Counterexample to Hilbert's fourteenth problem for the 3-dimensional additive group

Shigeru MUKAI *

An *m*-dimensional linear representation of a group induces an action on the polynomial ring $\mathbf{C}[z_1, \ldots, z_m]$ of *m* variables. This is called a *linear action* on the polynomial ring. In 1890, Hilbert[2] showed that the invariant ring was finitely generated for classical representations of the special linear groups. The following is known as his fourteenth problem:

Problem 1 Is the invariant ring $\mathbf{C}[z_1, \ldots, z_m]^G$ of a linear action of an algebraic group G finitely generated?

The answer is affirmative for the additive algebraic group \mathbf{G}_a (Weitzenböck [11], [9]). In 1958, Nagata[5] considered the standard unipotent linear action

$$(t_1, \dots, t_n) \in \mathbf{C}^n \curvearrowright \mathbf{C}[x_1, \dots, x_n, y_1, \dots, y_n] =: S$$
(1)
$$\begin{cases} x_i \mapsto x_i \\ y_i \mapsto y_i + t_i x_i \end{cases}, \quad 1 \le i \le n, \end{cases}$$

of \mathbb{C}^n on the polynomial ring S of 2n variables and showed that the invariant ring S^G with respect to a general linear subspace $G \subset \mathbb{C}^n$ of codimension 3 was not finitely generated for n = 16. In this article, we shall prove the following:

Theorem The invariant ring S^G of (1) with respect to a general linear subspace $G \subset \mathbf{C}^n$ of codimension r is not finitely generated if

$$\frac{1}{2} + \frac{1}{r} + \frac{1}{n-r} \le 1.$$
(2)

In other words, S^G is not finitely generated if dim $G = s \ge 3$ and if $n \ge s^2/(s-2)$. So the answer to Problem 1 is negative for \mathbf{G}_a^3 . But the following part is still open:

^{*}Supported in part by the JSPS Grant-in-Aid for Scientific Research (A) (2) 10304001.

Problem 2 Is the invariant ring $\mathbf{C}[z_1, \ldots, z_m]^G$ of a linear action of the 2-dimensional additive group $G = \mathbf{G}_a \times \mathbf{G}_a$ finitely generated?

See Roberts [8] for non-linear actions.

Our proof of the theorem is based on the fact that the invariant ring S^G is a certain Rees algebra (§1). In geometric term, the Rees algebra is isomorphic to the *total coordinate ring* $\mathcal{TC}(X)$ of the blow-up X of the projective space \mathbf{P}^{r-1} at n points (§2). This ring $\mathcal{TC}(X)$ is graded by the Picard group Pic $X \simeq \mathbf{Z}^{n+1}$ and its support is Eff X, the semi-group of effective classes on X. Hence $\mathcal{TC}(X)$ is not finitely generated if Eff X is not so as semi-group (Lemma 2).

The simplest case is

$$G = \left\{ (t_1, \dots, t_9) \middle| \sum_{i=1}^9 t_i = \sum_{i=1}^9 \wp(c_i) t_i = \sum_{i=1}^9 \wp'(c_i) t_i = 0 \right\} \subset \mathbf{C}^9, \quad (3)$$

where $\wp(z)$ is Weierstrass's \wp -function of an elliptic curve $C = \mathbf{C}/(\mathbf{Z} + \mathbf{Z}\tau)$ and c_1, \ldots, c_9 are distinct points C. In this case, X is the blow-up of \mathbf{P}^2 at the nine points $(1 : \wp(c_i) : \wp'(c_i)), 1 \le i \le 9$. Assume that the sum $\sum_{i=1}^{9} c_i \in C$ is zero, for simplicity. Then the nine points are the intersection of two cubics, X has an elliptic fibration $f : X \to \mathbf{P}^1$ and the nine exceptional curves are sections of f. If the difference $c_i - c_{i+1}$ is of infinite order for some $1 \le i \le 8$, then there are infinitely many exceptional curves of the first kind (cf. [6]). So S^G is not finitely generated. (Cf. Remark 1 at the end of §4.)

The proof of the theorem (§4) is similar but we replace the elliptic fibration by the symmetry of Pic X with respect to the Weyl group of the Dynkin diagram $T_{2,r,n-r}$ with n vertices (§3):

which was introduced by Dolgachev[1]. As is well known the inequality (2) is equivalent to the infiniteness of the Weyl group of this diagram (Lemma 4). If $G \subset \mathbb{C}^n$ is general and if (2) is satisfied, then there exist infinitely many exceptional divisors on X. Therefore, Eff X and hence $\mathcal{TC}(X)$ are not finitely generated (Lemma 3).

