 1 through 12 in Table 4, and 8 classes in Table 5) are
parametrized by a non-empty (irreducible) rational variety, (we will say
that each class is non-empty, irreducible, and unirational). At the same time,
— Ky is shown to have a splitting, and, furthermore, it has a free splitting if
(i) X is not in N° 1 in Table 2 and (ii) X#P'x S, (Remark 7.30). In
(7.31)7.35), we will show that different classes are not deformation
equivalent (cf. 7.31)).

Let us first consider Table 2 in several cases.

(7.1) N°= 24, 32, 34, 35, 36 in Table 2 (P'-bundles over P2).
One sees that B\(X)=0 and B,(X)=2 are obvious, and By(X)=0
follows from 2+ 2B,(X) — B;(X) = Y1op(X) = 110p(P") - 110p(P?) =6 because X
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is a P'-bundle over P2, 3-folds in N> 35, 36 are Fano 3-folds by (4.26), and
the rest is easy.

(7.2) N° 2,6, 8, 18 in Table 2 (double covers).

Let us consider N° 6 first. Let L be the line bundle over P?x P2 of
bidegree (1,1). Now general pe H°(P? x P?, L®?), ge H*(P?x P?, L), and
rek define a smooth complete intersection X(p, ¢, r) in L defined by z2=p
and rz =g, where z is the fibre coordinate of L. They parametrize X’s in N° 6
(X(p,q,r)isin (6,a)if r#£0, and X(p, ¢, 0)€ (6, b)). Thus N° 6 is irreducible
and unirational. Obviously an arbitrary Xe(6, a) is a Fano 3-fold by the
adjunction formula. Since (— Ky)’, B,, and B, are deformation invariants,
the rest of (7.2) follows from (3.8.2) in a similar way, and easy examples show
that both (8.a) and (8.b) in N° 8 really occur. Let us consider N° 2 for
illustration. Let f: X—»P'xP? be a double cover with branch locus
Bc P! x P? a divisor of bidegree (2, 4). By (3.8.2),

—Ky~f*Q2H,+3H,)— f*2H;+4H,)2~f*(H, + H,) ,

where H, =p0(1) and H, =p$€(1). Thus — K is ample, has a free splitting,
and (— Ky)*=6. By(X)=2 by (3.8.3). Since B~2H, +4H,, one has

WOp)=1=3(=2H, —4H,)=1 = 4(Cp.(—2))* x(Cp,(—4))=4.

From Ky~ H," B, follows (K})=2. Thus by Noether’s formula y,.,(B)=
12(0 ) — (K3) =46, whence y,.,(X)=—34 by (3.8.1). Hence B,(X)=40,
because yp(X)=2+42By(X)— By(X). X’s in N° 2 are parametrized by an
open dense subset of | B|. This proves the assertion for N° 2,

(7.3) For the rest of Table 2, X’s are given as blow-ups of P, 0, or V;
(d=1, - --, 5) along irreducible smooth curves whose genera are explicitly
given or can be calculated immediately from the description. Thus B,(X),
B,(X), and (— K3) for these are calculated from formulae (2.1.3) and (2.1.4),
and the values of By(V,) [12].

(7.4) N=9, 12, 13, 17, 21 in Table 2 (blow-ups).

By Proposition 2.12 (plus Corollary 6.6 for N* 13, 17, 21), X is a Fano
3-fold and — K has a free splitting in these cases. N 9, 12, 13, 17, 21 are
irreducible and unirational, and N°* 13, 17, 21 are non-empty by Corollaries
6.2 and 6.6.

N° 9 and 12 are non-empty by:

Proposition 7.5. Let X be a smooth complete intersection on P x P2
(resp. P2 x P>, Q xP?) of the form (1, 1)-(2, ) (resp. (1, 1)*, (1, 1)?), where
(a, b) denotes some member in |aH, +bH,| and H, is the ample generator of
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the Picard group of the i-th factor (i=1, 2). Then X is a Fano 3-fold in N° 9
(resp. 12, 13).

Proof. Itisclear that — Ky~ H, + H,, X is a Fano 3-fold, and p(X) =2
[2). Since other cases are treated in the same way, we consider N° 9 only. Let
J: X-Y=P?3 be the first projection. From

(f*0y(1))=(H}-H, + Hy-2H, + H;) =1,

Jfis a birational morphism. By p(X)=2, fis the blow-up at a point or along
an irreducible smooth curve on Y [7, Corollary 3.6). Since

(=K =((H,+H,)*QH, + H,)) =16,

Jfis the blow-up along an irreducible smooth curve C on Y by (2.9.3). Let
Dc X be the exceptional divisor of f. Then

D~f*(_Ky)+Kx~(3H1_Hz)x ,

where ( )y denotes the restriction to X. It is easy to see (D?- - Ky)=8 like
(—Ky)’=16. By (2.1.3), it follows that Cis of degree 7 and genus 5. One also
sees that f*0y(3)—D~(H,)y is free from base points, whence C is an
intersection of cubics by Proposition 2.9. q.ed.

