Counterexample to Hilbert’s fourteenth problem for
the 3-dimensional additive group

Shigeru MUKAT *

An m-dimensional linear representation of a group induces an action
on the polynomial ring C|[zy, ..., z,,] of m variables. This is called a linear
action on the polynomial ring. In 1890, Hilbert[2] showed that the invariant
ring was finitely generated for classical representations of the special linear
groups. The following is known as his fourteenth problem:

Problem 1 Is the invariant ring C[zy,. .., 2,]¢ of a linear action of an
algebraic group G finitely generated?

The answer is affirmative for the additive algebraic group G, (Weitzenbdck
[11], [9]). In 1958, Nagatal[5] considered the standard unipotent linear ac-
tion

(t1, .- ty) EC" NClz1, ..o, Ty Y1y -+, Yn) = S (1)
{3”””” S 1<i<n,
Yi =y + i,

of C" on the polynomial ring S of 2n variables and showed that the invari-
ant ring S¢ with respect to a general linear subspace G C C" of codimen-
sion 3 was not finitely generated for n = 16. In this article, we shall prove
the following;:

Theorem The invariant ring S¢ of (1) with respect to a general linear
subspace G C C" of codimension r is not finitely generated if

1 1 1

-+ -+ <1 (2)

2 r n-—r

In other words, S¢ is not finitely generated if dimG = s > 3 and if
n > s?/(s —2). So the answer to Problem 1 is negative for G3. But the
following part is still open:
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Problem 2 Is the invariant ring Clzy, ..., 2" of a linear action of the
2-dimensional additive group G = G, X G, finitely generated?

See Roberts [8] for non-linear actions.

Our proof of the theorem is based on the fact that the invariant ring
S% is a certain Rees algebra (§1). In geometric term, the Rees algebra
is isomorphic to the total coordinate ring TC(X) of the blow-up X of the
projective space P"~1 at n points (§2). This ring 7C(X) is graded by the
Picard group Pic X ~ Z"*! and its support is Eff X, the semi-group of
effective classes on X. Hence TC(X) is not finitely generated if Eff X is
not so as semi-group (Lemma 2).

The simplest case is

9 9 9

Zti = Z p(Ci)ti = Z p/(Ci)ti = 0} C Cg, (3)

G{(tl,...,tg)

where p(z) is Weierstrass’s p-function of an elliptic curve C' = C/(Z+Zr)
and cq,...,c9 are distinct points C. In this case, X is the blow-up of
P? at the nine points (1 : p(¢;) : ©'(¢;)), 1 < i < 9. Assume that the
sum Z?:l ¢; € C is zero, for simplicity. Then the nine points are the
intersection of two cubics, X has an elliptic fibration f : X — P! and the
nine exceptional curves are sections of f. If the difference ¢; — ¢;;1 is of
infinite order for some 1 < ¢ < 8, then there are infinitely many exceptional
curves of the first kind (cf. [6]). So S¢ is not finitely generated. (Cf.
Remark 1 at the end of §4.)

The proof of the theorem (§4) is similar but we replace the elliptic
fibration by the symmetry of Pic X with respect to the Weyl group of the
Dynkin diagram 75, ,_, with n vertices (§3):

which was introduced by Dolgachev[l]. As is well known the inequality
(2) is equivalent to the infiniteness of the Weyl group of this diagram
(Lemma 4). If G C C" is general and if (2) is satisfied, then there exist
infinitely many exceptional divisors on X. Therefore, Eff X and hence
TC(X) are not finitely generated (Lemma 3).
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1 Invariant ring is Rees algebra

Let G C C" be a linear subspace of codimension r and

n n
1
S S ST
i=1 i=1
a system of defining equations. Since 1, ..., x, are G-invariant, we obtain

the induced action of GG on the localization

Slei’, 7] = Olet' o owl = Clat a2
n

Since (t1,...,t,) € G acts by the translation y; /z; — y;/z; +t;, the invari-

ant ring S[z7", ...,z 1] is generated by
~ WY N~ U ~ Y
TS SHU NS SH A
=1 =1 1=1
over the Laurent polynomial ring Clz7!, ..., zF1]. Let
JV@,y), TPy, ..., JD(z,y) eS¢ (7)

be the products of (6) and the monomial [['_; z;. Let V be the subspace
and R the subring of S¢ generated by them. R is a polynomial ring and

V is its degree one part. The invariant ring S¢ contains R[z1, ..., z,] and
Slz7!, ..., 7Y% coincides with R[z{, ..., z*!]. Obviously we have
SY =S .., 21N S =RzE, .. 2t NS (8)

Let V4 be the linear subspace of V' consisting of J(z,y) which do not
contain the monomial y; H?:Q xz;. Then V3 C V is of codimension < 1.
A polynomial J(z,y) € V is divisible by z; if and only if it belongs to
Vi. Let I C R be the ideal generated by V;. Define V; C V and I; C R
for 2 < i < n similarly. If F(z,y) € R belongs to the b;-th power If",
then F(z,y) is divisible by 2 and the quotient F(z,y)/z” belongs to SC.
Hence S¢ contains

Rlzy,...,z+ Y (- Ima™ ™ C Rz, '] (9)
bi,eesb>0

as its subring. The following was proved in [5] in the case of codimension
3.