1 Invariant ring is Rees algebra

Let $G \subset \mathbf{C}^n$ be a linear subspace of codimension r and

$$\sum_{i=1}^{n} a_i^{(1)} t_i = \sum_{i=1}^{n} a_i^{(2)} t_i = \dots = \sum_{i=1}^{n} a_i^{(r)} t_i = 0$$
(5)

a system of defining equations. Since x_1, \ldots, x_n are *G*-invariant, we obtain the induced action of *G* on the localization

$$S[x_1^{-1},\ldots,x_n^{-1}] = \mathbf{C}[x_1^{\pm 1},\ldots,x_n^{\pm 1},y_1,\ldots,y_n] = \mathbf{C}[x_1^{\pm 1},\ldots,x_n^{\pm 1},\frac{y_1}{x_1},\ldots,\frac{y_n}{x_n}].$$

Since $(t_1, \ldots, t_n) \in G$ acts by the translation $y_i/x_i \mapsto y_i/x_i + t_i$, the invariant ring $S[x_1^{-1}, \ldots, x_n^{-1}]^G$ is generated by

$$\sum_{i=1}^{n} a_i^{(1)} \frac{y_i}{x_i}, \quad \sum_{i=1}^{n} a_i^{(2)} \frac{y_i}{x_i}, \quad \dots, \quad \sum_{i=1}^{n} a_i^{(r)} \frac{y_i}{x_i}$$
(6)

over the Laurent polynomial ring $\mathbf{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$. Let

$$J^{(1)}(x,y), \quad J^{(2)}(x,y), \quad \dots, \quad J^{(r)}(x,y) \in S^G$$
 (7)

be the products of (6) and the monomial $\prod_{i=1}^{n} x_i$. Let V be the subspace and R the subring of S^G generated by them. R is a polynomial ring and V is its degree one part. The invariant ring S^G contains $R[x_1, \ldots, x_n]$ and $S[x_1^{-1}, \ldots, x_n^{-1}]^G$ coincides with $R[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$. Obviously we have

$$S^{G} = S[x_{1}^{-1}, \dots, x_{n}^{-1}]^{G} \cap S = R[x_{1}^{\pm 1}, \dots, x_{n}^{\pm 1}] \cap S.$$
(8)

Let V_1 be the linear subspace of V consisting of J(x, y) which do not contain the monomial $y_1 \prod_{i=2}^n x_i$. Then $V_1 \subset V$ is of codimension ≤ 1 . A polynomial $J(x, y) \in V$ is divisible by x_1 if and only if it belongs to V_1 . Let $I_1 \subset R$ be the ideal generated by V_1 . Define $V_i \subset V$ and $I_i \subset R$ for $2 \leq i \leq n$ similarly. If $F(x, y) \in R$ belongs to the b_i -th power $I_i^{b_i}$, then F(x, y) is divisible by $x_i^{b_i}$ and the quotient $F(x, y)/x_i^{b_i}$ belongs to S^G . Hence S^G contains

$$R[x_1, \dots, x_n] + \sum_{b_1, \dots, b_n \ge 0} (I_1^{b_1} \cap \dots \cap I_n^{b_n}) x_1^{-b_1} \cdots x_n^{-b_n} \subset R[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$$
(9)

as its subring. The following was proved in [5] in the case of codimension 3.

Proposition The invariant ring S^G of the action (1) with respect to a subspace $G \subset \mathbb{C}^n$ coincides with the extended multi-Rees algebra (9) of $(R: I_1, \ldots, I_n)$.

Proof. It suffices to show the following

 $claim: f(J^{(1)}(x,y),\ldots,J^{(r)}(x,y)) \in R$ is divisible by $x_i^{b_i}$ if and only if $f(J^{(1)},\ldots,J^{(r)})$ belongs to $I_i^{b_i}$.

