Abstracts

Birational automorphism group of the Jacobian of a general Kummer quartic

Shigeru Mukai

The lattice $II_{1,17}(2^{+6})$ is reflective and its orthogonal group has a fundamental domain with 896+64 facets by Borcherds [4, §12]. This is the Picard lattice (with respect to the Beauville form) of the Jacobian symplectic 6-fold

$$\operatorname{Jac}^2|h| := \prod_{D \in |h|} \operatorname{Jac}^2 D$$

of a very general Kummer quartic surface $(S,h) \subset (\mathbb{P}^3, \mathcal{O}(1))$.

Main Theorem The birational automorphism group of $\operatorname{Jac}^2|h|$ is generated by 864 modified reflections with respect to the above 896 - 32 facets and a group of order 2^{10} whose center is Rapagnetta's involution ([13]).

1. LATTICES

Let (L, \langle , \rangle) be a *lattice*, i.e., a free \mathbb{Z} -module with a non-degenerate symmetric bilinear form $\langle , \rangle \colon L \times L \to \mathbb{Z}$.

1.1. **Reflective lattices.** We consider the hyperbolic case, namely, the signature is (1, *) and the orthogonal group $O^+(L)$ of L preserving a positive cone C^+ . The orthogonal transformation

$$r_m: x \to x - \frac{2\langle x, m \rangle}{\langle m^2 \rangle} m$$

defined for a primitive element $m \in L$ with $\langle m^2 \rangle < 0$ is called a *reflection of* L if it preserves L, i.e., $r_m(L) \subset L$. $m \in L$ (or -m) is called the *center* of the reflection. A lattice L is called *reflective* if the subgroup generated by all reflections of L is of finite index in $O^+(L)$.

By Esselmann [7], reflective lattices exist only in the range rank $L \leq 22$. For example, $U + D_{20}, U + D_{18}, U + D_{17}, \cdots$ are reflective lattices belonging to the Conway-Vinberg chain ([5] = [6, Chap. 28]).

1.2. Notations and convention. Throughout this abstract, we work over the complex number field \mathbb{C} .

• A_n, D_n and $E_{6,7,8}$ denote the negative definite root lattices of ADE-type, generated by (-2)-vectors.

• U denotes the hyperbolic lattice $\begin{pmatrix} \mathbb{Z}^2, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{pmatrix}$ of rank two.

- $\operatorname{Disc}(L) := \operatorname{Coker}[L \to \operatorname{Hom}(L, \mathbb{Z})]$ (with $\mathbb{Q}/2\mathbb{Z}$ -valued quadratic form)
- $II_{a,b}(**)$ The genus of even lattices of signature (a, b) with discriminant type **. For example, $** = 2^{+2a}$ means that Disc(L) is a 2-elementary group of length 2a and the discriminant form is of even integral type ([15]).

• $G = L \bowtie R$ means the semi-direct product with normal subgroup L (in the left).

1.3. Kummer lattice. Let A be an abelian surface and $\operatorname{Km}(A)$ be its Kummer surface, i.e., the minimal resolution of the quotient $A/\pm 1_A$. The Picard lattice of $\operatorname{Km}(A)$ contains the lattice $16A_1$ as sub-lattice. The Kummer lattice **Kum** is the primitive hull of $16A_1$ in the Picard lattice. The isomorphism class of **Kum** does not depend on A. In fact, it is explicitly described by the Reed-Muller code [16, 8, 4], the binary code of length 16, minimal weight 8 and dimension 4. The code is generated by four words $c_1 = (000000001111111), c_2 = (000011100001111)$ $c_3 = (0011001100110011)$ and $c_4 = (01010101010101)$. Then we have,

Kum belongs to $II_{0,16}(2^{+6})$ and hence U +**Kum** belongs to $II_{1,17}(2^{+6})$. By the uniqueness theorem of indefinite lattices (Nikulin [15]), $II_{1,17}(2^{+2a})$ consists of the unique lattice. Hence we use U +**Kum** and $II_{1,17}(2^{+6})$ interchangeably.

2. Known geometric realization ($\rho = 18$)

For a = 0, 1, 2, the lattice $II_{1,17}(2^{+2a})$ is realized as the Picard lattice of a K3 surface S, and gives an explicit description of the automorphism group Aut(S).