(7.6) N* 27 and 31 in Table 2 (blow-ups).

Lines (resp. twisted cubics) in Q (resp. P3) are defined by hyperplanes
(resp. quadrics), and unique modulo Aut Q (resp. Aut P3). Indeed it is easy
to see that any two maximal isotropic subspaces (=42) of k% with respect to
Q are conjugate to each other. Thus by Proposition 2.12, each of N* 27 and
31 contains exactly one Fano 3-fold whose anti-canonical divisor has a free
splitting.

(7.7 N* 11, 16, 19, 20, 22, 26 in Table 2 (blow-ups of V).

These are blow-ups of ¥, along lines, conics, or twisted cubics. The
assertion in these cases follows from Propositions 2.12 and 6.11 because
O(— Ky ) =0y (2), where O, (1) is the pull-back of ¢/(1) by the natural map
VycPé*!,

(7.8) The rest of Table 2 (blow-ups along complete intersections).

In these cases, X is obtained in the following way. Let Y be P3, O, orV,,
and H the ample generator of Pic Y~Z. Let C< Y be a smooth complete
intersection of two divisors 4 €|aH | and Be|bH |, where a and b are positive
integers with a, b <index Y. X is the blow-up of Y along C. Thus X is a Fano
3-fold, — Ky has a splitting for N° | and a free splitting for the others
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(Proposition 2.12), and it is clear that each family is non-empty, irreducible,
and unirational [4]. It is clear that each of the cases (15.a) and (15.b) in N° 15,
and (23.a) and (23.b) in N° 23 really occurs.

We now consider Table 3.

(7.9) N1, 27, 28, 31 in Table 3 (obvious cases).
X is a double covering of P! x P! x P! for N° 1, and the argument is
almost the same as that of (7.2). N 27, 28, 31 are well-known Fano 3-folds.

(7.10) N° 6, 10, 12, 15, 18, 20, 25 in Table 3 (blow-ups of P* and Q
along non-connected curves).

In N* 6, 12, 18, 25, X is the blow-up of P* along a curve which is the
disjoint union of a line / and a curve C, where C is a smooth complete
intersection of (2, 2) type, twisted cubic, a conic or a line. Since C is an
intersection of quadrics, { IL Cis an intersection of cubics. Thus X is a Fano
3-fold and — Ky has a free splitting by Proposition 2.12. B,(X). By(X) and
(= Ky)? are calculated by (2.1.3) and (2.1.4). It is clear that such curves are
parametrized by a non-empty irreducible rational variety in each case. If Cis
a line (N° 25), X has a morphism to P' x P! because each blow-up along a
line gives a morphism to P!, which is induced by the linear projection of the
line. Since lines are complete intersections of hyperplanes, two exceptional
divisors E; and E, are P! x P' and Ng, x and N, , are of bidegree (1, —1). It
is easy to see that X—P' x P! is a P'-bundle with 2 disjoint sections E, and
E,. Thus X ~P(C(1, 0)@® (0, 1)) as stated in N° 25. In N°* 10, 15, 20, X is the
blow-up of Q along the disjoint union of a conic and a conic, a line and a
conic, or a line and a line. Lines and conics on Q are intersection of
hyperplanesections (Corollary 6.9). Thus the argument is the same as that
for P above, once we show that N° 20 contains only one member up to
isomorphisms. And this follows from the fact that any non-degenerate
quadratic form g on L~k* with two isotropic subspaces L, and L, of
dimension 2 such that L, n L, ={0} can be put in a standard form

(!(Xo, Xl’ Xz, Xs. X4)=X0X2+X'X3+X§, Ll ={X2 =X3=X4 =0} ,
and L, ={X, =X, =X, =0} for some coordinate system (X,, ---, X,) of L.

(7.11) N° 19 in Table 3 (2-points-blow-up of Q).

Let f: X—Q be the blow-up at 2 points p, and p, on @ which are not
colinear, and let P;=f"'(p)) (i=1, 2) and H=/*Cx(1). We claim that

(7.11.1) |H-P,— P,] s free from base points.

Let L=P" be the linear span of p, and p, in P*. Since p, and p, are not
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colinear on @, LN Qg L. Since deg 0 =2, this means that L~ Q={p,, p,}
as schemes, whence we get (7.11.1) by Proposition 2.10.

Since {p,,p,} is an intersection of members of (y(1) and
—Kp—20,(1)~ 0 (1) is very ample, X is a Fano 3-fold and — K has a free
splitting by (2.12). The rest for N° 19 follows by (2.9.3) and (2.9.4).

(7.12) N 3, 8, 17 in Table 3 (divisors).

