
Vector bundles and Brill-Noether theory

Shigeru MUKAI∗

Abstract

After a quick review of the Picard variety and Brill-Noether theory, we
generalize them to holomorphic rank-two vector bundles of canonical de-
terminant over a compact Riemann surface. We propose several problems
of Brill-Noether type for such bundles and announce some of our results
concerning the Brill-Noether loci and Fano threefolds. For example, the
locus of rank-two bundles of canonical determinant with five linear inde-
pendent global sections on a non-tetragonal curve of genus 7 is a smooth
Fano threefold of genus 7.

As a natural generalization of line bundles, vector bundles have two important
roles in Algebraic Geometry. One is the moduli space. The moduli of vector
bundles gives connections among different types of varieties, and sometimes yields
new varieties which are difficult to describe by other means. The other is the linear
system. In the same way as the classical construction of a map to a projective
space, a vector bundle gives rise to a rational map to a Grassmannian if it is
generically generated by its global sections. In this article, we shall describe
some results for which vector bundles play such roles. They are obtained from an
attempt to generalize Brill-Noether theory of special divisors, reviewed in Section
2, to vector bundles. Our main subject is rank 2 vector bundles with canonical
determinant on a curve C with as many global sections as possible: especially
their moduli and the Grassmannian embeddings of C by them (Section 4).

1 Line bundles

Let X be a smooth algebraic variety over the complex number field C. We
consider the set of isomorphism classes of line bundles, or invertible sheaves, on
X. This set enjoys two good properties, neither of which holds anymore for vector
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bundles of higher rank. One is that it has a natural algebraic structure as a moduli
space without any modification. The other is that it becomes a (commutative)
group by the tensor product. In fact, the isomorphism classes are parametrized
by the first cohomology group H1(O∗X) with coefficient in the (multiplicative)
sheaf of nowhere vanishing holomorphic functions. H1(O∗X) endowed with the
natural algebraic structure is called the Picard variety and denoted by Pic X.
Let

· · · −→ H1(X,Z) −→ H1(OX) −→ H1(O∗X)
δ−→ H2(X,Z) −→ · · ·(1.1)

be the long exact sequence derived from the exponential exact sequence

0 −→ Z
2πi−→ OX

exp−→ O∗X −→ 1(1.2)

of sheaves on X. The connecting homomorphism δ associates the first Chern
class c1(L) for each line bundle [L] ∈ H1(O∗X). For example, if X is a curve,
then δ(L) is the degree of L under the natural identification H2(X,Z) ' Z. By
(1.1), the neutral component Pic 0X of Pic X is isomorphic to the quotient group
H1(OX)/H1(X,Z), which is an abelian variety if X is a projective variety.

Let C be a curve, or a compact Riemann surface, of genus g. The Riemann-
Roch theorem {

χ(L) := h0(L)− h1(L) = deg L + 1− g
H1(L) ' H0(KCL−1)∨,

(1.3)

is most fundamental for its study. The latter isomorphism is functorial in L and
referred as the Serre duality. By (1.1), Pic C is the disjoint union of Pic dC, d ∈ Z,
where Pic dC is the set of isomorphism classes of line bundles of degree d. By
(1.3), the number h0(L) of linearly independent global sections is constant on
Pic dC unless 0 ≤ d ≤ 2g − 2 = deg KC . Conversely, when 0 ≤ d ≤ 2g − 2,
h0(L) is equal to d + 1 − g on a non-empty Zariski open subset of Pic dC, but
not constant since there exists a special line bundle, i.e., a line bundle L with
h0(L)h1(L) 6= 0, of degree d. Pic dC is stratified by h0(L). We set

W r
d (C) = {[L]|h0(L) ≥ r + 1} ⊂ Pic dC,

which is closed in the Zariski topology. The case (d, r) = (g − 1, 0) is most
important. W 0

g−1 is a divisor and usually denoted by Θ. The self intersection
number (Θg) is equal to g!, that is, Θ is a principal polarization of Pic g−1C. This
principally polarized abelian variety (Pic g−1C, Θ) is called the Jacobian of C.

Often the isomorphism class of C is recovered from the variety W r
d (C) of

special line bundles. The case of theta divisor Θ is classical:

Theorem 1.4 (Torelli) Two curves are isomorphic to each other if their Jaco-
bians are so.
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We refer to [13] for various approaches to this important result. Let C be a
non-hyperelliptic curve of genus 5. Then W 1

4 (C) is a curve of genus 11. (If C is
trigonal or W 1

4 (C) contains a line bundle with L2 ' KC , then W 1
4 (C) is singular.