- a = 0 (The unimodular lattice) $II_{1,17} \simeq U + E_8 + E_8$ is realized by an elliptic K3 surface with 2 reducible fibers of (Kodaira) type \tilde{E}_8 . In this case Aut(S) is finite (Vinberg [17]).
- a = 1 $II_{1,17}(2^{+2}) \simeq U + D_{16}$. S is the minimal resolution of the double $\mathbb{P}^1 \times \mathbb{P}^1$ studied by Horikawa, Dolgachev, Barth-Peters, M.-Namikawa etc. in 80's. The automorphism group Aut(S) is virtually \mathbb{Z} .
- $a = 2 II_{1,17}(2^{+4}) \simeq U + D_8 + D_8$. S is the Kummer surface $\text{Km}(E_1 \times E_2)$ of product type. The orthogonal group $O^+(II_{1,17}(2^{+4}))$ is the semi-direct product

$$\langle 24 \ (-2) - \text{reflections}, 24 \ (-4) - \text{reflections} \rangle \bowtie (2^4 \cdot \mathfrak{S}_{4,4}).$$

The centers of (-2)-reflections are represented by \mathbb{P}^1 's and all (-4)-reflections are geometrically realized by involutions after suitable modification.

Theorem(Keum-Kondo [11]) The automorphism group of $\text{Km}(E_1 \times E_2)$ for general elliptic cuves E_1, E_2 is the semi-direct product

 $\langle 24 \text{ modified } (-4) - \text{reflections} \rangle \bowtie 2^4.$

a = 3 The next is our lattice $II_{1,17}(2^{+6}) \simeq U + \mathbf{Kum}$ but no more realized as Picard lattice of a K3 surface S since the sum of the rank and the length of discriminant group exceeds 22, the second Betti number of S.

3. MAIN THEOREM

... our lattice $U + \mathbf{Kum}$ is realized as the Picard lattice of a holomorphic symplectic 6-fold associated with a general Kummer quartic surface. More precisely, let $\overline{S} \subset \mathbb{P}^3$ be a Kummer quartic surface of a general curve C of genus 2. \overline{S} is the image of the Jacobian surface Jac C by the linear system $|2\Theta|$. The minimal resolution S is the Kummer surface of Jac C. We denote the hyperplane section class of $S \to \overline{S} \subset \mathbb{P}^3$ by h. Consider the (compactified) Jacobian fibration $\operatorname{Jac}^d |h| \to |h|$, whose fiber at $[D] \in |h|$ is $\operatorname{Jac}^d D$. In terms of standard notation of moduli of sheaves, $\operatorname{Jac}^d |h|$ is $M_S(0, h, d-2)$. By general theory, $\operatorname{Jac}^d |h|$ is a holomorphic symplectic 6-fold of deformation type $K3^{[3]}$. The birational class does not depend on d but only on its parity. When d is odd, $\operatorname{Jac}^d |h|$ is birationally equivalent to the Hilbert square $\operatorname{Km}(C)^{[2]}$.

Now we restrict ourselves to the even case, i.e., the symplectic 6-fold $\operatorname{Jac}^2 |h|$. By general theory again, its Picard lattice (with respect to the Beauville-Bogomolov-Fujiki form) is the orthogonal complement of (0, h, 0) in $U + \operatorname{Pic}(S)$. Since the orthogonal complement of h in $\operatorname{Pic}(S)$ is the Kummer lattice **Kum**, we have $(0, h, 0)^{\perp} \simeq U + \mathbf{Kum}$.

Theorem(Borcherds [4, p. 346]) The orthogonal group $O^+(II_{1,17}(2^{+6}))$ is the semi-direct product

 $\langle 64 \ (-2) - \text{reflections}, 896 \ (-4) - \text{reflections} \rangle \bowtie G.\mathfrak{A}_8,$

where G is the extended extra-special 2-group 2^{1+8} .2 of order 2^{10} .

The centers of all (-2)-reflections and 32(-4)-reflections are represented by effective divisors.

Main Theorem The birational automorphism group of $\operatorname{Jac}^2 |h|$ is the semidirect product

 $\langle 864 \mod (-4) - \text{reflections} \rangle \bowtie G,$

and the central involution of G is the Mongardi-Rapagnetta-Saccà involution.

4. Sketch of proof

The proof is similar to the case of $\text{Km}(E_1 \times E_2)$ in §2 and the case of general Jacobian Kummer surfaces in [12].