Since X, in our case, is given as a smooth member of a divisor class of
P'xP'xP? or F, xP2, it is easy to see that X is a Fano 3-fold with
described (— K,)® and — K, has a free splitting and that X is parametrized by
a non-empty irreducible rational variety. To see that B,(X) =3 and B;(X)=0
for N° 8, it is enough to consider a generic X in N° 8 because B,(X) and
By(X) are topological invariants. If F, x P2—»P?x P? is the blow-up along
t x P2 for some ¢ x P2, then the generic X is the blow-up of a smooth divisor
Y of bidegree (1, 2) in P? xP? (N° 24 in Table 2) along a smooth inter-
section C=Y-(t x P?). Since C is a smooth conic, one has B,(X)=3 and
By(X)=0 by (2.1.4). B, and B, for N** 3 and 17 are calculated immediately
by (2.1.4) and:

Proposition 7.13. Let Y be a smooth projective 3-fold, H an ample
divisor on Y, and X a smooth divisor on Y x P such that X ~p¥H+p30(1),
where p, is the i-th projection from YxP' to Y or P'.

Then the induced morphism f: X—Y is the blow-up of Y along an
irreducible smooth curve C and C is a smooth complete intersection of two
memberse|H|. In particular, one has

(7.13.1) 2 (C)—2=(H?2H+Ky) .

Proof. X is irreducible because it is smooth and ample on Y xP'. By
the Kiinneth formula, there are global sections /4, and h, € H(Y, @(H)) such
that X is the zero-set of the section /iyx,—h,x, of p¥C(H)®p$€(1), where
{X,, X, } is a basis for H°(P', ¢(1)). Since X is an irreducible smooth divisor
on Yx P!, one sees that iy =h, =0 in @(H) defines a smooth curve C by
Jacobian criterion. Since C is a complete intersection of two members /i, =0
and 4, =0 of | H|, Cis irreducible. It is clear that X is the blow-up of Y along
C by the expression figxo=/,x, of X in Y x P!, q.ed.

(7.14) N° 2 in Table 3 (conic bundle).
Let L, X, Y be as in N° 2 in Table 3, and let

[ V=P(ODO(~1, —1)8) — P! x P!
be the P2-bundle given there. Then N =L+ f*¢(1, 1) is free from base points
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because it is the tautological line bundle of P(¢(1, 1)@ @®?). One sees that
(7.14.1) -~ K, ~3N+f*(1, 1),
and the relation
(7.14.2) N3—f*¢(1,1)-N*=0.
From this, it is easy to calculate
(1.143) (-K,—X)-X)=14, (X*-Y-—K,)=4, (X*)=64.

By X~2N+/*¢(0, 1) and (7.14.1), | X| and | — K, | are free from base
points. Hence for a general member X of [ X|, X and X- Y are irreducible
smooth by Bertini’s theorem because | X| and Tr, | X'| are not composed of
pencils by (C(X)*-0(—K}))>0 and (X*)>0 (7.14.3). This means that
smooth Xe|X| with irreducible X-Y is parametrized by a non-empty
rational variety. One has (— Ky)® =14 by (7.14.3). We note

Y~P(@O(—1, —1)®)~P! xP' x P!,

where the induced P!-subbundle morphism is the projection to the first and
the second factors. Then

(7.14.4) N®0y=@(0,0,1) and 0O (X)Q0;=0(0,1,2).

This means that X~ Y~P' x P!, and let us identify D=XA Y with
P! x P! by the projection from Y~P! x P! x P! to the first and the third
factors. Then it is easy to see

(7.14.5) £*0(1,0)|p,=0(1,0), f*00, 1)|,~0(0,2), N®C,=e(0, 1)

from (7.14.4). It is clear that N®C,~(¢(0,1) by the identification
D~P'xP!. Thus

(7.14.6) Npx2C (Y)RCp~C(—1, —1)
by (7.14.5) and Y~N—f*C(1,1). Let g=f|x: X—P' xP'. Then
(7.14.7) —Kyx~D+g*C(2, 1)~ N|x+g*C(1,0)

by (7.14.1),(7.14.6), and N | y ~ D+g*€(1, 1). Thus — K, has a free splitting.

We show that — Ky is ample. Since — K, is free from base points
(7.14.7), it is enough to show (— K- Z) >0 for any irreducible curve Z on X.
If Z< D, then (— K- Z) >0 because ' — Ky) > €/(1, 1) is ample by (7.14.5),
(7.14.6), and (7.14.7). If g(Z) is a point, then (—Ky-Z)=(D-Z)>0 by
(7.14.7) because D is induced by a tautological line bundle L. If Z¢ D and if
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g(Z) is not a point, then
(—Kx"2)2(9,Z-0(2,1))>0

by (7.14.7). Thus X is a Fano 3-fold. To see that B,(X) =3 and B,(X) =6, it is
enough to find one X with these values because B, and B, are topological
invariants. Let E be a vector subbundle of

£0(X) =831, NSO®H)R0(0, 1)
(We note that X-~2N+/*¢(0, 1)) defined by
E=[S*0(1, 1)) ®SUO)**I®0(0, 1) .