If $a_i^{(1)}, \ldots, a_i^{(r)}$ are all zero, then $J^{(1)}(x, y), \ldots, J^{(r)}(x, y)$ are all divisible by x_i . The claim is obvious, since none is divisible by x_i^2 and since $V_i = V$. So assume the contrary. By reordering (7), we may assume that $a_i^{(1)} \neq 0$. Put

$$z_1 = J^{(1)}/a_i^{(1)}, z_2 = J^{(2)} - a_i^{(2)} z_1, \dots, z_r = J^{(r)} - a_i^{(r)} z_1$$

Then

$$f(J^{(1)},\ldots,J^{(r)}) = f(a^{(1)}z_1,a^{(2)}z_1 + z_2,\ldots,a^{(r)}z_1 + z_r)$$

and this belongs to the ideal $(z_2, \ldots, z_r)^{b_i}$ if and only if $f(J^{(1)}, \ldots, J^{(r)})$ belongs to $I_i^{b_i}$ by the lemma below. When regarded as polynomials of $x_1, \ldots, x_n, y_1, \ldots, y_n$, the r-1 polynomials z_2, \ldots, z_r are divisible by x_i and only z_1 is not. Therefore, f belongs to $(z_2, \ldots, z_r)^{b_i}$ if and only if $f(J^{(1)}(x, y), \ldots, J^{(r)}(x, y))$ is divisible by $x_i^{b_i}$. \Box

Lemma 1 Let I be the ideal of $\mathbf{C}[z_1, \ldots, z_r]$ generated by linear forms vanishing at

$$(a^{(1)}, a^{(2)}, \dots, a^{(r)}) \in \mathbf{C}^r.$$

Assume that $a^{(1)} \neq 0$. Then a polynomial $f(z_1, \ldots, z_r)$ belongs to the b-th power I^b if and only if

$$f(a^{(1)}z_1, a^{(2)}z_1 + z_2, \dots, a^{(r)}z_1 + z_r)$$

belongs to the b-th power of the homogeneous ideal (z_2, \ldots, z_r) .

For small values of r, the invariant ring is very explicit.

Example 1 (r = 1) Assume that $G \subset \mathbb{C}^n$ is defined by $\sum_{i=1}^m t_i = 0$ for $1 \leq m \leq n$. Then S^G is generated by x_1, \ldots, x_n and

$$(rac{y_1}{x_1}+\cdots+rac{y_m}{x_m})\prod_{i=1}^m x_i.$$

Example 2 (r = 2) Assume that $G \subset \mathbb{C}^n$ is defined by $\sum_{i=1}^n t_i = \sum_{i=1}^n c_i t_i = 0$. Then $c_i J_1(x, y) - J_2(x, y)$ is divisible by x_i and the quotient $(c_i J_1(x, y) - J_2(x, y))/x_i$ belongs to S^G for every $1 \le i \le n$. S^G is generated by these invariants over $\mathbb{C}[x_1, \ldots, x_n]$ if c_1, \ldots, c_n are distinct.

2 Total coordinate ring

For our purpose, it is more convenient to state the proposition in geometric term. Let $\mathbf{P}^{r-1} = \operatorname{Proj} R$ be the (r-1)-dimensional projective space whose homogeneous coordinates are (7). In the sequel we assume that

(\diamondsuit) $r \ge 3$ and any two of n vectors $(a_i^{(1)}, a_i^{(2)}, \ldots, a_i^{(r)}) \in \mathbf{C}^r, 1 \le i \le n$, are linearly independent.

(The study of S^G for the action (1) is easily reduced to this case.) Then n points

$$p_i := (a_i^{(1)} : a_i^{(2)} : \dots : a_i^{(r)}) \in \mathbf{P}^{r-1}, \quad 1 \le i \le n,$$
(10)

are well-defined and distinct. The ideal $I_i \subset R$ is generated by the linear forms vanishing at p_i . Let

$$\pi: X = X_G \longrightarrow \mathbf{P}^{r-1}$$

be the blow-up at these n points. The isomorphism class of X_G does not depend on the choice of the defining equation (5). The Picard group is a free abelian group of rank n + 1. The pull-back h of the hyperplane class H and the classes e_i , $1 \le i \le n$, of the exceptional divisors form a basis, which is called *the standard basis* of Pic X_G (with respect to π). The direct sum of the spaces of global sections of all line bundles (up to isomorphism)

$$\bigoplus_{a,b_1,\dots,b_n\in\mathbf{Z}} H^0(X,\mathcal{O}_X(ah-b_1e_1-\dots-b_ne_n)) \simeq \bigoplus_{L\in\operatorname{Pic} X} H^0(X,L)$$
(11)

is a graded ring, which is called the *total coordinate ring* of X and denoted by $\mathcal{TC}(X)$. In our case, $\mathcal{TC}(X_G)$ is the Rees algebra (9), or more precisely, it is the \mathbb{Z}^n -graded ring (9) plus the extra grading of the polynomial ring R. By the proposition, we have

