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Shigeru Mukai

Abstract. The Igusa quartic has a morphism of degree 8 onto itself. Via this
self-morphism, the Satake compactification As

1(2) of the moduli of principally
polarized abelian surfaces with Göpel triples (as well as usual p.p.a.s.’s with
full level-2 structures) is isomorphic to the Igusa quartic. We also determine
the action of Fricke involution on the moduli.

In the workshop in the University of Georgia in October 2011, I gave a talk
on Enriques surfaces of type E7, which is a continuation of [9] and will appear
elsewhere. In this article, instead I report on a new interpretation of the Igusa
quartic as a moduli, which was found in my study of such Enriques surfaces (cf.
Remark 7).

The Satake compactification As(2) of the moduli space H2/Γ(2) of principally
polarized abelian surfaces is a quartic hypersurface in P4, called the Igusa quartic,
where H2 is the Siegel upper half space of degree 2 and Γ(2) is the principal con-
gruence subgroup of level 2 in Sp(4, Z). We characterize the Igusa quartic using
Steiner quartic surfaces, or Steiner’s Roman surfaces. As a corollary, we show that
the Satake compactification As

1(2) of the moduli of principally polarized abelian
surfaces with Göpel triples is also isomorphic to the Igusa quartic.

A Steiner surface is an irreducible quartic surface in P3 whose singular locus
is the union of three lines meeting at a point ([10]). A Steiner surface has seven
planes which cut out double conics, or tropes, from it. Three are the unions of
two double lines. The other four are linearly independent and cut out irreducible
double conics. Taking these four planes as the reference tetrahedron x0x1x2x3 = 0
of homogeneous coordinates, a Steiner surface is normalized in the form

(1) (s2
1 − 4s2)2 = 64s4,

where si is the elementary symmetric polynomial of degree i in the coordinates
x0, x1, x2, x3. (See (10) for another equation.) In particular, all Steiner surfaces are
isomorphic to each other.

Let X be a hypersurface in P4 and σ a linear and reflective involution of X ⊂ P4,
that is, a lift of σ to GL(5, C) has four 1’s and (only) one −1 as its eigenvalues.
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The fixed point set of the action of σ on P4 consists of an isolated point and a
hyperplane P3. The projection X · · · → P3 from the isolated fixed point factors
through the quotient X/σ.

The following is called the Steiner property of such a pair (X,σ).

(∗) The fixed point locus of σ is a Steiner surface R and the map X/σ · · · → P3

is a double covering with branch the union of four planes which cut out irreducible
double conics from R.

A hyperquartic X is said to satisfy the Steiner property if there exists an
involution σ such that (X,σ) satisfies it. Such a hyperquartic is isomorphic to the
standard one

(2) (x2
4 − s2

1 + 4s2)2 = 64s4

in P4
(x0:...:x4)

.
The following observation is the starting point of our consideration.

Proposition 1. The Igusa quartic satisfies the Steiner property and has a
morphism of degree 8 onto itself.

(See Remark 4 for the geometric meaning of the involution σ in this case.)

We denote the congruence subgroup of Sp(4, Z) consisting of
(

A B
C D

)
with

C ≡ 0 (2) by Γ0(2), and with A− I2 ≡ C ≡ 0 (2) by Γ1(2). The quotient H2/Γ0(2)
is the moduli space of pairs (A,G) of principally polarized abelian surfaces A and
Göpel subgroups G ⊂ A(2). (G is Göpel if it is maximally totally isotropic with
respect to the Weil pairing.) The quotient H2/Γ1(2) is the the moduli space of pairs
(A,ψ)’s, where ψ : (Z/2)⊕2 → A(2) is an isomorphism onto a Göpel subgroup.