Then H°(E) gives a linear subsystem Z of | X|. Since E is generated by global
sections and members of X induce “Fermat” conics like ax?+ fy2+yz? on
fibers of f, Z is free from base points. Thus for the generic X’ of £, X’ and
X'nY are smooth irreducible, and g'=/|,.: X’>P'xP! is a conic
bundle. Since Ex~@(2, 3)@¢(0, 1)®2, the discriminant locus 4’ P! x P! of
g’ for generic X” is a sum of 3 distinct smooth curves C,, C,, C; intersecting
transversally pairwise, and C, ~@(2, 3), C,~C,;~ (0, 1). Thus 4’ is con-
nected and not smooth, whence g’ ~!(C”) is irreducible for any irreducible
curve C’ on P! x P! (4.9). This means that B,(X)=p(X) =3 (4.8). The above
description of 4” shows that P,(4°)=4. Hence B,(X")=2p(4")—2=6(4.13).

(7.15) N° 4 in Table 3 (blow-up along a fiber of a conic bundle).

Let /: Y->P' xP? be a double cover with branch locus (2, 2) and let
Hy={*0(1,0)and H,=f*0(0, 1). Then — Ky~ H, +2H, (3.8.2). If Cc Yis
a smooth fibre of Y—=P2, then Cis an intersection of members of H,. Thus .
the blow-up X of Y along C is a Fano 3-fold and — K, has a free splitting
by Proposition 2.12. By Lemma 2.1, it follows that (— Ky, P =(—K,)* —6=
18, B;(X)=B,(Y)+1, and B,(X)=B,(Y). Since fibres are parametrized by
P2, X in N° 4 is parametrized by a non-empty rational variety by (7.2).

(7.16) N°9 in Table 3 (blow-up along a subsection of a P'-bundle).

The blow-up Y of W, at the vertex is in N° 36 of Table 2 and is a P!-
bundle P(O@(2)) over P2. Let f: Y—P? be the structure morphism and L
the tautological line bundle. The inverse image S~P2 of R, by Y= W, is
linearly equivalent to L. Thus LQOs~0(2).

From the exact sequence

0 ——L ——L® .0 (4)—0,
one has a surjection HY(L®?)—H%04(4)). Indeed one has H'(L)=0 by
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Kodaira vanishing because L+ (— Ky)is ample. Thus any quartic Cin S~ R,
is an intersection of members of | 25 |. Hence the blow-up X along smooth C
is a Fano 3-fold and — K, has a free splitting by Proposition 2.13 because
— Ky~2S+f*6(1). B,, By, and (— Ky)® are calculated by Lemma 2.1. It is
clear that X is parametrized by a non-empty rational variety.

(7.17) N5, 21, 22 in Table 3 (blow-ups of P! x P2),

Let Hy=¢(1,0) and H,=¢(0,1) on Y=P'xP2. One knows that
—Ky~2H, +3H,.

Let us consider N® 22. Because there are divisors 4~ H, and B~2H,
such that 4- B is the center C, and hence C is an intersection of members of
H,+2H,, X is a Fano 3-fold and — Ky has a free splitting by Proposition
2.12. The rest for N° 22 in easy. Let us consider N° 21, Let C be a curve of
bidegree (2, 1). The second projection C—P? is an isomorphism to a line /
and Cis a divisor of bidegree (1, 2) in P' x /(cf. Introduction). Now it is easy
to see that C’s are parametrized by a non-empty rational variety and Cis an
intersection of members of | H, +2H, | and one applies Proposition 2.12 to
see that X is a Fano 3-fold and — K, has a free splitting. Invariants are
calculated by Lemma 2.1. Let us consider N° 5. Let C be as in N° 5. Then the
image of C—P? is a smooth conic g of P2 and Cin Q=P' xg~P!xP!isa
divisor of bidegree (1. 5). Then Co(H, +3H,)~((l, 6), and from the exact
sequence:

0 —— O(H, + Hy) —— C(H, + 3Hy) — Co(H, +3H,) —0,

one sees the surjection HO(C(H, +3H,))—»H%Cy(H, +3H,)). Indeed
HY(G(H, + H,)) =0 by Kodaira vanishing because H, + H, — Ky~ 3H, +4H,
is ample. Thus Try| H, +3H,| is a complete linear system and C is an
intersection of members of | H, +3H,|=| — Ky— H, |. Hence the blow-up X
along C is a Fano 3-fold and — K, has a free splitting by Proposition 2.14.
Other assertions about N° 5 are easy to check.

(7.18) N° 7, 13, 24 in Table 3 (blow-ups of W).

