Counterexample to Hilbert's fourteenth problem for the 3 -dimensional additive group

Shigeru MUKAI *

An m-dimensional linear representation of a group induces an action on the polynomial ring $\mathbf{C}\left[z_{1}, \ldots, z_{m}\right]$ of m variables. This is called a linear action on the polynomial ring. In 1890, Hilbert[2] showed that the invariant ring was finitely generated for classical representations of the special linear groups. The following is known as his fourteenth problem:
Problem 1 Is the invariant ring $\mathbf{C}\left[z_{1}, \ldots, z_{m}\right]^{G}$ of a linear action of an algebraic group G finitely generated?

The answer is affirmative for the additive algebraic group \mathbf{G}_{a} (Weitzenböck [11], [9]). In 1958, Nagata[5] considered the standard unipotent linear action

$$
\begin{gather*}
\left(t_{1}, \ldots, t_{n}\right) \in \mathbf{C}^{n} \curvearrowright \mathbf{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]=: S \tag{1}\\
\left\{\begin{array}{l}
x_{i} \mapsto x_{i} \\
y_{i} \mapsto y_{i}+t_{i} x_{i}, \quad 1 \leq i \leq n,
\end{array}\right.
\end{gather*}
$$

of \mathbf{C}^{n} on the polynomial ring S of $2 n$ variables and showed that the invariant ring S^{G} with respect to a general linear subspace $G \subset \mathbf{C}^{n}$ of codimension 3 was not finitely generated for $n=16$. In this article, we shall prove the following:
Theorem The invariant ring S^{G} of (1) with respect to a general linear subspace $G \subset \mathbf{C}^{n}$ of codimension r is not finitely generated if

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{r}+\frac{1}{n-r} \leq 1 \tag{2}
\end{equation*}
$$

In other words, S^{G} is not finitely generated if $\operatorname{dim} G=s \geq 3$ and if $n \geq s^{2} /(s-2)$. So the answer to Problem 1 is negative for \mathbf{G}_{a}^{3}. But the following part is still open:

[^0]Problem 2 Is the invariant ring $\mathbf{C}\left[z_{1}, \ldots, z_{m}\right]^{G}$ of a linear action of the 2-dimensional additive group $G=\mathbf{G}_{a} \times \mathbf{G}_{a}$ finitely generated?

See Roberts [8] for non-linear actions.
Our proof of the theorem is based on the fact that the invariant ring S^{G} is a certain Rees algebra ($\S 1$). In geometric term, the Rees algebra is isomorphic to the total coordinate ring $\mathcal{T C}(X)$ of the blow-up X of the projective space \mathbf{P}^{r-1} at n points (§2). This ring $\mathcal{T C}(X)$ is graded by the Picard group Pic $X \simeq \mathbf{Z}^{n+1}$ and its support is Eff X, the semi-group of effective classes on X. Hence $\mathcal{T C}(X)$ is not finitely generated if Eff X is not so as semi-group (Lemma 2).

The simplest case is

$$
\begin{equation*}
G=\left\{\left(t_{1}, \ldots, t_{9}\right) \mid \sum_{i=1}^{9} t_{i}=\sum_{i=1}^{9} \wp\left(c_{i}\right) t_{i}=\sum_{i=1}^{9} \wp^{\prime}\left(c_{i}\right) t_{i}=0\right\} \subset \mathbf{C}^{9} \tag{3}
\end{equation*}
$$

where $\wp(z)$ is Weierstrass's \wp-function of an elliptic curve $C=\mathbf{C} /(\mathbf{Z}+\mathbf{Z} \tau)$ and c_{1}, \ldots, c_{9} are distinct points C. In this case, X is the blow-up of \mathbf{P}^{2} at the nine points $\left(1: \wp\left(c_{i}\right): \wp^{\prime}\left(c_{i}\right)\right), 1 \leq i \leq 9$. Assume that the sum $\sum_{i=1}^{9} c_{i} \in C$ is zero, for simplicity. Then the nine points are the intersection of two cubics, X has an elliptic fibration $f: X \rightarrow \mathbf{P}^{1}$ and the nine exceptional curves are sections of f. If the difference $c_{i}-c_{i+1}$ is of infinite order for some $1 \leq i \leq 8$, then there are infinitely many exceptional curves of the first kind (cf. [6]). So S^{G} is not finitely generated. (Cf. Remark 1 at the end of $\S 4$.)