Firstly the centers of 64 (-2)-reflections are represented by effective irreducible divisors. 32 appear in the reducible fibers of the Lagrangian fibration $\operatorname{Jac}^2 |h| \rightarrow |h| \simeq \mathbb{P}^3$ in pairs (16 \tilde{A}_1). The remaining 32 appear in the dual fibration $\operatorname{Jac}^2 |\hat{h}| \rightarrow |\hat{h}| \simeq \mathbb{P}^{3,\vee}$ (another 16 \tilde{A}_1). (A Kummer quartic is self dual.)

The (in-)effectivity is subtle for the centers of 896 (-4)-reflections. The answer is that most of (-4)-centers are not but special 32 are represented by effective irreducible divisors!

We recall the general theory of MMP for $M_S(v)$ with v = (r, *, s) from Bayer-Macri [2] and Hassett-Tschinkel [9]. Divisorial contractions are classified into the following three types modulo flops:

- (BN) (-2)-contraction induced from a rigid (or spherical) object, e.g., $(-2)\mathbb{P}^1$ on S. BN stands for Brill-Noether.
- (HC) The minimal resolution $S^{[n]} \to S^{(n)}$ of a symmetric product is typical. In this typical case the diagonal divisor (with Beauville norm 2-2n) is contracted. HC stands for Hilbert-Chow.
- (LGU) The original one is the contraction from the moduli of Giesekser-semistable rank 2 sheaves to the moduli of Uhlenbeck-Yau compactification of μ -stable moduli. LGU stands for Li-Gieseker-Uhlenbeck.

In our case all 64 (-2)-divisors above are all (BN), and (HC) does not occur since v = (0, h, 0) has divisibility 2. (LGU) happens for 32 (-4)-centers in the following way:

We need a preparation on $\operatorname{Jac}^{0}|h|$ instead of $\operatorname{Jac}^{2}|h|$. Consider the difference divisor D - D in the abelian 3-fold $\operatorname{Jac}^{0}D$. Moving [D] over the linear system $|h| \simeq \mathbb{P}^{3}$, we obtain the difference divisor $\mathcal{D} - \mathcal{D}$ in $\operatorname{Jac}^{0}|h|$. We have a forgetful morphism $\mathcal{D} - \mathcal{D} \to S \times S$ by definition. Then this divisor $\mathcal{D} - \mathcal{D}$ is contracted to the 4-fold $S \times S$ by an extremal contraction of $\operatorname{Jac}^{0}|h|$ of (LGU)-type.

Now we return to $\operatorname{Jac}^2|h|$. Recall that the Kummer quartic $\overline{S} \subset \mathbb{P}^3$ has 16 tropes, that is, double conic plane sections. Let $t \subset S$ be the reduced part of one of them and consider the line bundle $\mathcal{O}_S(-t)$. Its tensor gives rise to an isomorphism from $\operatorname{Jac}^2|h|$ to $\operatorname{Jac}^0|h|$. Hence we have 16 divisorial contractions of (LGU)-type of $\operatorname{Jac}^2|h|$. We have another set of 16 divisorial contractions by duality, i.e., by changing h by \hat{h} . In total we obtain 32 contractible divisors with Beauville norm -4.

The remaining 864 (-4)-reflections, whose centers are ineffective, are realized by involutions after suitable modification, whose details we omit here.

5. Other realization

The realization of $U + \mathbf{Kum}$ in §3 is generalized to non-principally polarized abelian surface A of type (1, d). The twice polarization descends to a polarization h of degree 4d on the Kummer surface $S = \mathrm{Kum}(A)$. By the same computation as in §3, the Picard lattice of (4d + 2)-fold $M_S(0, h, 0)$ contains $U + \mathbf{Kum}$. In the case d = 2, $\mathrm{Kum}(A) \subset \mathbb{P}^5$ is described explicitly by Barth [1] (see also [8]). Hence $K3^{[5]}$ -type Jacobian symplectic 10-folds $\mathrm{Jac}^4|h| = M_S(0, h, 0)$ are also interesting.

