Geometric realization of root systems and the Jacobians of del Pezzo surfaces

Shigeru Mukai *

In the conference talk, I reviewed the geometric part of my article [2] and announced the following result on the Jacobian of a del Pezzo surface, whose details will be published elsewhere.

A smooth complete algebraic surface S (over an algebraically closed field) is *del Pezzo* if the anti-canonical class $-K_S$ is ample. The self-intersection number $(-K_S^2) =: d$ is called the degree, which ranges from 1 to 9. A del Pezzo surface S is isomorphic to the projective plane \mathbb{P}^2 if d = 9, and to either a smooth quadric surface Q or the blow-up of \mathbb{P}^2 at a point if d = 8. A del Pezzo surface S of degree $d \leq 7$ is isomorphic to the blow-up of \mathbb{P}^2 at (9-d) points in a general position.

The anti-canonical system $|-K_S|$ is of dimension d and its general member is a smooth elliptic curve. Let $\mathcal{C} \subset S \times \mathbb{P}^d$ be the universal family of anticanonical members $C \in |-K_S| = \mathbb{P}^d$ and C_η be the generic fiber of $\mathcal{C} \longrightarrow \mathbb{P}^d$.

Definition A morphism $\varphi : \tilde{J} \longrightarrow \mathbb{P}^d$ is a Jacobian fibration of S if all fibers are of dimension one and its generic fiber is the Jacobian of the generic anticanonical member C_{η} . A (d+1)-dimensional variety J with a smooth point p is a reduced Jacobian of S if the blow-up of J at p have a Jacobian fibration φ such that the exceptional divisor over p is the 0-section of φ .

In the case of degree d = 1, the anti-canonical system $|-K_S|$ is a pencil with a unique base point. Hence a del Pezzo surface S itself is its reduced Jacobian.

Theorem For a del Pezzo surface S, there exists a reduced Jacobian (J(S), p) which satisfies the following properties:

(1) J(S) is a (d+1)-dimensional weak del Pezzo variety of degree one, that is, $-K_S = dH$, H being a nef and big divisor with $(H^{d+1}) = 1$,

^{*}Supported in part by the JSPS Grant-in-Aid for Scientific Research (B) 17340006.

(2) p is the unique base point of the d-dimensional linear system |H|,

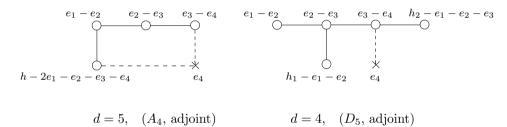
(3) J(S) is the blow-up of the projective space \mathbb{P}^3 at seven points in a general position if d = 2,

(4) J(S) is the blow-up of the product $\mathbb{P}^2 \times \mathbb{P}^2$ at five points in a general position if d = 3,

(5) J(S) is the blow-up of the 6-dimensional Grassmannian G(2,5) at four points p_1, \ldots, p_4 in a general position if d = 5, and

(6) J(S) is the blow-up of a singular hyperplane section G(2,5)' of $G(2,5) \subset \mathbb{P}^9$ at four points p_1, \ldots, p_4 in a general position if d = 4.

In the case d = 1, 2, 3, the reduced Jacobian J(S) belongs to the class of rational varieties studied in [2]. The augmented root system $N(E_{9-d}, \text{adjoint})$ (cf. [3, §4] and [4, §4]) is realized in the second cohomology group $H^2(J(S), \mathbb{Z})$. The Weyl group $W(E_{9-d})$ birationally acts on the universal family of J(S)over the configuration space of (9-d) points on \mathbb{P}^2 . Similar properties hold true for a del Pezzo surface S_d of degree d = 5, 4 with the following augmented root system.



In these diagrams in $H^2(J(S_d), \mathbb{Z})$, h denotes the pull back of a hyperplane section of the Plücker embedding $G(2,5) \subset \mathbb{P}^9$, and h_i denotes that of a divisor class of G(2,5)' with dim $|h_i| = i$. e_1, \ldots, e_4 are the classes of exceptional divisors over p_1, \ldots, p_4 . The reflection with respect to the (-2)-class $h - 2e_1 - e_2 - e_3 - e_4 \in H^2(J(S_5), \mathbb{Z})$ is realized by the composite of two birational involutions of $J(S_5) = Bl_{p_1,\ldots,p_4}G(2,5)$. One is the Geiser involution the blow-up of G(2,5) at p_2, p_3 and p_4 , that is, the covering involution of the morphism

$$\Phi_{|H-e_2-e_3-e_4|}: Bl_{p_2,p_3,p_4}G(2,5) \longrightarrow \mathbb{P}^6$$

of degree 2. The other is the Bertini involution, that is, the involution of $J(S_5)$ induced from the $(-1)_{\tilde{J}}$ of the elliptic fibration $\varphi : \tilde{J}(S_5) \longrightarrow \mathbb{P}^5$. (See [1, §7] for the Geiser and Bertini involutions of del Pezzo surfaces.)

References

- Dolgachev, I.: Weyl groups and Cremona transformations, Proc. AMS Symp. Pure Math. 40(1978), 283–294.
- [2] Mukai, S,: Geometric realization of T-shaped root systems and counterexamples to Hilbert's fourteenth problem, 'Algebraic Transformation Groups and Algebraic Varieties', ed. V. L. Popov, Springer-Verlag, 2004, pp. 123–129. (RIMS preprint 1372)
- [3] Kanev, V.: Spectral curves, simple Lie algebras, and Prym-Tjurin varieties, Proc. AMS Symp. Pure Math. **49**(1989), Part I, 627–645.
- [4] —: Spectral curves and Prym-Tjurin varieties I, 'Abelian Varieties', eds.
 W. Barth, K. Hulek and H. Lange, Walter de Gruyter, Berlin · New York, 1995, pp. 151–198.