W is a divisor of bidegree (1, 1) in P2x P2, and —K,, ~2H, +2H,,
where H, =0, ®0(1, 0) and H, =¢,,-®C(0, 1). The center C of the blow-up
is a complete intersection of two members of | H, + H, | in the case of N° 7. In
the case of N° 24, C can be considered to be a fiber of the first projection, by
symmetry. Then C is a complete intersection of two members of | H,|. In
these two cases, X is a Fano 3-fold and —K, has a free splitting by
Proposition 2.12 and other assertions are easy to check. Let us consider N°
13. Let C, p,, p, be as in N° 13. By the condition on C, ¢, =p,(C) is a conic,
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and let Q=p;'(g). We claim that €y(C)=Cy(H,). Since p,|y:
Q—g,~P' is a P'-bundle, Cy(H,)=(p,|g)*¢(1) and the tautological
line bundle € o(H,) form a basis for Pic Q. It is easy to check (CoH)) =
(CGo(H,) Og(H,))=2. Thus Co(C)=Cy(H,) as claimed because (C-H,)=
(C-H,)=2. Since Ky~ —2H, by the adjunction formula, one has
H(Go(H)=H?*"(Cy(-3H,))=0 for i=1, 2 by Ramanujam vanishing
theorem. Thus #°(@y(H,))=4 by the Riemann-Roch formula. Hence the
map

HUCOw(H\) =k > H(Co(H)))

is not surjective, and the generic C’ €| 'y(H,)| are not sent onto a line by p,.
Thus C’s in N° 13 form an open dense subset of a P*-bundle | o | €o(H,)]
over | Q|~P3. Since the invariants of the blow-up X is calculated by Lemma
2.1, it remains to show that X is a Fano 3-fold and — Ky has a free splitting.
By the exact sequence

0 —Cw(H,) —Cw(H, +2H,) _*@‘0(1'1. +2H,) —0,

the map HO(H,+2H,))»HYCy(H,+2H,)) is a surjection, because
HY(0w(H,))=0 by Kodaira vanishing theorem and ampleness of
H, =Ky ~3H,+2H,. Since Q~2H,, C is an intersection of members of
| H,+2H,| because |H,+2H,—2H,| and |H, +2H,— H,| are free from
base points. Hence X is a Fano 3-fold and — Ky has a free splitting by
Proposition 2.13 applied to p,: W—-P2.

(7.19) The rest of Table 3 (blow-ups of ;).

In these cases, X is the blow-up of P'-bundle /: Y =P(¢ ®¢(1))—P?
along subsections C. Since it is easy to calculate the invariants of X and
check that X is parametrized by a non-empty rational variety in each case, we
only show that X is a Fano 3-fold and — K, has a free splitting in each case.
Let L be the tautological line bundle of Y, H=/*¢(l), and D~P? the
negative section. Then onc has L~ H+ D and — K ~2L +2H. It is clear that
| L|and | H]are free from base points and L+ H is ample. In N° 11 (resp. N®
26), C is the complete intersection of two members of | L+ H| (resp. | L]),
whence X is a Fano 3-fold and — K, has a free splitting for N* 11 and 26 by
Proposition 2.12. Let us consider N* 16, 23, 30. Let g: Y—P? be the blow-
up at p e P3. The exceptional divisor is D, and L~g*¢(1). Let C=g¢(C), and
I, I the sheaf of ideals of C and C in P? and Y respectively. Since C is an
intersection of quadrics and (g*I)¢y=1(—D), C is an intersection of
members of |2L — D|=| L+ H|. Thus X'is a Fano 3-fold and — Ky has a free
splitting by Proposition 2.12. Let us consider N° 29. C, in this case, is the
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complete intersection of D and the proper transform M of some hyperplane
of P* passing through peP>. Since M~ L~ D~ H, C is an intersection of
members of | L+ H| because | L+ H—D|=|2H| and |L+ H—M|=| L] are
free from base points. Hence X is a Fano 3-fold and — K, has a free splitting
again by Proposition 2.12. Now N° 14 is left, and let S be an in N° 14. Then
S~ L. Let EcP? be the cone over C< S with vertex p, and E’ < Y the proper
transform by g. Then £'~3L—3D. C is the complete intersection of S~ L
and E'+2D~2L+ H. Thus C is an intersection of members of |2L+ H|.
Since C is a subsection of f, X is a Fano 3-fold and — K, has a free splitting
by Proposition 2.13.
Let us consider Table 4.

(7.20) N 1 and 10 in Table 4 (a divisor and a product).
The only thing which is not clear is that B,(X) =4 and B,(X) =2 for N°
1, which follows from Proposition 7.13,

(7.21) N°2in Table 4 (a blow-up along a subsection).