But still the theorem holds true.)
Another example is

Theorem 1.5 The Jacobian of C is isomorphic to the Prym variety of (W 1
4 (C), σ),

where σ is the involution of Pic 4C defined by σ[L] = [KCL−1].

See [2] for the proof in the case C is a complete intersection of three quadrics in
P5.

Another feature of special line bundles is their relation with projective em-
beddings. If a line bundle L is generated by its global sections, then we obtain a
morphism

Φ|L| : C −→ P∗H0(L),

where P∗H0(L) is the projectivization of the dual vector space of H0(L). The
most interesting case is KC , the canonical line bundle, which appears in (1.3).
By the Riemann-Roch theorem, KC is generated by global sections, and Φ|K| :
C −→ P∗H0(KC) = Pg−1 is an embedding unles C is hyperelliptic. The image
C2g−2 ⊂ Pg−1 of Φ|K| is called the canonical model of C. The following is a
classical example:

Theorem 1.6 (Enriques-Petri) The canonical model C2g−2 ⊂ Pg−1 is an in-
tersection of quadrics if and only if W 1

3 (C) = W 2
5 (C) = ∅.

We refer to [1] and [6] for further results of this kind. The latter discusses also
an interesting use of vector bundles which we do not treat here.

2 Brill-Noether theory

We study W r
d (C) more closely. First we note that it is not only a subset but a

subscheme of Pic C. Take distinct points P1, · · · , PN of C and put D =
∑N

i=1 Pi.
We choose N sufficiently large so that H1(L(D)) vanishes for every [L] ∈ Pic dC.
The exact sequence

0 −→ L −→ L(D)
res−→

N⊕
i=1

L(D)|Pi
−→ 0(2.1)

of sheaves on C induces the exact sequence

0 −→ H0(L) −→ H0(L(D))
H0(res)−→

N⊕
i=1

H0(L(D)|Pi
) −→ H1(L) −→ 0(2.2)
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of vector spaces. There exists a homomorphism R : E −→ F between two
vector bundles E and F on Pic dC whose fibre R[L] at [L] is H0(res) for every
[L] ∈ Pic dC (these vector bundles are the direct images of certain sheaves on
C × Pic C). The difference in rank between E and F does not depend on D: we
have

r(F)− r(E) = N − h0(L(D)) = g − 1− d

by (1.3). The following statement is easy to verify:

Lemma 2.3 Let E and F be finite dimensional vector spaces, c a positive integer
and set W = {f ∈ Hom (E, F )| dim Ker f ≥ c}. Then:

1) W is a closed subvariety of codimension max{0, c(c+δ)} in the affine space
Hom (E, F ), where δ = dim F − dim E, and

2) if dim Ker f = c, then W is smooth at the point f and the normal space
NW/Hom ,f is isomorphic to Hom (Ker f, Coke f).

Since W r
d (C) is

{α ∈ Pic dC| dim Ker Rα ≥ r + 1},

it is a closed subscheme of Pic dC and its codimension is at most (r+1)(g+r−d)
by the lemma. It follows that

dim W r
d (C) ≥ g − (r + 1)(g + r − d).(2.4)

For a line bundle L on C, we put ρ(L) = g − h0(L)h1(L) and call it the Brill-
Noether number. When [L] ∈ W r

d (C) and h0(L) = r + 1, then ρ(L) is equal to
the right hand side of the above inequality. Since the tangent space of PicC
is isomorphic to H1(OC) by (1.1), the Zariski tangent space of W r

d (C) at [L] is
the kernel of the tangential map H1(OC) −→ Hom (H0(L), H1(L)) by (2.2) and
Lemma 2.3(2).

Now we describe the Zariski tangent space more directly. Let

τL : H1(OC) −→ Hom (H0(L), H1(L))

be the linear map induced by the cup product H1(OC)×H0(L) −→ H1(L). By
the Serre duality (1.3), the dual of τL is the multiplication map

H0(L)⊗H0(KCL−1) −→ H0(KC),(2.5)

called the Petri map.