The proof of the theorem ($\S 4$) is similar but we replace the elliptic fibration by the symmetry of $\operatorname{Pic} X$ with respect to the Weyl group of the Dynkin diagram $T_{2, r, n-r}$ with n vertices ($\S 3$):

which was introduced by Dolgachev[1]. As is well known the inequality (2) is equivalent to the infiniteness of the Weyl group of this diagram (Lemma 4). If $G \subset \mathbf{C}^{n}$ is general and if (2) is satisfied, then there exist infinitely many exceptional divisors on X. Therefore, Eff X and hence $\mathcal{T C}(X)$ are not finitely generated (Lemma 3).

1 Invariant ring is Rees algebra

Let $G \subset \mathbf{C}^{n}$ be a linear subspace of codimension r and

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}^{(1)} t_{i}=\sum_{i=1}^{n} a_{i}^{(2)} t_{i}=\cdots=\sum_{i=1}^{n} a_{i}^{(r)} t_{i}=0 \tag{5}
\end{equation*}
$$

a system of defining equations. Since x_{1}, \ldots, x_{n} are G-invariant, we obtain the induced action of G on the localization

$$
S\left[x_{1}^{-1}, \ldots, x_{n}^{-1}\right]=\mathbf{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}, y_{1}, \ldots, y_{n}\right]=\mathbf{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}, \frac{y_{1}}{x_{1}}, \ldots, \frac{y_{n}}{x_{n}}\right]
$$

Since $\left(t_{1}, \ldots, t_{n}\right) \in G$ acts by the translation $y_{i} / x_{i} \mapsto y_{i} / x_{i}+t_{i}$, the invariant ring $S\left[x_{1}^{-1}, \ldots, x_{n}^{-1}\right]^{G}$ is generated by

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}^{(1)} \frac{y_{i}}{x_{i}}, \quad \sum_{i=1}^{n} a_{i}^{(2)} \frac{y_{i}}{x_{i}}, \quad \ldots, \quad \sum_{i=1}^{n} a_{i}^{(r)} \frac{y_{i}}{x_{i}} \tag{6}
\end{equation*}
$$

over the Laurent polynomial ring $\mathbf{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. Let

$$
\begin{equation*}
J^{(1)}(x, y), \quad J^{(2)}(x, y), \quad \ldots, \quad J^{(r)}(x, y) \in S^{G} \tag{7}
\end{equation*}
$$

be the products of (6) and the monomial $\prod_{i=1}^{n} x_{i}$. Let V be the subspace and R the subring of S^{G} generated by them. R is a polynomial ring and V is its degree one part. The invariant ring S^{G} contains $R\left[x_{1}, \ldots, x_{n}\right]$ and $S\left[x_{1}^{-1}, \ldots, x_{n}^{-1}\right]^{G}$ coincides with $R\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. Obviously we have

$$
\begin{equation*}
S^{G}=S\left[x_{1}^{-1}, \ldots, x_{n}^{-1}\right]^{G} \cap S=R\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] \cap S . \tag{8}
\end{equation*}
$$

Let V_{1} be the linear subspace of V consisting of $J(x, y)$ which do not contain the monomial $y_{1} \prod_{i=2}^{n} x_{i}$. Then $V_{1} \subset V$ is of codimension ≤ 1. A polynomial $J(x, y) \in V$ is divisible by x_{1} if and only if it belongs to V_{1}. Let $I_{1} \subset R$ be the ideal generated by V_{1}. Define $V_{i} \subset V$ and $I_{i} \subset R$ for $2 \leq i \leq n$ similarly. If $F(x, y) \in R$ belongs to the b_{i}-th power $I_{i}^{b_{i}}$, then $F(x, y)$ is divisible by $x_{i}^{b_{i}}$ and the quotient $F(x, y) / x_{i}^{b_{i}}$ belongs to S^{G}. Hence S^{G} contains

$$
\begin{equation*}
R\left[x_{1}, \ldots, x_{n}\right]+\sum_{b_{1}, \ldots, b_{n} \geq 0}\left(I_{1}^{b_{1}} \cap \cdots \cap I_{n}^{b_{n}}\right) x_{1}^{-b_{1}} \cdots x_{n}^{-b_{n}} \subset R\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] \tag{9}
\end{equation*}
$$

as its subring. The following was proved in [5] in the case of codimension 3.