Let /: Y=P(C®E(1, 1))>P'x P! (N° 31 in Table 3). Let L be the
tautological line bundle and Se¢|L| a smooth member. Then X is the blow-
up of Y along a smooth divisor C of bidegree (2, 2) of S~P! x P!. From the
exact sequence

0 — (L) — 6QL) — C5(2L) —— 0,

one gets the surjectivity of the natural map H%Q2L)- HY(O4(2L))~
H%(C(2,2)) because H'(C(L))=0 by Kodaira vanishing theorem and
ampleness of L — Ky. Thus C is an intersection of members of |2L|. Since
~Ky~2L+f*0(1, 1), X is a Fano 3-fold and — K, has a free splitting by
Proposition 2.13. The rest follows from Lemma 2.1.

(7.22) N 3 and 8 in Table 4 (blow-ups of P! x P! x P!).

Let Y=P!'xP'xP' H, = ,(1,0,0), H,=0(0, 1,0), H;=( 40,0, 1),
and let f: Y= P! x P! be the projection to the first two factors. Let C< Y be
the center of the blow-up. In N° 8, C is the complete intersection of two
divisors D, €| H, | and D, €| H, + H, |, and hence an intersection of members
of | Hy+ H,+ Hy|=| — Ky/2|. Thus X is a Fano 3-fold and — K, has a free
splitting by Proposition 2.12 and the rest is easy for N° 8, In N° 3, ¢ =f(C) is
a divisor of bidegree (1, 1) on P! x P! and C is a divisor of bidegree (2, 1) on
Q=qxP'#P! x P! (cf. Introduction). From the exact sequence

0 —— O(H3) —— O(H, + Hy + Hy) —— G2, 1) — 0,

one obtains the surjectivity of HXO(H, + H, + H,))— H(((2, 1)) because
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H'(C(Hy))~ H'(Cp:(1))=0. Thus C is the complete intersection of two
divisors Q€| H, + H,| and D,e|H, + Hy+ H,|. The rest of the argument is
the same as that for N° 8.

(7.23) N° 4 in Table 4 (a successive blow-up of Q).

Invariants are calculated by Proposition 2.9. Since p and ¢ are not
colinear on quadric Q =P*, smooth conics C passing through p and g exist
and are intersections of Q with linear 2-spaces (~P?) of P* passing through
p and g. So C’s are parametrized by a rational variety. We will see in (7.28)
that — K is ample and has a free splitting,

(7.24) N° 5in Table 4 (a blow-up of P! x P2).

Let Y=P'xP? H,=0(1,0), H,=¢(0,1), and C, and C, disjoint
irreducible curves of bidegree (2,1) and (1,0) on Y respectively. Let
J: Y>P? be the projection. Then /=/(C,) is a line disjoint from the point
p=f(C)) inP% In L=f"'()>P' x P!, C, is a divisor of bidegree (1, 2) on
it. We claim that the natural map

(7.24.1) a: HYCy(H, +2H,)) — HYCpyc(H, +2H,))

is surjective. Because the natural map f: HY(OW(H, +2H,))— H%(C(H, +
2H,)) is surjective by H'(Oy(H, + H,)) =0, and the induced map

HO(O,(H, + H,))~Ker B—H (G ,(H, +2H,)) = H*(0p:(1))® Cp:(2H,)

is surjective by O~ C,=. By surjectivity of a, there is a divisor
De|H +2H,| such that C;=D-Q and D>C,. Thus C,1LC, in D is an
intersection of members of Tr,|2H, |, and C, ILC, in Y is an intersection of
members of | H, +2H,|. Thus — K, is ample and has a free splitting by
Proposition 2.12. The rest for N° 5 is easy.

(7.25) N> 6 and 7 in Table 4.

The sum of 3 disjoint lines in P? is an intersection of members of | 0(3) |
and the sum of two disjoint curves in W< P2 x P? of bidegree (0, 1) and
(1, 0) is an intersection of members of | (1, 1)|. Thus, in these cases, — K,
is ample and has a free splitting by Proposition 2.12. The only thing to be
checked is that X in N° 6 is the blow-up of P' x P! x P! along a curve of
tridegree (1,1, 1). In N° 6, X contains 3 exceptional divisors E,, E,, E,
coming from lines, and the divisor H the pull back of @p.(1). For each i,
| H—E;| is free from base points and induces a morphism f; : X—P' which is
induced by the projection of P? from the line. Now

=) X—P!' <P x P!
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is a birational morphism because (H—E,)-(H—-E,)-(H—E;)=(H*)=1.
The assertion that f is the blow-up along a curve of tridegree (I, 1, 1) is
shown by the argument in the proof of Proposition 7.5.

(7.26) N° 9 and 12 in Table 4 (successive blow-ups of P3).