Corollary Under the condition of (\diamondsuit) , the invariant ring S^G of the action (1) with respect to $G \subset \mathbb{C}^n$ is the total coordinate ring $\mathcal{TC}(X_G)$ of the blow-up X_G . Let $A = \bigoplus_{\lambda \in \Lambda} A_{\lambda}$ be an integral domain graded by a free abelian group Λ . The subset $\{\lambda \mid A_{\lambda} \neq 0\}$ of Λ is a semi-group. This is called the *support* of A and denoted by Supp A.

Lemma 2 If Supp A is not finitely generated as semi-group, neither is A as a ring over A_0 .

Proof. Assume that A is finitely generated. Then finite nonzero homogeneous elements $a_i \in A_{\lambda_i}$, $1 \leq i \leq N$, generate A and $\lambda_1, \ldots, \lambda_N$ generate Supp A. \Box

For example, the support of $\mathcal{TC}(X)$ as \mathbb{Z}^{n+1} -graded ring is the semigroup

Eff $X := \{L \in \operatorname{Pic} X \mid H^0(X, L) \neq 0\},\$

of linear equivalence classes of effective divisors on X. If Eff X is not finitely generated as semi-group, neither is $\mathcal{TC}(X)$. The following is basic for our analysis of Eff X.

Lemma 3 Let $\pi : X \longrightarrow Y$ be the blowing up of a projective variety Y at a point. Then the linear equivalence class of the exceptional divisor E of π belongs to any system of generators of the effective semi-group Eff X.

Proof. Assume that E is linearly equivalent to the sum $D_1 + D_2$ of two effective divisors. Let H be the pull-back of an ample divisor on Y. Then the intersection number $(E.H^{m-1})$, $m = \dim X$, is zero. Hence so are $(D_1.H^{m-1})$ and $(D_2.H^{m-1})$. Therefore, both Supp D_1 and Supp D_2 are contained in E and either D_1 or D_2 is zero. \Box

If X and X' are isomorphic in codimension one, then the Picard groups are the same and Eff X = Eff X'. So we call $D \subset X$ a (-1)-divisor if there is a birational map $f : X \cdots \to X'$ and a morphism $\pi : X' \to Y$ such that f is an isomorphism in codimension one, π is the blowing up of a projective variety Y at a smooth point and D is the strict transform of the exceptional divisor of π . By the lemma, the class of a (-1)-divisor is contained in any system of generators of Eff X. Hence Eff X is not finitely generated if X has infinitely many classes of (-1)-divisors.

3 Root systems and elliptic curves

Let Λ be the lattice of rank n+1 with orthogonal basis h, e_1, \ldots, e_n . In view of the standard Cremona transformation (see the next section especially the formula (16)), we set $(h^2) = r - 2$ and $(e_i^2) = -1$ for $1 \le i \le n$. For $\lambda = ah - \sum_{i=1}^n b_i e_i \in \Lambda$, we denote its coefficient a in h by deg λ . We put $\kappa = rh - \sum (r-2) \sum_{i=1}^n e_i$, which corresponds to the anti-canonial class of the blow-up of \mathbf{P}^{r-1} at points. The orthogonal complement of κ together with its basis

$$e_1 - e_2, \quad e_2 - e_3, \quad \dots, \quad e_{n-1} - e_n \quad \text{and} \quad h - \sum_{i=1}^r e_i$$
 (12)

becomes a root system. The Dynkin Diagram is (4), that is, $T_{2,r,n-r}$ with three-legs of length 2, r and n-r. For a subset $I \subset [n] := \{1, 2, ..., n\}$ of cardinality r, $\alpha_I = h - \sum_{i \in I} e_i$ is a root. The reflection R_I with respect to α_I is as follows:

$$\begin{cases}
h \mapsto h + (r-2)\alpha_I = (r-1)h - (r-2)\sum_{i \in I} e_i \\
e_i \mapsto e_i + \alpha_I & \text{for } i \in I \\
e_j \mapsto e_j & \text{for } j \notin I
\end{cases}$$
(13)

Let W be the Weyl group of (12). By definition, W leaves κ invariant, that is, $rw(h) - (r-2) \sum_{i=1}^{n} w(e_i) = \kappa$ for every $w \in W$. In particular, we have

$$r \deg w(h) - (r-2) \sum_{i=1}^{n} \deg w(e_i) = r.$$
 (14)

Lemma 4 If the inequality (2) holds, then the W-orbit of e_n is infinite.

