Group-Quark matrix and Leech-K3 analogue of del Pezzo surfaces 2/21/23(T) S. Mukai

Abstract: Groups are analyzed by taking normalizer of suitable subgroups. For example, the (quaternionic) Wolf space and Weyl group are attached to each simple Lie group in this way. As a discrete analogy, Harada(2001) considered a 3 by 3 arrangement of certain finite groups, terminated at the Monster, and asked their algebrogeometric meaning. The first row is one of Arnold's trinities and del Pezzo surfaces play the main role there. I will discuss the groups in the second focusing on their (mostly conjectural) connection with symplectic (or "quaternionic") varieties related to supersingular K3 surfaces.
§1 Background/Motivation
X : compact complex manifold, two long standing problems QK\&HK

WKcontact \& Fano \Rightarrow homogeneous?
$\left(X^{2 n+1}, \omega\right), \omega_{\lambda}(d \omega)^{2}$ nowhere vanishing, $c_{1}>0 \Rightarrow X=G / P_{\theta}$? the unique closed orbit of $G \curvearrowright P(g)$
$P_{\theta}=$ (Heisenberg). G_{0}
$1 \rightarrow \mathbb{C}^{*} \rightarrow \mathrm{H}^{2 g-3} \rightarrow \mathbb{C}^{2 g-4} \rightarrow 0$, g: dual Coxeter number
Example 1. A_{n}-type $G=S L(n+1) \Rightarrow$ flag in $\mathbb{P}^{n} \times \mathbb{P}^{n, *}$
2. E_{6} type, $g=12$
$P_{\theta}=\mathbb{C}^{*} \cdot \mathbb{C}^{20}$ SL(6)

$\dot{\odot} \theta$

HK Classify irreducible holomorphic simplectic manifolds (K3-like mfds).
$\left(x^{2 \pi}, \omega\right), \underbrace{\omega_{n} \cdots \Lambda^{\omega}}_{\Omega}$ nowhere vanishing (hence $c_{1}=0$) $\operatorname{dim}=2 \xrightarrow{\sim}$ K3 surface, e.g., quartic surface in \mathbb{P}^{3}

Are these all (deformation types)?
§2 Group-Quark matrix and its suggestion

Harada (2001)

lattice
$I_{1,25}$
no lattices but VOA's
vertical: take normalizer of a suitable 2-extraspecial
subgroup $2^{1+2 n}$, discrete analogy of Heisenberg group.
horizontal: Arnold's trinities, say, $\mathrm{E}_{6}, \mathrm{E}_{7}, \mathrm{E}_{8}$.
Result: Tetra Octa Icosa
g=Coxeter \# 12 18 30 g-8 4

10
22
K3-like $K 3^{[2]} \quad$ OG10? \mathfrak{J} ?
(g-8)-fold
Tetra Octa Icosa

G-Q matrix's suggestion: Does there exist a K3-like 22 - or 20 -fold with $\mathrm{B}_{2}=25$?
§3 Basic dst line \rightleftarrows del Mezzo surface of degree $d=3,2,1$
$(1,1) S_{3} \subset \Phi^{3}$ smooth cubic surface
Well known: 727 lines on S_{3}
Aut(config. of 27 lines) $=W\left(E_{6}\right)$
G-Q understanding: consider special case $x^{3}+y^{3}+z^{3}+t^{3}=0$ over $\bar{F}_{\mathbf{2}}$, Fermat/Hermitian. Hence we have $U_{4}(2) \rightarrow W\left(E_{6}\right)$, infective \& image of index 2 .

Standard way of understanding: 6 disjoint lines l_{ι}, \ldots, l_{6}

$$
\begin{aligned}
& \mathrm{S}_{2}=\mathrm{BI}_{\mathrm{S}^{2+m}} \mathrm{P}^{2}\left(\mathrm{P}, \mathrm{Z}^{\mathrm{Z}}\right)^{2}
\end{aligned}
$$

w. cup $=\left(\mathbb{Z}^{7}, t^{2}-x_{1}^{2}-\ldots-x_{6}^{2}\right)$ product

$$
\begin{aligned}
& \mathrm{c}_{1}(\mathrm{~S}) \rightleftarrows(3,111111) \\
& \mathrm{c}_{1}(\mathrm{~S})^{\perp}=\mathrm{E}_{6} \text {-lattice } \\
& \text { (neg. definite) }
\end{aligned}
$$

Aut(config.) $\rightarrow \mathrm{O}\left(\mathrm{E}_{6}, \mathbb{Z}\right)=W\left(E_{6}\right)$ is an isomorphism, and RHS is generated by (-2)-reflections $x \mapsto x+(x . a) a$, with $\left(a^{2}\right)=-2$.
$\$ 4 I_{1,9}$ and $I_{1,25}$
Both are unimodular hyperbolic lattices. I is odd and II is even, that is, (x^{2}) even for all $x \in I I$.