By Lemma 2.1, the only thing to be checked here is that — K is ample
and has a free splitting. Let /1 and n be two disjoint lines on P3, and p and ¢
two distinct points on m. Let us blow up P* first at p and then along the
proper transform of m. Let f: U-P? (resp.g: V—U) be the first (resp.
second) blow-up and A=f-g. Let H=h*C(1) and let P (resp. M) be the
irreducible exceptional divisor on ¥ lying over p (resp. dominating m). Let n’
and ¢’ be smooth rational curves 41~ !(n) and A~ '(g) on V, respectively. Now
X in N°9 (resp. N° 12) is the blow-up of V along n’ (resp. ¢'). It is easy to see
that — K, ~4H~2P— M and both of n” and ¢’ are intersections of members
of | H|. Then — K, is ample and has a free splitting for N° 9 and 12 by
Proposition 2.12 if — Ky —H~3H—2P— M is ample on V. Now |H-P|
(resp. | H— M —P]) is free from base points and induced by the linear
projection of P? from p (resp. m). Since

(7.26.1) -Ky—H~H+(H-PY+(H-M-P),

| —Ky—H| is free from base points. Let Z< V be an arbitrary irreducible
curve. If g(Z) is a point, then Z is an exceptional line of ¢ and
(—Ky—H-Z)=(—Ky,-Z)=). If g(Z) is a curve and H(Z) is a point, then
g(Z) lies in the exceptional divisor P=g(P) of f and

(=K —H-Z)2(/*C()=- P-4, Z)=(-P-9,Z)>0

by (7.29.1) and (2.9.2). If A(Z) is a curve, then (- K, — H-Z)=(H-h,Z)>0
by (7.26.1). Thus — K, — H is ample.

(7.27) N° 11 in Table 4.

Let 7 and ¢ be as in N° Il in Table 4, and f<F, a fiber of
F,~»P!. Since txe=(t x F'). (P! x¢), 1 x ¢ is an intersection of members of
|t xF, + P! x(e+/)| because | /| and |e+/ | are free from base points. It is
easy to see that — K —(e+f)~e+2f is ample. Thus the blow-up X
along r x e is a Fano 3-fold by Proposition 2.12. The rest is easy.

We consider Table 5. N° 3 and the cases 6 £ B, < 10 are obvious, and we
consider N** 1 and 2,

(7.28) N° | in Table 5 (with N° 4 in Table 4).
Let C be a smooth conic on a quadric QcP*, and let p,, - -+, p, be
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distinct n points on C (n=2, 3). Let f,: Z,—Q be the blow-up of Q at these n
points, and let H,=/YC0y(1), Pi=f}(p) (15i<n), and C,c Z, the proper
transform of C by f,. X in N° | in Table 5 (resp. N° 4 in Table 4) is obtained
as the blow-up g,: X, - Z, along C, for n=3 (resp. 2) by Remark 2.5. We
need only to show that X, and X, are Fano 3-folds and their anti-canonical
bundles have free splittings. Let #=2 or 3. Since C is an intersection of
members of | € (1) ], C, is an intersection of members of | H,— P, — -+ - =P, |.
Since — K, ~3H,—-2P,—----2P, X,isa Fano 3-fold and — K_has a free
splitting by Proposition 2.12 if M,~2H, —P —---—P, is ample on Z,.
Since p,, -+, p,e C,notwo of p,, - - -, p, are colinear on Q by Corollary 6.9,
Hence as in (7.11.1), | H,— P,— P;| is free from base points if i#j. Then by

M,~H,+(H,— P, —P,),

7.28.1
( ) {2M3~H3+(H3-P1—P2)+(H3_PZ_P3)+(H3_P3—P1),

{2M,| is free from base points. For ampleness, it is enough to show
(M- 1) >0 for an arbitrary irreducible curve / on Z,. If g, (/) is a point, then
(M,-1)>0 by g,-ampleness of M, (2.9.2). If g,(/) is not a point, then
(2M,-1)2(Cy(1)-g,,0)>0 by (7.28.1).

(7.29) N°2in Table 5.

Let ¢: Y—P? be the blow-up along two disjoint lines m, and m,, and
let E;=¢~'(m;) (i=1,2) and H=¢*C(1). Assume that the two exceptional
liens / and !’ are in E, and let p=¢(/) and p’'=¢(!’). Since {p,p’} is an
intersection of members of | ¢(2)|, /1! is an intersection of members of
I2H|. Since — Ky~4H—E, - E,, —Ky—2H~(H—-E\))+(H—-E,). Y has a
structure of a P'-bundle over P' x P!, and the pull backs of ¢(1, 0) and
¢(0,1)are H— E, and H—E, (7.10). Thus — K, —2H is the pull back of the
ample divisor €'(1, 1) and E, is a section of the P'-bundle (7.10). Hence — K
is ample and has a free splitting by Proposition 2.13. The rest for N° 2 js
clear.

Remark 7.30. Now we obtained, for X#P' x S; (1 £d£7), the split-
ting or the free splitting of — K, as stated in (7.0) during the proof of
ampleness of — Ky using Propositions 2.12, 2.13, and 2.14. One has a
splitting or a free splitting of — K for XY~P' x S, because X is a product.