 $U + \mathbf{Kum}$ seems also realized in the Picard lattice of symplectic manifolds of (deformation) type OG10. There are two candidates of *pseudo Kummer surfaces*:

- (A) 4-dimensional family of K3 surface \overline{S} of degree 6 in \mathbb{P}^4 with spatial Heawood configuration SH of 15 nodes and 15 twisted cubics, where SH is the configuration $(15_7 - 15_7)$ of 15 points and 15 planes in the projective space $\mathbb{P}^3(\mathbb{F}_2)$ over the binary field.
- (B) 4-dimensional family of double planes \overline{S} with branch the union of six lines (see e.g., [18], [16]). The minimal resolution S has 21 \mathbb{P}^1 's with $(15_2 6_5)$ configuration.

It is interesting to study the birational automorphism group of $S^{[OG]}$ of these K3 surfaces S. Here $S^{[OG]}$ denotes originally the minimal resolution of the moduli space $M_S(2, 0, -2)$ of semi-stable 2-bundles on S. But, more generally, it also denotes the minimal resolution of $M_S(2v)$ for v with $(v^2) = 2$. For example, (0, h, 0), h being the pull-back of a line, seems a natural choice for v in the case (B).

In the case (A), the *sum* of a twisted cubic counted twice and the seven nodes on it gives the hyperplane section class h of $\bar{S} \subset \mathbb{P}^4$. Furthermore we have 15 such divisors in |h|. This is a very natural analogy of 16 tropes of a Kummer quartic surface. This kind of degree 6 divisor $2R + N_1 + \cdots + N_7$ is observed recently in our study of parabolic version of the description of general polarized K3 surface of genus 13 in [10].

References

- W. Barth, Abelian surface with a (1,2)-polarization, Adv. Stud. Pure Math. 10(1987), 41– 84.
- [2] A. Bayer, and E. Macri, MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations, Invent. math. 198(2014), 505–590.
- [3] R. Borcherds, Automorphism groups of Lorentzian lattices, J. Algebra 111(1987), 133–153.
- [4] R. Borcherds, Reflection groups of Lorentzian lattices, Duke Math. J., 104(2000),319–366.
- [5] J.H. Conway and N.J.A. Sloane, *Leech roots and Vinberg groups*, Proc. Roy. Soc. London, A384(1983), 233–258. (Chap. 28 of [5])
- [6] J.H. Conway and N.J.A. Sloane, Sphere packings, lattices and groups, 3rd edition, Grundlehren der Mathematischen Wissenschaften 290, Springer-Verlag, New York 1999.
- [7] F. Esselmann, Über die maximale Dimension von Lorentz-Gittern mit coendlicher Spiegelungsgruppe, J. Number Th., 61(1996), 103–144.
- [8] A. Garbagnati and A. Sarti, Kummer surfaces and K3 surfaces with (Z/2Z)⁴ symplectic action, Rocky Mountain J. Math. 46(2016), 1141–1205.
- B. Hassett and Y. Tshinkel, Extremal rays and automorphisms of holomorphic symplectic varieties, in "K3 surfaces and their moduli", Progr. in Math., 2016, pp. 73-95.
- [10] A. Kanemitsu and S. Mukai, Polarized K3 surfaces of genus thirteen and curves of genus three, arXiv:2310.02078.
- [11] J. Keum and S. Kondo, The automorphism groups of Kummer surfaces associated with the product of two elliptic curves, Trans. AMS., 353(2000), 1469–1487.
- [12] S. Kondo, The automorphism group of a generic Jacobian Kummer surface, J. Alg. Geom. 7(1998), 589–609.
- [13] G. Mongardi, A. Rapagnetta and G. Saccà, The Hodge diamond of O'Grady's sixdimensional example, Comp. Math. 154(2018), 984–1013.
- [14] V. Nikulin, On Kummer surfaces, Math. USSR Izv., 9(1975), 261-275.
- [15] V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR Izv., 14(1980), 105–167.
- [16] K. Utsumi, Weierstrass equations for Jacobian fibrations on a certain K3 surface. Hiroshima Math. J. 42(2012), 353–383.
- [17] E. B. Vinberg, Some arithmetic discrete groups in Lobachevskii spaces, in "Discrete subgroups of Lie groups and applications to Moduli", Tata–Oxford,1975, 323–348.
- [18] M. Yoshida, Hypergeometric functions, my love. Modular interpretations of configuration spaces, Aspects of Mathematics, E32. Friedr. Vieweg & Sohn, Braunschweig, 1997.