Proposition 2.6 Assume that [L] ∈ W r
d (C) and h0(L) = r + 1. Then:
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1) the Zariski tangent space of W r
d (C) at [L] is isomorphic to Ker τL,

2) dim Ker τL ≥ dim[L] W
r
d (C) ≥ ρ(L), and

3) the following three conditions are equivalent to each other:
i) W r

d (C) is smooth and of dimension ρ(L) at [L],
ii) τL is surjective, and
iii) the Petri map (2.5) is injective,

Proof. Let α = {aij} ∈ H1(O∗C) be the cohomology class corresponding to L,
that is, aij ∈ OUi∩Uj

are the transition functions of L for a suitable open covering
{Ui} of C. Let ε be the dual number, i.e., ε 6= 0 but ε2 = 0. A first order
infinitesimal deformation L̃ of L corresponds to a cohomology class α̃ = {ãij} ∈
H1(OC [ε]∗) whose reduction modulo ε is α. α̃ is of the form {aij(1 + bijε)} for
β = {bij} ∈ H1(OC). Let h ∈ H0(L) be a global section of L. h is a collection
{hi} of hi ∈ OUi

such that hi = aijhj. The differences bijhjε of hi and ãijhj form a
1-cocycle, whose cohomology class is the cup product (β∪h)ε. Hence h extends to
a global section of L̃ if and only if β∪h = 0 in H1(L). Therefore, all global sections
of L extend if and only if the cup product map ∪β : H0(L) −→ H1(L) is zero,
which shows (1). Part (2) follows from (1) and (2.4). Part (3) is straightforward
from (2). ¤

Let ρ be the right hand side of (2.4). We refer to [1] for the following important
results:

Theorem 2.7 (Kempf Kleiman-Laksov; Fulton-Lazarsfeld) .

(Existence) W r
d (C) 6= ∅ if ρ ≥ 0.

(Connectedness) W r
d (C) is connected if ρ > 0.

LetMg be the moduli space of curves of genus g.

Theorem 2.8 (Gieseker [5], Lazarsfeld [7]) If [C] ∈Mg is general, the Petri
map (2.5) is injective for every (special) line bundle L on C.

In particular, W r
d (C) is of dimension ρ if ρ is nonnegative, and empty otherwise.

Thus the estimate (2.4) is best possible for the generic curve. When ρ = 0,
the number of W r

d (C) is finite and was first computed by Castelnuovo. Let
G(a, a+b) be the Grassmannian of a-dimensional subspaces of Ca+b and G(a, a+
b) ⊂ P∗

∧a Ca+b its Plücker embedding. The following is especially interesting
(cf. (4.15)):

Theorem 2.9 If [C] ∈ Mg is general and ρ = 0, then the number of W r
d (C) is

equal to the degree of the g-dimensional Grassmannian

G(a, a + b) ⊂ P∗
a∧

Ca+b,

where a = r + 1 and b = g + r − d.
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In fact, both #W r
d (C) and deg G(a, a + b) are equal to

g!
∏

1≤i≤a<j≤a+b

(j − i)−1.

3 Vector bundles on a curve

Let X be a smooth complete algebraic variety (over C). By OX , we mean either
the sheaf of holomorphic functions in the usual topology or the sheaf of regular
functions in the Zariski topology. In the study of vector bundles, this is allowed
by virtue of the GAGA principle, which says that the two categories of analytic
and algebraic coherent sheaves on X are equivalent to each other. By a vector
bundle E on X, we mean a locally free OX-module. There exists an open covering
{Ui} of X such that E|Ui

' O⊕r
Ui

for every i. This positive integer r is called the
rank of E. The highest exterior product

∧r E is a line bundle on X, which is
denoted by det E.

Assume that E is generated by global sections, that is, the evaluation homo-
morphism

evE : H0(E)⊗OX −→ E

is surjective. Then every fibre Ex of E is an r-dimensional quotient space of
H0(E). Hence we obtain a map Φ|E| : X −→ G(H0(E), r) to the Grassmannian
of r-dimensional quotient spaces of H0(E). This map is holomorphic since E is
so. The exterior product

r∧
evE :

r∧
H0(E)⊗OX −→

r∧
E

of evE induces a linear map

r∧
H0(E) −→ H0(

r∧
E),(3.1)

which we denote by λE. The exterior product
∧r Ex of fibres Ex are quotient

spaces of both H0(
∧r E) and

∧r H0(E). The former determines a point in the
projective space P∗H0(

∧r E) and the latter the Plücker coordinate of [Ex] ∈
G(H0(E), r). Hence we obtain the following commutative diagram:

X
Φ|E|−→ G(H0(E), r)

Φ|Vr E| ↓ ∩ Plücker embedding

P∗H0(
∧r E)

P∗λE· · · → P∗ ∧r H0(E).