(7.31) We now show that different classes in Tables 2, 3, 4, 5 are not
deformation equivalent. To be exact, let k=C and let f/: V=S be a proper
smooth holomorphic map between connected complex varieties. If ¥, and
V,. are Fano 3-folds in Tables 2, 3, 4, 5 for some s and s” of S, then we show
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that ¥, and ¥, belong to the same class. Since B,(X), By(X), (—Kj)? are
deformation invariants, we need to check the inequivalence for each of the
following sets {N* 22 and 24}, {N° 30 and 31}, {N* 33 and 34} in Table 2;
{N> 17 and 18}, {N* 19, 20, and 21}, {N° 23 and 24}, {N* 27 and 28}, {N*
29 and 30} in Table 3; {N* 4 and 5} in Table 4; {N° 2 and 3} in Table 5.

For these, we use finer deformation invariants; free Z-module
H*(X, Z(1)) with an element, the class of K «» and the cubic intersection form.
For a Fano 3-fold X, one has H3(X, Z(1))~Pic X.

(7.32) N° 33 and 34 in Table 2 and N° 27 and 28 in Table 3.

X in N° 33 has a divisor H (pull back of ¢/ps(1)) such that (H?) =1, while
one has (@(a, b))* =3ab? # | for X=P"' x P? in N° 34, One has (¢(a, b, c))* =
6abc#3 for X=P' x P! x P' in N° 27, while .Y in N° 28 has a divisor H (pull
back of €(1,1) by X-P'xP?) such that (H*)=3. Thus these are
inequivalent.

(7.33) To distinguish the rest, we define the following invariant d(X).
Let r=B,(X) and D,, - --, D, a Z-basis for Pic X. Let M(D,, - -+, D,) be the
rxr matrix whose (i,j)-entry M(D,, ---, D,),; is (=Kyx-D;-D)). Then
d(X)=det M(D,, - --, D,)e Z does not depend on the choice of D,, - - -, D,
and is a deformation invariant. For the actual calculation, we need the
following lemma.

Lemma 7.34. Let f: XY be the blow-up of Y along an irreducible
smooth curve C (resp. at a point p) and D the exceptional divisor. Let E,, + -,
E, be a Z-basis for Pic Y, and let D,=f*(E) (i=1, - -+, r)and D, ., = D. Then
D,, -+, D,,, is a basis for Pic X and

M(E,, - -, E),; if i,jsr
. o - <
MDD, -+, D, )i = (E;:C) (resp.0) if i=r+1, j<r
(E;* C) (resp. 0) i isr, j=r+l

2p(C)—2 (resp. —2) if i=j=r+1.

The proof follows easily by projection formula and Lemma 2.1 and
Proposition 2.9.

(7.35) By Lemma 7.33 and Theorem 3.8, one can easily calculate d(X)
and the result i$ as follows.

Table 2 d(X)=-24 for N° 22, —2) for N° 24
-12 N° 30, -13 Ne 31
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Table 3 d(X)= 28 N°17, 26 N° 18
24 N°19, 28 N° 20, 22 forN°21
20 Ne¢ 23, 22 N° 24
12 N°29, 14 N° 30

Table 4 —40 N°4, -39 N°s

Table 5 44 N2, 48 N°3.

Thus we have shown that different classes are inequivalent.
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Representations of Weyl Groups on Zero
Weight Spaces of g-Modules

Susumu Ariki, Jun-ichi Matsuzawa and Itaru Terada

Introduction

The subject of this article is to analyze the representation of the Weyl
group on the zero weight space of a finite-dimensional representation of a
complex simple Lie group.

B. Kostant [5] and E. A. Gutkin (3] has dealt with this subject. B.
Kostant established a relationship between the eigenvalues of the Coxeter
elements as acting on the zero weight space and his “generalized exponents™.
E. A. Gutkin treated the type A and converted the problem into a
decomposition problem of certain induced representations of symmetric
groups. They both gave a set of irreducible SL(n, C)-modules whose zero
weight spaces form a complete set of representatives of the irreducible
modules over the Weyl group.

In this article, we give a method of computation to decompose the zero
weight space into irreducible modules over the Weyl group. In this method,
we employ the representations on the symmetric tensors over the natural
space. We apply this method to types A, B, and C. For type D, although a
similar treatment leads to quite complicated computations, one of us (S. Ariki)
solved this case [1]. His results will be published elsewhere.

Moreover, we investigate the type A more closely. We provide some
interpretations from the view point of representations of general linear
groups and symmetric groups. One of them has already been obtained in [3].
Next we ascribe the character values on the zero weight space to those of
Coxeter elements. Finally we collect some auxiliary formulas to help
computation, and give a new series of examples of irreducible SL(n, C)-
modules whose zero weight spaces become irreducible.
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