The element 1√
2

(
0 I2

−2I2 0

)
∈ Sp(4, R) belongs to the normalizer of Γ1(2),

and induces involutions of the quotient H2/Γ0(2) and H2/Γ1(2), which are called
the Fricke involutions. More explicitly, the Fricke involution maps a pair (A,G)
to (A/G,A(2)/G). Since A(2)/G is isomorphic to G via Weil pairing, the Fricke
involution of H2/Γ1(2) is also well defined. Two pairs (A, G) and (A/G,A(2)/G)
are geometrically related by Richelot’s theorem. See Remark 7.

Theorem 2. The Satake compactification As
1(2) of H2/Γ1(2) is a hyperquartic

in P4 and the Fricke involution ϕ acts linearly on As
1(2) ⊂ P4. Moreover, the pair

(As
1(2),ϕ) satisfies the Steiner property. In particular, As

1(2) is isomorphic to the
Igusa quartic and its quotient A∗,s

1 (2) by the Fricke involution is the double cover
of P3 with branch the union of four planes.

As Terasoma [11] observes, the Fricke involution fixes the moduli of abelian
surfaces with real multiplications by

√
2. The fact that the fixed point locus is a

Steiner surface also follows from Hirzebruch [5]. It is interesting to compare our
description with the computation of Siegel modular forms in [7] but we do not
pursuit it here.

This article was completed during the author’s stay at the Isaac Newton Insti-
tute in the Spring of 2011. The author is very grateful for the generous support
and hospitality of the institution.
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1. Self-morphism of degree 8

We first construct a self-morphism (of degree 8) of the quartic hypersurface (2).
Let Y be the double P3 with branch the union of four linearly independent

planes. The symmetric group S4 of degree four acts on Y permuting the four
planes.

Lemma 3. The quotient of the above threefold Y by the action of the Klein’s
4-group K4 ⊂ S4 is isomorphic to (2).

Proof. Y is expressed as z2 = y0y1y2y3 for a homogeneous coordinate (y0 :
y1 : y2 : y3) of P3. To compute the quotient we make the following coordinate
transformation:

(3) x0 = (y0 + y1 + y2 + y3)/2, x1 = (y0 + y1 − y2 − y3)/2,

x2 = (y0 − y1 + y2 − y3)/2, x3 = (y0 − y1 − y2 + y3)/2.

Then Y is expressed as

16z2 = (x0 +x1 +x2 +x3)(x0 +x1 −x2 −x3)(x0 −x1 +x2 −x3)(x0 −x1 −x2 +x3)

and as 16z2 = S2
1 −4S2 +8x0x1x2x3, where Si is the elementary symmetric polyno-

mial of degree i in the new variables X0 := x2
0, . . . , X3 := x2

3. Since K4 interchanges
even number of signs of x1, x2 and x3, the quotient Y/K4 is (S2

1 − 4S2 − 16z2)2 =
64X0X1X2X3. Hence the quotient Y/K4 is isomorphic to (2). !

When (X,σ) has the Steiner property, the quotient X/σ is isomorphic to the
threefold Y in the lemma. Therefore, (2) has a self-morphism of degree 8. Its
explicit form is give by

(4) (x0 : x1 : x2 : x3 : x4) (→

((x0 + x1 + x2 + x3)2 : · · · : (x0 − x1 − x2 + x3)2 : 2(S2
1 − 4S2 − x2

4)).

2. Proof of Proposition 1

We give three proofs.

Proof 1. To use the equation

(5) (y0y1 + y0y2 + y1y2 − y3y4)2 − 4y0y1y2(y0 + y1 + y2 + y3 + y4) = 0

in Igusa [8, p. 397] is the simplest. The interchange of y3 and y4 is an involution
of this hyperquartic. Its fixed point locus

(y0y1 + y0y2 + y1y2 − y2
3)2 − 4y0y1y2(y0 + y1 + y2 + 2y3) = 0

is isomorphic to the Steiner surface (1) by regarding y0 + y1 + y2 + 2y3 as a new
coordinate. Therefore, (5) is isomorphic to (2) and satisfies the Steiner property.
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Proof 2. As is well-known, the Igusa quartic is isomorphic to the hyperquartic

(6) σ1 = σ2
2 − 4σ4 = 0

which is invariant under the natural action of the symmetric group of degree six
(≃ Sp(4, Z)/Γ(2)), ([4, Sections 4, 5]), where σi is the elementary symmetric poly-
nomial of degree i in the six coordinates x1, . . . , x6. It is easy to see from this
equation that the Igusa qaurtc has 15 double lines. The complement of these 15
lines is isomorphic to H2/Γ(2).