(3.2)

Thus λE connects the projective and Grassmannian embeddings. This map is
important in other consideration, too. See (3.5), (4.7) and (4.15).
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Let Aij ∈ GL(r,OUi∩Uj
) be the transition matrix function of a vector bun-

dle E, that is, the matrix expression of the composite of the two isomorphisms
O⊕r

Uj
' E|Uj

and E|Ui
' O⊕r

Ui
over Ui ∩ Uj. The collection {Aij} of all such

(matrix) functions is a 1-cocycle with coefficient in the sheaf GL(r,OX) of non-
commutative groups. Hence the rank r vector bundles on X are parametrized
by the first cohomology set H1(GL(r,OX)). The determinant homomorphism
det : GL(r,OX) −→ O∗X induces the map

H1(det) : H1(GL(r,OX)) −→ H1(O∗X) = Pic X,

whose fibre at [L] ∈ Pic X is denoted by BX(r, L).

Moduli Problem. a) Give a natural algebraic structure to a suitable open
subset of BX(r, L) and construct its geometric compactification.

b) What properties of (X,L) are inherited by the moduli space constructed
in (a)?

The fibre BX(r, L) does not have a nice description such as Pic X in (1.1).
But its Zariski tangent space is easy to identify. Let E be a vector bundle and
{Aij} the one-cocycle of transition functions. A one-cochain {Aij(Ir +Bijε)} with
values in GL(r,OX [ε]) is a cocycle if and only if

A−1
jk BijAjk + Bjk = Bik

holds on Ui∩Uj ∩Uk for every i, j and k, where ε is the dual number. This is the
same as saying that {Bij} is a one-cocycle with values in the sheaf EndE ' E∨⊗E
of (local) endomorphisms of E. By this correspondence, the first order infinites-
imal deformations of E are parametrized by the cohomology group H1(EndE).
Since

det(Aij(Ir + Bijε)) = (det Aij)(Ir + tr Bijε),

the Zariski tangent space of BX(r, L) is isomorphic to the kernel of

H1(tr ) : H1(EndE) −→ H1(OX),

which is the tangential map of H1(det). Let sl(E) be the sheaf of traceless
endomorphisms of E. Then E\d E is the direct sum of two vector bundles sl(E)
and OX . Therefore, the Zariski tangent space is isomorphic to H1(sl(E)).

Let C be a curve of genus g. The Riemann-Roch theorem (1.3) is generalized
to {

χ(E) := h0(E)− h1(E) = deg E + r(1− g)
H1(E) ' H0(KCE∨)∨ (Serre duality),

(3.3)

where deg E is the degree of det E. For simplicity, we restrict ourselves to the
case r = 2. The answer to part (a) of the moduli problem is the notion of stability:
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Definition 3.4 (Mumford [11]) A rank-two vector bundle E on C is stable if
deg ξ < 1

2
deg E for every line subbundle ξ of E. It is semi-stable if deg ξ ≤ 1

2
deg E

for every ξ.

Let L be a line bundle on C and E a member of BC(2, L). Fix an ample line
bundle OC(1) on C. Then E(n) belongs to BC(2, L(2n)) and we obtain the linear
map

λE(n) :
2∧

H0(E(n)) −→ H0(L(2n))(3.5)

as in (3.1). The above condition deg ξ < 1
2
deg E is equivalent to the asymp-

totic stability of the linear map λE(n) with respect to the action of the special
linear group SL(H0(E(n))) ([4]). By the geometric invariant theory, the (coarse)
moduli space MC(2, L) of stable two-bundles with determinant L exists as a quasi-
projective algebraic variety. Moreover, it becomes a projective algebraic variety
MC(2, L) by adding certain equivalence classes of semi-stable two-bundles.

Every line bundle M induces an isomorphism MC(2, L) 'MC(2, LM2), E 7→
E ⊗M . Hence there are only two isomorphism classes of the moduli space of
two-bundles: MC(2, odd) and MC(2, even). Both are smooth and of dimension
3g − 3 = dim H1(sl(E)). Since every semi-stable two-bundle of odd degree is
stable, MC(2, odd) is a projective variety. Among many known global properties
of MC(2, odd), we state two. One is

Theorem 3.6 (Ramanan [19]) MC(2, odd) is a Fano manifold of index two.