Proposition The invariant ring S^{G} of the action (1) with respect to a subspace $G \subset \mathbf{C}^{n}$ coincides with the extended multi-Rees algebra (9) of $\left(R: I_{1}, \ldots, I_{n}\right)$.
Proof. It suffices to show the following
claim: $f\left(J^{(1)}(x, y), \ldots, J^{(r)}(x, y)\right) \in R$ is divisible by $x_{i}^{b_{i}}$ if and only if $f\left(J^{(1)}, \ldots, J^{(r)}\right)$ belongs to $I_{i}^{b_{i}}$.

If $a_{i}^{(1)}, \ldots, a_{i}^{(r)}$ are all zero, then $J^{(1)}(x, y), \ldots, J^{(r)}(x, y)$ are all divisible by x_{i}. The claim is obvious, since none is divisible by x_{i}^{2} and since $V_{i}=V$. So assume the contrary. By reordering (7), we may assume that $a_{i}^{(1)} \neq 0$. Put

$$
z_{1}=J^{(1)} / a_{i}^{(1)}, z_{2}=J^{(2)}-a_{i}^{(2)} z_{1}, \ldots, z_{r}=J^{(r)}-a_{i}^{(r)} z_{1} .
$$

Then

$$
f\left(J^{(1)}, \ldots, J^{(r)}\right)=f\left(a^{(1)} z_{1}, a^{(2)} z_{1}+z_{2}, \ldots, a^{(r)} z_{1}+z_{r}\right)
$$

and this belongs to the ideal $\left(z_{2}, \ldots, z_{r}\right)^{b_{i}}$ if and only if $f\left(J^{(1)}, \ldots, J^{(r)}\right)$ belongs to $I_{i}^{b_{i}}$ by the lemma below. When regarded as polynomials of $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$, the $r-1$ polynomials z_{2}, \ldots, z_{r} are divisible by x_{i} and only z_{1} is not. Therefore, f belongs to $\left(z_{2}, \ldots, z_{r}\right)^{b_{i}}$ if and only if $f\left(J^{(1)}(x, y), \ldots, J^{(r)}(x, y)\right)$ is divisible by $x_{i}^{b_{i}}$.

Lemma 1 Let I be the ideal of $\mathbf{C}\left[z_{1}, \ldots, z_{r}\right]$ generated by linear forms vanishing at

$$
\left(a^{(1)}, a^{(2)}, \ldots, a^{(r)}\right) \in \mathbf{C}^{r}
$$

Assume that $a^{(1)} \neq 0$. Then a polynomial $f\left(z_{1}, \ldots, z_{r}\right)$ belongs to the b-th power I^{b} if and only if

$$
f\left(a^{(1)} z_{1}, a^{(2)} z_{1}+z_{2}, \ldots, a^{(r)} z_{1}+z_{r}\right)
$$

belongs to the b-th power of the homogeneous ideal $\left(z_{2}, \ldots, z_{r}\right)$.
For small values of r, the invariant ring is very explicit.
Example $1(r=1)$ Assume that $G \subset \mathbf{C}^{n}$ is defined by $\sum_{i=1}^{m} t_{i}=0$ for $1 \leq m \leq n$. Then S^{G} is generated by x_{1}, \ldots, x_{n} and

$$
\left(\frac{y_{1}}{x_{1}}+\cdots+\frac{y_{m}}{x_{m}}\right) \prod_{i=1}^{m} x_{i}
$$

Example $2(r=2)$ Assume that $G \subset \mathbf{C}^{n}$ is defined by $\sum_{i=1}^{n} t_{i}=\sum_{i=1}^{n} c_{i} t_{i}=$ 0 . Then $c_{i} J_{1}(x, y)-J_{2}(x, y)$ is divisible by x_{i} and the quotient $\left(c_{i} J_{1}(x, y)-\right.$ $\left.J_{2}(x, y)\right) / x_{i}$ belongs to S^{G} for every $1 \leq i \leq n$. S^{G} is generated by these invariants over $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ if c_{1}, \ldots, c_{n} are distinct.