Now we consider the involution of (6) interchanging x5 and x6. The hyperplane
x5 = x6 contains three of 15 double planes and cut out a Steiner surface. Let us
see more throughly. The hyperquartic (6) is defined by

(x5x6 − s2
1 + s2)2 = 4(x5x6s2 − s1s3 + s4),

where si is the elementary symmetric polynomial of degree i in the four coordinates
x1, . . . , x4. Putting x0 = x5 − x6, (6) is expressed as a hyperquartic

(7) (x2
0 +3s2

1 +4s2)2 = 64(x2 +x3 +x4)(x1 +x3 +x4)(x1 +x2 +x4)(x1 +x2 +x3)

in Px0:...:x4 . The fixed point locus

(8) (3s2
1 + 4s2)2 = 64(x2 + x3 + x4)(x1 + x3 + x4)(x1 + x2 + x4)(x1 + x2 + x3)

is a Steiner surface and (7) satisfies the Steiner property.

Proof 3. A principally polarized abelian surface which is not of product type
is mapped onto a Kummer quartic surface in P3 by the linear system of twice the
theta divisor. Its equation

(9) a(x4+y4+z4+t4)+b(x2y2+z2t2)+c(x2z2+y2t2)+d(x2t2+y2z2)+16exyzt = 0

(with coefficients a, . . . , e ∈ C) is classically known ([6]) and is invariant under the
action of the Heisenberg group. The Satake compactification As(2) of H2/Γ(2) is
the quotient of the ambient P3 by the Heisenberg (projective) action of B ≃ (C2)4.
More precisely, the ambient P3 is the Satake compactification As(2, 4) of H2/Γ(2, 4)
([3, Proposition 1.7]). The group B has an exact sequence 0 → B1 → B → B2 → 0
such that B1 ≃ B2 ≃ C2

2 , that B1 changes even number of signs of the coordinates
x, y, z, t, and that B2 permutes them like Klein’s 4-group modulo sign. The quotient
Y of P3 by B1 is the double P3 with branch the union of four coordinate planes.
Hence the quotient P3/B is isomorphic to (2) by Lemma 3 and satisfies the Steiner
property.

3. Proof of Theorem 2

First we prove the following part of the theorem:

Claim: the Satake compactification As
1(2) is isomorphic to the Igusa quartic.

Proof. We restart from the expression (7) of H2/Γ(2) and take its quotient
by the group Γ1(2)/Γ(2) ≃ (C2)3. When a principally polarized abelian surface A
is the Jacobian of a curve C of genus two, a Göpel subgroup G corresponds to a
partition of the six Weierstrass points into three pairs. For example, KC − w1 −
w2, KC − w3 − w4,KC − w5 − w6 and 0 form a Göpel subgroup G0. The group
Γ1(2)/Γ(2), which preserves G0, is generated by three transpositions (12), (34) and
(56). The action of the symmetric group of degree 6 on the coordinates of (6) is
twisted by a nontrivial outer automorphism. Hence Γ1(2)/Γ(2) acts on x1, . . . , x6
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by the permutation C2 ×K4, where C2 is the symmetric group of two coordinates,
say x5 and x6, and K4 is the Klein’s 4-group acting on the rest. The quotient Y
of (7) by C2, generated by σ56, is the double P3 with branch the union of the four
planes x2 + x3 + x4 = 0, x1 + x3 + x4 = 0, x1 + x2 + x4 = 0 and x1 + x2 + x3 = 0.
Since K4 permutes these four planes like Klein’s 4-group, the quotient Y/K4 is
isomorphic to the Igusa quartic by Lemma 3. !