Proof. The assumption implies $r \geq 3$. Let w be an element of the Weyl group. There exists a subset $I \subset [n]$ of cardinality r such that

$$\sum_{i \in I} \deg w(e_i) \le \frac{r}{n} \sum_{i=1}^n \deg w(e_i).$$

By (14) we have

$$\deg w(\alpha_I) = \deg w(h) - \sum_{i \in I} \deg w(e_i) \ge \deg w(h) - \frac{r^2}{n(r-2)} (\deg w(h) - 1),$$

which is positive by (2). Therefore, $\deg w(R_I(h)) - \deg w(h) = (r - 2) \deg w(\alpha_I)$ is also positive. It follows that the degree is increased by a suitable reflection R_I . Hence, the orbit $W \cdot h$ is infinite. So is $W \cdot e_n$ by the equality (14). \Box

The Weyl group of $T_{p,q,r}$ is infinite if and only if $1/p + 1/q + 1/r \le 1$ ([3] Chap. 4). The lemma also follows from this.

Let C be an elliptic curve and Λ_C the (n+1)-dimensional variety $\operatorname{Pic}^r C \times C^n$. This is canonically isomorphic to $\operatorname{Pic}^r C \times (\operatorname{Pic}^1 C)^n$. So the factor permutation of C^n and the automorphism

$$(D; c_1, \dots, c_n) \mapsto (D'; c'_1, \dots, c'_n),$$

$$\begin{cases} D' = (r-1) - (r-2) \sum_{i=1}^r c_i \\ c'_i = D - c_1 - \dots - \check{c}_i - \dots - c_r & \text{for } 1 \le i \le r \\ c'_j = c_j & \text{for } r+1 \le j \le n \end{cases}$$

define the action of the Weyl group W on the variety Λ_C . For a real root $\alpha = ah - \sum_{i=1}^{n} b_i e_i \in \Delta^{re}$ ([3] Chap. 5), the reflection R_{α} interchanges

$$f_{\alpha} : \Lambda_C \longrightarrow \operatorname{Pic}^0 C, \quad (D; c_1, \dots, c_n) \mapsto aD - \sum_{i=1}^n b_i c_i.$$

with $-f_{\alpha}$. We denote the fiber $f_{\alpha}^{-1}(0)$ by $\mathcal{D}(\alpha)$.

Example 3 $\mathcal{D}(e_i - e_j), i \neq j$, is the diagonal $\{c_i = c_j\}$. $\mathcal{D}(h - \sum_{i=1}^r e_i)$ consists of $(D; c_1, \ldots, c_n)$ such that $\sum_{i=1}^r c_i \in |D|$.

The Weyl group W acts on the complement of all these fibers:

$$\Lambda_C - \bigcup_{\alpha \in \Delta^{re}} \mathcal{D}(\alpha). \tag{15}$$

4 Standard Cremona transformation

The map

$$\Psi: \mathbf{P}^{r-1} \cdots \to \mathbf{P}^{r-1}, \quad (x_1: x_2: \cdots: x_r) \mapsto (\frac{1}{x_1}: \frac{1}{x_2}: \cdots: \frac{1}{x_r}), \quad r \ge 3,$$

is a birational transformation of the projective space \mathbf{P}^{r-1} . It contracts the *r* coordinate hyperplanes to the *r* coordinate points and its square is the identity. A birational map which is projectively equivalent to Ψ is called a standard Cremona transformation. Let $P = \{p_1, \ldots, p_r\}$ and $Q = \{q_1, \ldots, q_r\}$ be a pair of sets of r points of \mathbf{P}^{r-1} . If both P and Qspan \mathbf{P}^{r-1} , then there exists the unique standard Cremona transformation which contracts the hyperplane H_i passing through the r-1 points $p_1, \ldots, \check{p}_i, \ldots, p_r$ to the point q_i for every $1 \leq i \leq r$. We denote this by $\Psi_{P,Q}$. P and Q are called its center and cocenter, respectively. $\Psi_{P,Q}$ is the rational map associated with $|(r-1)H - (r-2)\sum_{i=1}^{n} p_i|$, the linear system of hypersurfaces of degree (r-1) passing through P with multiplicity $\geq r-2$. (The sum of r-1 of H_1, \ldots, H_r form a basis of the linear system.) The indeterminacy locus of $\Psi_{P,Q}$ is the union $I_P := \bigcup_{1 \leq i < j \leq r} H_i \cap H_j$ of the intersection of all pairs of the hyperplanes H_i 's.