2 Total coordinate ring

For our purpose, it is more convenient to state the proposition in geometric term. Let $\mathbf{P}^{r-1}=\operatorname{Proj} R$ be the $(r-1)$-dimensional projective space whose homogeneous coordinates are (7). In the sequel we assume that
$(\diamond) r \geq 3$ and any two of n vectors $\left(a_{i}^{(1)}, a_{i}^{(2)}, \ldots, a_{i}^{(r)}\right) \in \mathbf{C}^{r}, 1 \leq i \leq n$, are linearly independent.
(The study of S^{G} for the action (1) is easily reduced to this case.) Then n points

$$
\begin{equation*}
p_{i}:=\left(a_{i}^{(1)}: a_{i}^{(2)}: \ldots: a_{i}^{(r)}\right) \in \mathbf{P}^{r-1}, \quad 1 \leq i \leq n \tag{10}
\end{equation*}
$$

are well-defined and distinct. The ideal $I_{i} \subset R$ is generated by the linear forms vanishing at p_{i}. Let

$$
\pi: X=X_{G} \longrightarrow \mathbf{P}^{r-1}
$$

be the blow-up at these n points. The isomorphism class of X_{G} does not depend on the choice of the defining equation (5). The Picard group is a free abelian group of rank $n+1$. The pull-back h of the hyperplane class H and the classes $e_{i}, 1 \leq i \leq n$, of the exceptional divisors form a basis, which is called the standard basis of $\operatorname{Pic} X_{G}$ (with respect to π). The direct sum of the spaces of global sections of all line bundles (up to isomorphism)

$$
\begin{equation*}
\bigoplus_{a, b_{1}, . ., b_{n} \in \mathbf{Z}} H^{0}\left(X, \mathcal{O}_{X}\left(a h-b_{1} e_{1}-\cdots-b_{n} e_{n}\right)\right) \simeq \bigoplus_{L \in \operatorname{Pic} X} H^{0}(X, L) \tag{11}
\end{equation*}
$$

is a graded ring, which is called the total coordinate ring of X and denoted by $\mathcal{T C}(X)$. In our case, $\mathcal{T C}\left(X_{G}\right)$ is the Rees algebra (9), or more precisely, it is the \mathbf{Z}^{n}-graded ring (9) plus the extra grading of the polynomial ring R. By the proposition, we have
Corollary Under the condition of (\diamond), the invariant ring S^{G} of the action (1) with respect to $G \subset \mathbf{C}^{n}$ is the total coordinate ring $\mathcal{T C}\left(X_{G}\right)$ of the blow-up X_{G}.

Let $A=\bigoplus_{\lambda \in \Lambda} A_{\lambda}$ be an integral domain graded by a free abelian group Λ. The subset $\left\{\lambda \mid A_{\lambda} \neq 0\right\}$ of Λ is a semi-group. This is called the support of A and denoted by $\operatorname{Supp} A$.

Lemma 2 If Supp A is not finitely generated as semi-group, neither is A as a ring over A_{0}.

Proof. Assume that A is finitely generated. Then finite nonzero homogeneous elements $a_{i} \in A_{\lambda_{i}}, 1 \leq i \leq N$, generate A and $\lambda_{1}, \ldots, \lambda_{N}$ generate Supp A.

For example, the support of $\mathcal{T C}(X)$ as \mathbf{Z}^{n+1}-graded ring is the semigroup

$$
\text { Eff } X:=\left\{L \in \operatorname{Pic} X \mid H^{0}(X, L) \neq 0\right\}
$$

of linear equivalence classes of effective divisors on X. If Eff X is not finitely generated as semi-group, neither is $\mathcal{T C}(X)$. The following is basic for our analysis of $\mathrm{Eff} X$.

Lemma 3 Let $\pi: X \longrightarrow Y$ be the blowing up of a projective variety Y at a point. Then the linear equivalence class of the exceptional divisor E of π belongs to any system of generators of the effective semi-group Eff X.

Proof. Assume that E is linearly equivalent to the sum $D_{1}+D_{2}$ of two effective divisors. Let H be the pull-back of an ample divisor on Y. Then the intersection number $\left(E . H^{m-1}\right), m=\operatorname{dim} X$, is zero. Hence so are $\left(D_{1} \cdot H^{m-1}\right)$ and $\left(D_{2} \cdot H^{m-1}\right)$. Therefore, both Supp D_{1} and Supp D_{2} are contained in E and either D_{1} or D_{2} is zero.

If X and X^{\prime} are isomorphic in codimension one, then the Picard groups are the same and Eff $X=E$ eff X^{\prime}. So we call $D \subset X$ a (-1)-divisor if there is a birational map $f: X \cdots \rightarrow X^{\prime}$ and a morphism $\pi: X^{\prime} \rightarrow Y$ such that f is an isomorphism in codimension one, π is the blowing up of a projective variety Y at a smooth point and D is the strict transform of the exceptional divisor of π. By the lemma, the class of a (-1)-divisor is contained in any system of generators of Eff X. Hence Eff X is not finitely generated if X has infinitely many classes of (-1)-divisors.