A smooth projective variety X is called a Fano manifold if the anti-canonical
line bundle K−1

X = det TX is ample. The largest integer which divides c1(X) in
H2(X,Z) is called the index. In the case of MC(2, odd), the Picard group is free
cyclic and the anti-canonical line bundle is the square of the positive generator.

Example (Desale and Ramanan [21], Newstead[17]) Let C be a curve of genus
2 defined by the equation y2 = (x − λ1)(x − λ2) · · · (x − λ6). Then the moduli
space MC(2, odd) is the complete intersection

6∑
i=1

x2
i =

6∑
i=1

λix
2
i = 0

in P5. The anti-canonical line bundle is the square of the restriction of tautological
line bundle.

The other result we cite is a Torelli type theorem:
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Theorem 3.7 (Mumford and Newstead [15]) The intermediate Jacobian

H2(Ω1
M)/H3(M,Z)

of the moduli space MC(2, odd) is isomorphic to the Jacobian of C as polarized
abelian variety.

4 Toward a Brill-Noether type theory for two-

bundles

MC(2,OC) and MC(2, KC) are two natural representatives of MC(2, even). The
following is fundamental for the former:

Theorem 4.1 (Narasimhan and Seshadri [16], Donaldson [3]) There is a
natural bijection between the following two sets:

1) MC(2,OC), the set of isomorphism classes of stable two-bundles with trivial
determinant, and

2) Hom irr(π1(C), SU(2))/SU(2), the set of conjugacy classes of irreducible
two-dimensional special unitary representations of the fundamental group of C.

We take MC(2, K) to develop a Brill-Noether type theory. See [20] and [18] for
another direction of the development. The moduli space MC(2, K) of stable two-
bundles with canonical determinant is stratified by the number h0(E) of linearly
independent global sections. As an analogy of W r

d , we set

MC(2, K, n) = {[E]|h0(E) ≥ n + 2} ⊂MC(2, K).

We denote by MC(2, K, n) the union of MC(2, K, n) and the set of isomorphism

classes of semi-stable vector bundles [ξ⊕KCξ−1] ∈MC(2, K) with [ξ] ∈ W
n/2
g−1(C).

By the same argument as in Section 2, MC(2, K, n) is a closed subscheme of
MC(2, K). (The universal family does not exist on C ×MC(2, K), but this does
not cause a problem for the study of such local properties of the moduli.) A
similar consideration gives the estimate dimMC(2, K, n) ≥ 3g−3− (n+2)2. But
this estimate is not sharp. The proper one is

Theorem 4.2 dim MC(2, K, n) ≥ 3g − 3− 1
2
(n + 2)(n + 3).

Before giving the proof, we recall some notion of symplectic geometry. Let W
be a 2ν-dimensional vector space with a non-degenerate skew-symmetric bilinear
form < , >: W ×W −→ C. A ν-dimensional subspace V of W is a Lagrangian
of W if the bilinear form < , > is identically zero on V × V . We denote the set
of Lagrangians by L(W), which is a subset of the ν2-dimensional Grassmannian
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G(ν, W ). Fix a Lagrangian U∞ and set Z = {[U ]|U ∩U∞ = 0} in G(ν, W ). When
[U0] ∈ Z is fixed, Z is a ν2-dimensional affine space by the bijection

Hom (U0, U∞) 3 f 7→ Γf ∈ Z,(4.3)

where Γf ⊂ U0 × U∞ is the graph of f . Assume that U0 is also a Lagrangian.
Then U0 and U∞ are each other’s dual by the pairing < , >. Γf is a Lagrangian
of W if and only if f ∈ Hom (U0, U∞) ' U∞ ⊗ U∞ is symmetric. Hence L(W) is
a smooth subvariety of dimension 1

2
ν(ν + 1) in the Grassmannian G(ν, W ).

Proposition 4.4 Fix a Lagrangian [V0] ∈ L(W) and let c be a positive integer.
Then the Schubert subvariety

L(W)c = {[V ] ∈ L(W)| dimV ∩ V′ ≥ c}
is of codimension 1

2
c(c + 1) in L(W).