Let X_P and X_Q be the blow-up of \mathbf{P}^{r-1} with center P and Q, respectively. $\Psi_{P,Q}$ induces the birational map $\tilde{\Psi}_{P,Q}$ from X_P to X_Q . The diagram

is commutative and $\tilde{\Psi}_{P,Q}$ induces an isomorphism between the complement of the strict transform of I_P and that of I_Q . Hence $\tilde{\Psi}_{P,Q}$ is an isomorphism in codimension one. (More precisely, $\tilde{\Psi}_{P,Q} : X_P \cdots \to X_Q$ is the composite of certain flops.) In particular it induces an isomorphism $\operatorname{Pic} X_P \xrightarrow{\sim}$ $\operatorname{Pic} X_Q$ between the Picard groups and that between the semi-groups of effective classes. Let $\{h, e_1, \ldots, e_r\}$ be the standard basis of $\operatorname{Pic} X_P$. Then the standard basis of $\operatorname{Pic} X_Q$ consists of

$$(r-1)h - (r-2)\sum_{i=1}^{r} e_i$$
, and $h - e_1 - \dots - \check{e_i} - \dots - p_r$, $1 \le i \le r$. (16)

Proof of Theorem. Let C be an elliptic curve and take an (n + 1)-tuple $(D; c_1, \ldots, c_n)$ from the W-invariant open subset (15) of Λ_C . The complete linear system |D| embeds C into the (r - 1)-dimensional projective space $\mathbf{P}_D := \mathbf{P}^* H^0(C, \mathcal{O}_C(D))$. Let $p_1, \ldots, p_n \in \mathbf{P}_D$ be the image of c_1, \ldots, c_n by the embedding Φ_D . Since $(D; c_1, \ldots, c_n)$ does not belong to the divisor $\mathcal{D}(e_i - e_j) \subset \Lambda_C$ for any $1 \leq i < j \leq n$, the n points p_1, \ldots, p_n are distinct. Moreover, since it does not belongs to $\mathcal{D}(\alpha_I)$ for any $I \subset [n]$ with |I| = r, any r of p_1, \ldots, p_n spans the projective space \mathbf{P}_D (Example 3).

Hence we can perform the standard Cremona transformation of \mathbf{P}_D with any r of p_1, \ldots, p_n as center. Put $(D'; c'_1, \ldots, c'_n) = R_I(D; c_1, \ldots, c_n)$ and $p'_i = \Phi_{D'}(c'_i)$ for $1 \le i \le n$. Then we have the commutative diagram:

where Ψ_I is the standard Cremona transformation whose center is $\{p_i \mid i \in I\}$ and cocenter is $\{p'_i \mid i \in I\}$. Any point of C other than $\{p_i \mid i \in I\}$ does not lie in the indeterminacy locus of Ψ_I . Let $\pi : X \longrightarrow \mathbf{P}_D$ be the blowing up at the n points p_1, \ldots, p_n and $\pi' : X \longrightarrow \mathbf{P}_{D'}$ at p'_1, \ldots, p'_n . Then Ψ_I induces $\tilde{\Psi}_I$ between X and X' and we have the commutative diagram:

By our choice of $(D; c_1, \ldots, c_n)$, the images p'_1, \ldots, p'_n of c_1, \ldots, c_n are distinct and any subset of cardinality r spans $\mathbf{P}_{D'}$. Hence we can perform the standard Cremona transformation with any r of p'_1, \ldots, p'_n as center. We can continue this as many times as we like. Hence we have the following by (13) and (16):

Lemma 5 If an (n+1)-tuple $(D; c_1, \ldots, c_n)$ belongs to the open subset (15) of Λ_C and if α is in the orbit $W \cdot e_n$, then there exists a (-1)-divisor D whose linear equivalence class is α .