3 Root systems and elliptic curves

Let Λ be the lattice of rank $n+1$ with orthogonal basis h, e_{1}, \ldots, e_{n}. In view of the standard Cremona transformation (see the next section especially the formula (16)), we set $\left(h^{2}\right)=r-2$ and $\left(e_{i}^{2}\right)=-1$ for $1 \leq i \leq n$. For $\lambda=a h-\sum_{i=1}^{n} b_{i} e_{i} \in \Lambda$, we denote its coefficient a in h by $\operatorname{deg} \lambda$. We put $\kappa=r h-\sum(r-2) \sum_{i=1}^{n} e_{i}$, which corresponds to the anti-canonial class of the blow-up of \mathbf{P}^{r-1} at points. The orthogonal complement of κ together with its basis

$$
\begin{equation*}
e_{1}-e_{2}, \quad e_{2}-e_{3}, \quad \ldots, \quad e_{n-1}-e_{n} \quad \text { and } \quad h-\sum_{i=1}^{r} e_{i} \tag{12}
\end{equation*}
$$

becomes a root system. The Dynkin Diagram is (4), that is, $T_{2, r, n-r}$ with three-legs of length $2, r$ and $n-r$. For a subset $I \subset[n]:=\{1,2, \ldots, n\}$ of cardinality $r, \alpha_{I}=h-\sum_{i \in I} e_{i}$ is a root. The reflection R_{I} with respect to α_{I} is as follows:

$$
\left\{\begin{array}{rlrl}
h & \mapsto h+(r-2) \alpha_{I} & =(r-1) h-(r-2) \sum_{i \in I} e_{i} \tag{13}\\
e_{i} & \mapsto e_{i}+\alpha_{I} & & \text { for } i \in I \\
e_{j} & \mapsto e_{j} & & \text { for } j \notin I
\end{array}\right.
$$

Let W be the Weyl group of (12). By definition, W leaves κ invariant, that is, $r w(h)-(r-2) \sum_{i=1}^{n} w\left(e_{i}\right)=\kappa$ for every $w \in W$. In particular, we have

$$
\begin{equation*}
r \operatorname{deg} w(h)-(r-2) \sum_{i=1}^{n} \operatorname{deg} w\left(e_{i}\right)=r \tag{14}
\end{equation*}
$$

Lemma 4 If the inequality (2) holds, then the W-orbit of e_{n} is infinite.
Proof. The assumption implies $r \geq 3$. Let w be an element of the Weyl group. There exists a subset $I \subset[n]$ of cardinality r such that

$$
\sum_{i \in I} \operatorname{deg} w\left(e_{i}\right) \leq \frac{r}{n} \sum_{i=1}^{n} \operatorname{deg} w\left(e_{i}\right)
$$

By (14) we have
$\operatorname{deg} w\left(\alpha_{I}\right)=\operatorname{deg} w(h)-\sum_{i \in I} \operatorname{deg} w\left(e_{i}\right) \geq \operatorname{deg} w(h)-\frac{r^{2}}{n(r-2)}(\operatorname{deg} w(h)-1)$,
which is positive by (2). Therefore, $\operatorname{deg} w\left(R_{I}(h)\right)-\operatorname{deg} w(h)=(r-$ 2) $\operatorname{deg} w\left(\alpha_{I}\right)$ is also positive. It follows that the degree is increased by a suitable reflection R_{I}. Hence, the orbit $W \cdot h$ is infinite. So is $W \cdot e_{n}$ by the equality (14).

The Weyl group of $T_{p, q, r}$ is infinite if and only if $1 / p+1 / q+1 / r \leq 1$ ([3] Chap. 4). The lemma also follows from this.