Proof. For [V ] ∈ L(W), choose a Lagrangian V∞ so that V ∩ V∞ = V0 ∩ V∞ = 0.
Then V corresponds to a symmetric matrix of size ν via (4.3) and dim V ∩ V0 is
equal to the co-rank of the symmetric matrix. Hence we have our assertion. ¤

Proof of Theorem 4.2: Let E be a two-bundle with canonical determinant and
D an effective divisor on C. Since E is self-Serre adjoint, i.e., E∨KC ' E, the
two vector spaces H0(E) and H1(E) are each other’s dual by (3.3). Similarly, so
are H0(E(−D)) and H1(E(D)). Hence, by the Riemann-Roch theorem (3.3), we
have

h0(E(D))− h0(E(−D)) = χ(E(D)) = 2N,(4.5)

where N = deg D. Now we denote the quotient sheaf E(D)/E(−D) by A, which
is supported by a finite set and has length 4N . We consider the composite of the
pairing A × A −→ KC(2D)/KC , induced by

∧2 E ' KC , and the residue map
r : KC(2D)/KC −→ C given by

r(ω) =
∑

P∈Supp D

ResP ω.

This induces a non-degenrate skew-symmetric pairing < , > on the vector space
H0(A) of dimension 4N . Since r is identically zero on the image of H0(KC(2D))
(by the Residue Theorem), so is < , > on the image V of H0(E(D)) −→ H0(A).
By the exact sequence

0 −→ E(−D) −→ E(D) −→ A −→ 0,

the image V is isomorphic to the quotient space H0(E(D))/H0(E(−D)). Hence
V is a Lagrangian of the symplectic vector space H0(A) by (4.5). It is obvi-
ous that V0 = H0(E/E(−D)) is also a Lagrangian. Now we choose D so that
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H0(E(−D)) = 0 for every [E] ∈ MC(2, K). Then H0(E) is the intersection of
two Lagrangians V = H0(E(D)) and V0 of H0(A). Hence we have our inequality
by the above proposition. ¤

Remark 4.6 This proof works also for a vector bundle E of even rank with a
non-degenerate skew-symmetric pairing E×E −→ KC . The same trick was used
in [12] to show the parity preservation of h0(E) when E has a non-degenerate
quadratic form q : E −→ KC .

Let E be a rank-two vector bundle on C. For f ∈ Hom (H0(E), H1(E)), let
T (f) be the linear map

2∧
H0(E) 3 h1 ∧ h2 7→ h1

∪f(h2)− h2
∪f(h1) ∈ H1(

2∧
E),

where ∪ : H0(E)×H1(E) −→ H1(
∧2 E) is the cup product. It is easy to check

that the following diagram is commutative:

H1(EndE) −→ Hom (H0(E), H1(E))
H1(tr ) ↓ ↓ T

H1(OC) −→ Hom (
∧2 H0(E), H1(

∧2 E)),
(4.7)

where the lower horizontal linear map is the composite of

τdet E : H1(OC) −→ Hom (H0(
2∧

E), H1(
2∧

E)),

defined in Section 2, and Hom (λE, H1(
∧2 E)).

Theorem 4.8 Assume that [E] ∈MC(2, K, n) and h0(E) = n+2. Then we have
(1) the Zariski cotangent space of MC(2, K, n) at [E] is isomorphic to the

cokernel of S2H0(E) −→ H0(S2E),
(2) dim Coke [S2H0(E) −→ H0(S2E)] ≥ dim[E] MC(2, K, n) ≥ σ(E), and
(3) MC(2, K, n) is smooth and of dimension σ(E) at [E] if and only if the

map S2H0(E) −→ H0(S2E) is injective.

Proof. As we saw in Section 3, the tangent space of MC(2, K) at [E] is the kernel
H1(sl(E)) of the trace map H1(E\d E) −→ H∞(OC). Let Ẽ be a first-order
infinitesimal deformation of E corresponding to B = {Bij} ∈ H1(EndE). By the
same argument as in the proof of Proposition 2.6, a global section h ∈ H0(E)
extends that of Ẽ if and only if the cup product h∪B ∈ H1(E) vanishes. Hence,
all global sections of E extend if and only if the cup product map ∪B : H0(E) −→
H1(E) is zero. Therefore, the Zariski tangent space of MC(2, K, n) is the kernel
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of H1(sl(E)) −→ Ker T ⊂ Hom (H0(E), H1(E)). Since
∧2 E ' KC , the dual of

(4.7) is reduced to the commutative diagram

H0(E ⊗ E) ←− H0(E)⊗H0(E)
↑ ↑

H0(
∧2 E)

λE←− ∧2 H0(E),

by the Serre duality (3.3), which shows (1). Part (2) follows from (1) and Theorem
4.2. Part (3) is straightforward from (1) and (2). ¤

Remark 4.9 The obstructions for MC(2, K, n) to be smooth at [E] lie in the
cokernel of H0(S2E)∨ −→ S2H0(E)∨. This fact gives another proof of Theorem
4.2 and 4.8.