Both have beautiful fundamental domains \& str. of orthog. grps

$$
4 \otimes\left(I_{1,9}, \mathbb{Z}\right) \sim\left(\begin{array}{l}
\text { gp gexended } \\
\text { by }(-1) \\
\text { reflections }
\end{array}\right) \cdot \underbrace{\mathbb{Z}^{8} \cdot W\left(E_{8}\right)}_{\begin{array}{l}
W\left(\tilde{E}_{8}\right)
\end{array}}
$$

§5 From del Pezzo to K3-like
Pic $S_{d}=H\left(S_{d}, \mathbb{Z}\right)=\left(\langle-1\rangle^{d}\right)^{\perp}$ in $I_{1}, 9$

Make analogy.

Pic $X=\operatorname{Div} X /\{(f)$, f: rat. fn\}
Div $X=\bigoplus_{D C X} Z[D]$
codim 1, irred.

K3-like variety X is Leech-K3-analogue of del Pezzo if (Pic X, BBF-form) $=\left(\langle-2\rangle^{d}\right)^{\perp}$ in $\|_{t, 25}$ in narrow sense
$=R^{\perp}$ for root sublattice $R<\|_{1,2 s}$ in broad sense
§6 Example (broad sense, Dolgachev-Kondo, supersingular, char. $\mathrm{p}=2$) $S=S_{D K}: \sum_{i}^{3} x_{i} y_{i}^{2}=\sum_{1}^{3} x_{i}^{2} y_{i}=0$ in $P^{2} x\left[P^{2+} / \overline{\mathbb{F}}_{2} \rightleftarrows R=D_{4}\right.$
$\rho=\mathrm{B}_{2}=22$
§7 Example (narrow sense)
Tetra: $X=S_{D K}^{[2]}$, Pic $X=(<-2>+<-2>+<-2>)^{\perp}$ in $I_{1,25}, \rho=23$ birational action of $U_{6}(2)$

Octa: $X=\widetilde{M}_{\Omega}(2 v)$ for suitable Mukai vector v with $\left(v^{2}\right)=2$ on $S=S_{D K}$ (conjecture, CO_{2} action not found yet, $\exists \mathrm{CO}_{2}$-config. of (-2)-divisors)

Icosa: X might be 22- or 20dimensional?! (A reason given below.)
§8 Maximal subgroup and Lagrangian fibration
Lagrangian fibration $=\mathrm{h}$. dim'I generalization of elliptic fibrtaion of K3 surface

Tetra case: $2^{9} L_{3}(4)$ is contained in $U_{6}(2)$.

X has a Lagrangian fibration over \mathbb{P}^{2}
$L_{3}(4)$ is $\operatorname{Aut}\left(\mathbb{P}^{2}\right)$ over $\mathbb{F}_{\boldsymbol{4}}$ and 2^{9} acts in fiber direction
Octan case: $2^{\mathrm{t} 0} \cdot \mathrm{M}_{21}$ is contained in Co_{2}.
X has a Lagrangian fibration over \mathbb{P}^{5}, on which M_{22} acts. (projectivization of irrep. of central extension 3. M_{22})

Icosa case: $2^{\prime \prime \prime} \cdot M_{24}$ is contained in Co_{1}.
Minimal projective space with action of M_{24} is 10dimensional. So minimal possibility of $\operatorname{dim}^{2} X$ is it's twice, 20.

Space of Golay codes is a natural 12-dim'I rep. of M_{24} In this another possibility, X is 22 dim'l.

Postscript (3/3/23(F)) The possibility of $\operatorname{dim} X=20$ above was overlooked in my talk.
§1
Beauville, A., Holomorphic symplectic geometry: a problem list, in "Complex and differential geometry", pp. 49-63, Springer-Verlag, 2011. (See Sect. 3 for the conjecture "contact+Fano implies homogeneous".)
§2
Harada, K., Group-quark matrix?, RIMS Kokyuroku, 1228(2001), 153-160.

Arnold, V.I., Polymathematics: is mathematics a single art or a set of arts?
§3
Manin, Yu.l., Cubic forms: Algebra, Geometry, Arithmetic.
§4
Conway, J.H., The automorphism group of the 26-dimensional even unimodular Lorentzian lattice, J. Algebra, 1983. Chap. 27 of [SPLG].
§6
Dolgachev, I. and Kondo, S., A supersingular K3surface in characteristic 2 and the Leech lattice, Int'l. Math. Res. Notices, 2003, pp. 1-23.