Let C be an elliptic curve and Λ_{C} the $(n+1)$-dimensional variety $\mathrm{Pic}^{r} C \times$ C^{n}. This is canonically isomorphic to $\mathrm{Pic}^{r} C \times\left(\mathrm{Pic}^{1} C\right)^{n}$. So the factor permutation of C^{n} and the automorphism

$$
\begin{gathered}
\left(D ; c_{1}, \ldots, c_{n}\right) \mapsto\left(D^{\prime} ; c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right), \\
\left\{\begin{aligned}
& D^{\prime}=(r-1)-(r-2) \sum_{i=1}^{r} c_{i} \\
& c_{i}^{\prime}=D-c_{1}-\cdots-c_{i}-\cdots-c_{r} \text { for } 1 \leq i \leq r \\
& c_{j}^{\prime}=c_{j} \text { for } r+1 \leq j \leq n
\end{aligned}\right.
\end{gathered}
$$

define the action of the Weyl group W on the variety Λ_{C}. For a real root $\alpha=a h-\sum_{i=1}^{n} b_{i} e_{i} \in \Delta^{r e}$ ([3] Chap. 5), the reflection R_{α} interchanges

$$
f_{\alpha}: \Lambda_{C} \longrightarrow \operatorname{Pic}^{0} C, \quad\left(D ; c_{1}, \ldots, c_{n}\right) \mapsto a D-\sum_{i=1}^{n} b_{i} c_{i} .
$$

with $-f_{\alpha}$. We denote the fiber $f_{\alpha}^{-1}(0)$ by $\mathcal{D}(\alpha)$.
Example $3 \mathcal{D}\left(e_{i}-e_{j}\right), i \neq j$, is the diagonal $\left\{c_{i}=c_{j}\right\} . \mathcal{D}\left(h-\sum_{i=1}^{r} e_{i}\right)$ consists of $\left(D ; c_{1}, \ldots, c_{n}\right)$ such that $\sum_{i=1}^{r} c_{i} \in|D|$.

The Weyl group W acts on the complement of all these fibers:

$$
\begin{equation*}
\Lambda_{C}-\bigcup_{\alpha \in \Delta^{r e}} \mathcal{D}(\alpha) \tag{15}
\end{equation*}
$$

4 Standard Cremona transformation

The map

$$
\Psi: \mathbf{P}^{r-1} \cdots \rightarrow \mathbf{P}^{r-1}, \quad\left(x_{1}: x_{2}: \cdots: x_{r}\right) \mapsto\left(\frac{1}{x_{1}}: \frac{1}{x_{2}}: \cdots: \frac{1}{x_{r}}\right), \quad r \geq 3
$$

is a birational transformation of the projective space \mathbf{P}^{r-1}. It contracts the r coordinate hyperplanes to the r coordinate points and its square
is the identity. A birational map which is projectively equivalent to Ψ is called a standard Cremona transformation. Let $P=\left\{p_{1}, \ldots, p_{r}\right\}$ and $Q=\left\{q_{1}, \ldots, q_{r}\right\}$ be a pair of sets of r points of \mathbf{P}^{r-1}. If both P and Q span \mathbf{P}^{r-1}, then there exists the unique standard Cremona transformation which contracts the hyperplane H_{i} passing through the $r-1$ points $p_{1}, \ldots, \check{p}_{i}, \ldots, p_{r}$ to the point q_{i} for every $1 \leq i \leq r$. We denote this by $\Psi_{P, Q} . P$ and Q are called its center and cocenter, respectively. $\Psi_{P, Q}$ is the rational map associated with $\left|(r-1) H-(r-2) \sum_{i=1}^{n} p_{i}\right|$, the linear system of hypersurfaces of degree $(r-1)$ passing through P with multiplicity $\geq r-2$. (The sum of $r-1$ of H_{1}, \ldots, H_{r} form a basis of the linear system.) The indeterminacy locus of $\Psi_{P, Q}$ is the union $I_{P}:=\cup_{1 \leq i<j \leq r} H_{i} \cap H_{j}$ of the intersection of all pairs of the hyperplanes H_{i} 's.

Let X_{P} and X_{Q} be the blow-up of \mathbf{P}^{r-1} with center P and Q, respectively. $\Psi_{P, Q}$ induces the birational map $\tilde{\Psi}_{P, Q}$ from X_{P} to X_{Q}. The diagram

is commutative and $\tilde{\Psi}_{P, Q}$ induces an isomorphism between the complement of the strict transform of I_{P} and that of I_{Q}. Hence $\tilde{\Psi}_{P, Q}$ is an isomorphism in codimension one. (More precisely, $\tilde{\Psi}_{P, Q}: X_{P} \cdots \rightarrow X_{Q}$ is the composite of certain flops.) In particular it induces an isomorphism Pic $X_{P} \xrightarrow{\sim}$ Pic X_{Q} between the Picard groups and that between the semi-groups of effective classes. Let $\left\{h, e_{1}, \ldots e_{r}\right\}$ be the standard basis of Pic X_{P}. Then the standard basis of $\mathrm{Pic} X_{Q}$ consists of

$$
\begin{equation*}
(r-1) h-(r-2) \sum_{i=1}^{r} e_{i}, \quad \text { and } \quad h-e_{1}-\cdots-\check{e}_{i}-\cdots-p_{r}, \quad 1 \leq i \leq r \tag{16}
\end{equation*}
$$