Remark 4. The fixed point locus of σ56 contains the Jacobians of curves C of
genus two with bi-elliptic involutions α ([9]) such that the action of α on the coho-
mology group H1(C, Z/2) is the same as the element of Sp(4, Z/2) corresponding
to σ56.

Now we determine the action of the Fricke involution.

Lemma 5. The automorphism group of the Igusa quartic is the symmetric group
S6 of degree six.

Proof. First, we note that the automorphism group Aut (X) as an abstract
variety coincides with that Aut (X ⊂ P4) as a projective variety, since X ⊂ P4 is
an anti-canonical embedding of X.

The singular locus of the Igusa quartic X ⊂ P4 is the union of 15 lines. We
construct a homomorphism Aut (X) → S6 using an incidence relation of these
lines and show its injectivity. Note that there are exactly six sets D1, . . . , D6 of
five disjoint double lines. Moreover, each intersection Di ∩ Dj , i ̸= j, consists of
one line, and every line is contained exactly two of D1, . . . , D6. Hence we have an
homomorphism Aut (X) → S6, and if an automorphism belongs to the kernel it
preserves each of 15 double lines. Since the intersection points of all pairs of distinct
lines span the ambient project space P4, such an automorphism is the identity. !

By the claim and the lemma, the automorphism group of the Satake compact-
ification As

1(2) is S6. Hence there are three types of involutions, that is, permuta-
tion type (2), (2)2 and (2)3. Since the Fricke involution fixes the moduli points of
abelian surfaces with real multiplication by

√
2 and such abelian surfaces forms a

2-dimensional family, the permutation type of the Fricke involution is (2). Hence
the pair of As

1(2) and the Fricke involution satisfies the Steiner property. Thus the
proof of Theorem 2 is completed.

Remark 6. When we regard (2) as the Stake compactification As
1(2), the

hyperplane section τ = 0 is an Humbert surface of discriminant 8 as we already
saw above. We find two kinds of other Humbert surfaces in As

1(2). They are the
hyperplane sections τ = ±(−x0 + x1 + x2 + x3). As surfaces, they are defined by

(10) x2
1x

2
2 + x2

1x
2
3 + x2

2x
2
3 = 4x0x1x2x3

in P3. This is again a Steiner surface and singular along three lines x1 = x2 = 0,
x1 = x3 = 0 and x2 = x3 = 0. One of them, say τ = −x0+x1+x2+x3 parametrizes
abelian surfaces of product type and the other parametrizes bi-elliptic ones. The
Fricke involution τ (→ −τ interchanges these two Humbert surfaces.

Remark 7. Let A be the Jacobian of a (smooth) curve C of genus 2 and
p1, . . . , p6 be the images of the Weierstrass points P1, . . . , P6 of C by the bi-canonical
morphism Φ2K : C → P2. Assume that a Göpel sugbroup G of C is not bi-
elliptic ([9]). Then the quotient abelian surface A/G is again the Jacobian of a
curve C ′ of genus 2. Moreover, the bi-canonical images of the Weierstrass points
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of C ′ is projectively equivalent to the the q1, . . . , q6 ∈ P2 in the figure below by
Richelot’s theorem (cf. [1], [2, §4]). Here G consists of the divisor classes [Pi−Pi+3],
i = 1, 2, 3, and 0, and xi is the intersection of two tangent lines of the conic
Φ2K(C) at pi and pi+3. This is the geometric interpretation of the Fricke involution
(A,G) (→ (A/G, A(2)/G) of A1(2), and plays an essential role in our sturdy of
Enriques surfaces of type E7.

•p1

•p4

x1

x2

x3

•p2 • p5

•p3

•p6

q1

q5

q2
q6

q4q3

References

[1] Bost, J.-B. and Mestre, J.-F.: Moyenne arithmético-géometrique et périodes des courbes de
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