Let σ be the right hand side of Theorem 4.2. Theorem 2.7, 2.8 and 2.9 lead
us to the following problems:

Problem 4.10 (Existence) Is MC(2, K, n) non-empty when σ ≥ 0?

(Connectedness) Is MC(2, K, n) connected when σ > 0?

Problem 4.11 Assume that [C] ∈M} is general.
(1) Is S2H0(E) −→ H0(S2E) injective for every E ∈MC(2, K)?
(2) Is MC(2, K, n) of dimension σ when σ ≥ 0?
(3) Compute the number of MC(2, K, n) when σ = 0. More generally, describe

the cohomology class of MC(2, K, n) in H∗(MC(2, K),Z) when σ > 0.

Another direction is

Problem 4.12 Study the Grassmannian map associated with a member of
MC(2, K, n), and its relation with the canonical model C2g−2 ⊂ Pg−1.

We give some sample results in these directions. They are closely related to
our classification of Fano threefolds via vector bundles [8]. We first consider the
three cases (g, n + 2) = (7, 5), (9, 6) and (11, 7). The Brill-Noether number σ is
equal to 3, 3 and 2, respectively.

Theorem 4.13 Let C be a curve of genus 7 with W 1
4 (C) = ∅. Then:

1) MC(2, K, 3) is smooth, complete and of dimension 3;
2) MC(2, K, 3) is a Fano threefold of genus 7, i.e., (−KM)3 = 12, and with

Picard number one; and
3) the intermediate Jacobian H2(Ω1

M)/H3(M,Z) of MC(2, K, 3) is isomorphic
to the Jacobian of C as polarized abelian variety.

Conversely, every smooth Fano threefold of genus 7 with Picard number one
is obtained in this manner from a non-tetragonal curve of genus 7.
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Similarly, MC(2, K, 4) is a quartic threefolds in P4 with 21 singular points at the
boundary if C is a general curve of genus 9, and MC(2, K, 5) is a (polarized) K3
surface of genus 11 if C is a general curve of genus 11.

In the case (g, n + 2) = (8, 6), the number σ is equal to zero.

Theorem 4.14 (Mukai [9], [10]) If C is a curve of genus 8 with W 2
7 (C) = ∅,

then MC(2, K, 4) consists of the unique isomorphism class of stable two-bundles
E. The linear map λE in (3.1) is surjective and the following diagram, essentially
(3.2), is Cartesian:

C
Φ|E|−→ G(H0(E), 2)

canonical embedding ∩ ∩ Plücker embedding

P∗H0(KC)
P∗λE−→ P∗ ∧2 H0(E).

In particular, C is a complete linear section of the 8-dimensional Grassmannian,
that is,

[C ⊂ P7] = [G(6, 2) ⊂ P14] ∩H1 ∩ · · · ∩H7

for seven hyperplanes H1, . . . , H7.

Let C and E be as in the theorem and consider the intersection of G(2, H0(E))
and P∗Ker λE, where G(2, H0(E)) is the Grassmannian of two-dimensional sub-
spaces of H0(E) embedded into P∗

∧2 H0(E) by the Plücker coordinates. If a
subspace [U ] ∈ G(2, H0(E)) belongs to P∗Ker λE, then the evaluation homo-
morphism evU : U ⊗ OC −→ E is not injective and its kernel is a line bundle.
Moreover, the inverse of Ker evU belongs to W 1

5 (C), and if C is general, the map

G(2, H0(E)) ∩P∗Ker λE −→W 1
5 (C), [U ] 7→ (Ker evU)−1(4.15)

is an isomorphism between two reduced 0-dimensional schemes, which shows
Theorem 2.9 in the case (a, b) = (2, 4). This idea leads us to a computation-free
proof of Theorem 2.9, which we will discuss elsewhere.
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