Proof of Theorem. Let C be an elliptic curve and take an $(n+1)$-tuple $\left(D ; c_{1}, \ldots, c_{n}\right)$ from the W-invariant open subset (15) of Λ_{C}. The complete linear system $|D|$ embeds C into the $(r-1)$-dimensional projective space $\mathbf{P}_{D}:=\mathbf{P}^{*} H^{0}\left(C, \mathcal{O}_{C}(D)\right)$. Let $p_{1}, \ldots, p_{n} \in \mathbf{P}_{D}$ be the image of c_{1}, \ldots, c_{n} by the embedding Φ_{D}. Since $\left(D ; c_{1}, \ldots, c_{n}\right)$ does not belong to the divisor $\mathcal{D}\left(e_{i}-e_{j}\right) \subset \Lambda_{C}$ for any $1 \leq i<j \leq n$, the n points p_{1}, \ldots, p_{n} are distinct. Moreover, since it does not belongs to $\mathcal{D}\left(\alpha_{I}\right)$ for any $I \subset[n]$ with $|I|=r$, any r of p_{1}, \ldots, p_{n} spans the projective space \mathbf{P}_{D} (Example 3).

Hence we can perform the standard Cremona transformation of \mathbf{P}_{D} with any r of p_{1}, \ldots, p_{n} as center. Put $\left(D^{\prime} ; c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)=R_{I}\left(D ; c_{1}, \ldots, c_{n}\right)$ and $p_{i}^{\prime}=\Phi_{D^{\prime}}\left(c_{i}^{\prime}\right)$ for $1 \leq i \leq n$. Then we have the commutative diagram:

$$
\begin{array}{lllll}
& C & = & C \\
& \Phi_{D} \\
& \downarrow & & \downarrow \\
& & \mathbf{P}_{D} & \Phi_{D_{I}^{\prime}} & \\
& \mathbf{P}_{D^{\prime}}
\end{array}
$$

where Ψ_{I} is the standard Cremona transformation whose center is $\left\{p_{i} \mid i \in\right.$ $I\}$ and cocenter is $\left\{p_{i}^{\prime} \mid i \in I\right\}$. Any point of C other than $\left\{p_{i} \mid i \in I\right\}$ does not lie in the indeterminacy locus of Ψ_{I}. Let $\pi: X \longrightarrow \mathbf{P}_{D}$ be the blowing up at the n points p_{1}, \ldots, p_{n} and $\pi^{\prime}: X \longrightarrow \mathbf{P}_{D^{\prime}}$ at $p_{1}^{\prime}, \ldots, p_{n}^{\prime}$. Then Ψ_{I} induces $\tilde{\Psi}_{I}$ between X and X^{\prime} and we have the commutative diagram:

By our choice of $\left(D ; c_{1}, \ldots, c_{n}\right)$, the images $p_{1}^{\prime}, \ldots, p_{n}^{\prime}$ of c_{1}, \ldots, c_{n} are distinct and any subset of cardinality r spans $\mathbf{P}_{D^{\prime}}$. Hence we can perform the standard Cremona transformation with any r of $p_{1}^{\prime}, \ldots, p_{n}^{\prime}$ as center. We can continue this as many times as we like. Hence we have the following by (13) and (16):

Lemma 5 If an ($n+1$)-tuple ($D ; c_{1}, \ldots, c_{n}$) belongs to the open subset (15) of Λ_{C} and if α is in the orbit $W \cdot e_{n}$, then there exists a (-1)-divisor D whose linear equivalence class is α.

It is obvious that the same holds for the blow-up \tilde{X} at $\tilde{p}_{1}, \ldots, \tilde{p}_{n}$ if the n-tuple $\left(\tilde{p}_{1}, \ldots, \tilde{p}_{n}\right) \in \mathbf{P}^{r-1} \times \cdots \times \mathbf{P}^{r-1}$ belongs to a neighborhood of $\left(p_{1}, \ldots, p_{n}\right)$ in the classical topology. Hence, by virtue of Lemma $4, \tilde{X}$ contains infinitely many classes of (-1)-divisors if (2) holds. Therefore, S^{G} for a general $G \subset \mathbf{C}^{n}$ is not finitely generated by Corollary and two lemmas in $\S 2$.