It is obvious that the same holds for the blow-up \tilde{X} at $\tilde{p}_1, \ldots, \tilde{p}_n$ if the *n*-tuple $(\tilde{p}_1, \ldots, \tilde{p}_n) \in \mathbf{P}^{r-1} \times \cdots \times \mathbf{P}^{r-1}$ belongs to a neighborhood of (p_1, \ldots, p_n) in the classical topology. Hence, by virtue of Lemma 4, \tilde{X} contains infinitely many classes of (-1)-divisors if (2) holds. Therefore, S^G for a general $G \subset \mathbf{C}^n$ is not finitely generated by Corollary and two lemmas in §2. \Box **Remark 1** Following [5], Steinberg [10] and independently the author [4] consider the diagonal subring

$$S^{T \cdot G} := R[x] + \sum_{b \ge 0} (I_1^b \cap \dots \cap I_n^b) x^{-b} \subset R[x^{\pm 1}], \quad x = \prod_{i=1}^n x_i,$$

of (9), which is isomorphic to

$$\bigoplus_{a,b\in\mathbf{Z}} H^0(X_G, \mathcal{O}_X(ah - b(e_1 + \dots + e_n))),$$
(17)

in the case where n = 9 and $G \subset \mathbb{C}^9$ is of codimension 3. They show that this is not finitely generated if $3D - \sum_{i=1}^9 c_i \in C$ is of infinite order. The infinite generation of S^G follows from this easily. Note that $S^{T \cdot G}$ becomes finitely generated if $3D - \sum_{i=1}^9 c_i$ is torsion but still S^G is not finitely generated if the differences $c_i - c_j$ are general. Note also that $\kappa = 3h - \sum_{i=1}^9 e_i \in \Lambda$ corresponding to $3D - \sum_{i=1}^9 c_i$ is an imaginary root of the affine root system κ^{\perp} of type $T_{2,3,6}$.

Remark 2 If (2) holds and if $c_1, \ldots, c_n \in C$ are general, then the image of the restriction map

$$S^{G} = \mathcal{TC}(X_{G}) \longrightarrow \mathcal{TC}(C|D; c_{1}, \dots, c_{n}) := \bigoplus_{a, b_{1}, \dots, b_{n} \in \mathbf{Z}} H^{0}(C, \mathcal{O}_{C}(aD - \sum_{i=1}^{n} b_{i}c_{i}))$$

is not finitely generated. This gives another proof of Theorem. The image is similar to the bi-graded ring

$$\bigoplus_{m,n\in\mathbf{Z}} H^0(C,\mathcal{O}_C(mc+nd))$$

obtained from two points $c, d \in C$. If the difference $c - d \in C$ is of infinite order, then the support is $\{m + n > 0\} \cup \{(0, 0)\}$, which is not finitely generated as semi-group (cf. [7]).

References

 Dolgachev, I.: Weyl groups and Cremona transformations, Proc. Symp. Pure Math. 40(1983), 283-294.

- [2] Hilbert, D.: Über die Theorie der algebraischen Formen, Math. Ann., 36 (1890), 473-534.
- [3] Kac, V.G.: Infinite dimensional Lie algebras, 2nd. ed., Cambridge Univ. Press., 1983.
- [4] Mukai, S.: Moduli Theory I, II, Iwanami Shoten, 1998, 2000, Tokyo. (English translation : An introduction to invariants and moduli, to appear.)
- [5] Nagata, M.: On the fourteenth problem of Hilbert, Int'l Cong. Math., Edingburgh, 1958.
- [6] —: On rational surfaces, II, Mem. Coll. Sci. Univ. Kyoto. Ser. A, 33(1960), 271-293.
- [7] Rees, D.: On a problem of Zariski, Illinois J. Math. 2(1958), 145-149.
- [8] Roberts, P.: An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's 14th problem, J. Algebra, 132(1990), 461-473.
- [9] Seshadri, C.S.: On a theorem of Weitzenböck in invariant theory, J. Math. Kyoto Univ., 1(1962), 403-409.
- [10] Steinberg, R.: Nagata's example, in 'Algebraic Groups and Lie Groups', Austral. Math. Soc. Lect. Ser. 9, Cambridge Univ. Press, 1997, pp. 375–384.
- [11] Weitzenböck, R.: Über die Invarianten von Linearen Gruppen, Acta. Math., 58(1932), 230-250.

Research Institute for Mathematical Sciences Kyoto University Kyoto 606-8502, Japan *e-mail address* : mukai@kurims.kyoto-u.ac.jp