Remark 1 Following [5], Steinberg [10] and independently the author [4] consider the diagonal subring

$$
S^{T \cdot G}:=R[x]+\sum_{b \geq 0}\left(I_{1}^{b} \cap \cdots \cap I_{n}^{b}\right) x^{-b} \subset R\left[x^{ \pm 1}\right], \quad x=\prod_{i=1}^{n} x_{i},
$$

of (9), which is isomorphic to

$$
\begin{equation*}
\bigoplus_{a, b \in \mathbf{Z}} H^{0}\left(X_{G}, \mathcal{O}_{X}\left(a h-b\left(e_{1}+\cdots+e_{n}\right)\right)\right) \tag{17}
\end{equation*}
$$

in the case where $n=9$ and $G \subset \mathbf{C}^{9}$ is of codimension 3. They show that this is not finitely generated if $3 D-\sum_{i=1}^{9} c_{i} \in C$ is of infinite order. The infinite generation of S^{G} follows from this easily. Note that $S^{T \cdot G}$ becomes finitely generated if $3 D-\sum_{i=1}^{9} c_{i}$ is torsion but still S^{G} is not finitely generated if the differences $c_{i}-c_{j}$ are general. Note also that $\kappa=3 h-\sum_{i=1}^{9} e_{i} \in \Lambda$ corresponding to $3 D-\sum_{i=1}^{9} c_{i}$ is an imaginary root of the affine root system κ^{\perp} of type $T_{2,3,6}$.

Remark 2 If (2) holds and if $c_{1}, \ldots, c_{n} \in C$ are general, then the image of the restriction map

$$
S^{G}=\mathcal{T C}\left(X_{G}\right) \longrightarrow \mathcal{T C}\left(C \mid D ; c_{1}, \ldots, c_{n}\right):=\bigoplus_{a, b_{1}, \ldots, b_{n} \in \mathbf{Z}} H^{0}\left(C, \mathcal{O}_{C}\left(a D-\sum_{i=1}^{n} b_{i} c_{i}\right)\right)
$$

is not finitely generated. This gives another proof of Theorem. The image is similar to the bi-graded ring

$$
\bigoplus_{m, n \in \mathbf{Z}} H^{0}\left(C, \mathcal{O}_{C}(m c+n d)\right)
$$

obtained from two points $c, d \in C$. If the difference $c-d \in C$ is of infinite order, then the support is $\{m+n>0\} \cup\{(0,0)\}$, which is not finitely generated as semi-group (cf. [7]).

References

[1] Dolgachev, I.: Weyl groups and Cremona transformations, Proc. Symp. Pure Math. 40(1983), 283-294.
[2] Hilbert, D.: Über die Theorie der algebraischen Formen, Math. Ann., 36 (1890), 473-534.
[3] Kac, V.G.: Infinite dimensional Lie algebras, 2nd. ed., Cambridge Univ. Press., 1983.
[4] Mukai, S.: Moduli Theory I, II, Iwanami Shoten, 1998, 2000, Tokyo. (English translation : An introduction to invariants and moduli, to appear.)
[5] Nagata, M.: On the fourteenth problem of Hilbert, Int'l Cong. Math., Edingburgh, 1958.
[6] -—: On rational surfaces, II, Mem. Coll. Sci. Univ. Kyoto. Ser. A, 33(1960), 271-293.
[7] Rees, D.: On a problem of Zariski, Illinois J. Math. 2(1958), 145-149.
[8] Roberts, P.: An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's 14th problem, J. Algebra, 132(1990), 461-473.
[9] Seshadri, C.S.: On a theorem of Weitzenböck in invariant theory, J. Math. Kyoto Univ., 1(1962), 403-409.
[10] Steinberg, R.: Nagata's example, in 'Algebraic Groups and Lie Groups', Austral. Math. Soc. Lect. Ser. 9, Cambridge Univ. Press, 1997, pp. 375-384.
[11] Weitzenböck, R.: Über die Invarianten von Linearen Gruppen, Acta. Math., 58(1932), 230-250.

Research Institute for Mathematical Sciences
Kyoto University
Kyoto 606-8502, Japan
e-mail address : mukai@kurims.kyoto-u.ac.jp

[^0]: *Supported in part by the JSPS Grant-in-Aid for Scientific Research (A) (2) 10304001.