Proposition The invariant ring S¢ of the action (1) with respect to a
subspace G C C" coincides with the extended multi-Rees algebra (9) of
(R:I,..., I,).
Proof. 1t suffices to show the following
claim : f(JY(z,y),...,J(z,y)) € R is divisible by z” if and only if
FIM, ..., JD) belongs to I

If agl), e agr) are all zero, then J(z,y),..., J")(z,y) are all divisible
by ;. The claim is obvious, since none is divisible by z? and since V; = V.

So assume the contrary. By reordering (7), we may assume that agl) # 0.
Put

2= J(l)/agl), 2z =J? — a?)zl, ez =J0 = agr)zl.
Then

FIV T = f(aWz,aP 2 + 2, .. a Dz + 2,)

and this belongs to the ideal (z,...,2,)% if and only if f(JW,... J)
belongs to ]f" by the lemma below. When regarded as polynomials of
X1,y Tn,Y1,---,Yn, the r — 1 polynomials zo,..., 2. are divisible by z;
and only z; is not. Therefore, f belongs to (23,...,2:)% if and only if
F(IV(z,y),...,J0(z,y)) is divisible by z”. O

Lemma 1 Let I be the ideal of Clz1,..., 2] generated by linear forms
vanishing at

(a(l), a?. . a(r)) e C".

Assume that ¢V # 0. Then a polynomial f(z1,...,2) belongs to the b-th
power I° if and only if

f(a(l)zl, aPz 4+ 29, ... a2 + )
belongs to the b-th power of the homogeneous ideal (z2,. .., z,).

For small values of r, the invariant ring is very explicit.

Example 1 (r = 1) Assume that G C C" is defined by > ", ¢; = 0 for
1 <m < n. Then S¢ is generated by i, ..., z, and



Example 2 (r = 2) Assume that G C C"isdefined by > 1 ;¢ = > ¢it; =
0. Then ¢;Ji(z,y) — Ja(x, y) is divisible by z; and the quotient (¢;J1(z,y) —
Jo(z,y))/z; belongs to S¢ for every 1 < i < n. SY is generated by these
invariants over C[z1,...,z,] if ¢1, ..., ¢, are distinct.

2 Total coordinate ring

For our purpose, it is more convenient to state the proposition in geometric
term. Let P"~! = Proj R be the (r — 1)-dimensional projective space whose
homogeneous coordinates are (7). In the sequel we assume that

() r > 3 and any two of n vectors (agl), az@, e agr)) e C',1<1i<n,
are linearly independent.

(The study of S¢ for the action (1) is easily reduced to this case.) Then n
points
pi = (a@l) ol agr)) cP™l 1<i<n, (10)

7 7

are well-defined and distinct. The ideal I; C R is generated by the linear
forms vanishing at p;. Let

7:X=Xg— Pt

be the blow-up at these n points. The isomorphism class of X does not
depend on the choice of the defining equation (5). The Picard group is a
free abelian group of rank n + 1. The pull-back A of the hyperplane class
H and the classes e;, 1 < i < n, of the exceptional divisors form a basis,
which is called the standard basis of Pic X (with respect to 7). The direct
sum of the spaces of global sections of all line bundles (up to isomorphism)

D HX,Ox(ah—biey—---—bue,))~ @ HX,L) (11)

a,by,....,bn€Z LePic X

is a graded ring, which is called the total coordinate ring of X and denoted
by TC(X). In our case, TC(X¢) is the Rees algebra (9), or more precisely,
it is the Z"-graded ring (9) plus the extra grading of the polynomial ring
R. By the proposition, we have

Corollary Under the condition of ({), the invariant ring S¢ of the action
(1) with respect to G C C" is the total coordinate ring TC(Xq) of the
blow-up X¢.



Let A = @,., Ax be an integral domain graded by a free abelian group
A. The subset {\| Ay # 0} of A is a semi-group. This is called the support
of A and denoted by Supp A.

Lemma 2 If Supp A is not finitely generated as semi-group, neither is A
as a ring over Ay.

Proof. Assume that A is finitely generated. Then finite nonzero homoge-
neous elements a; € Ay, 1 <7 < N, generate A and Ay,..., Ay generate
Supp A. O

For example, the support of TC(X) as Z"*1-graded ring is the semi-
group
Eff X := {L € Pic X | H'(X, L) # 0},
of linear equivalence classes of effective divisors on X. If Eff X is not
finitely generated as semi-group, neither is 7C(X). The following is basic
for our analysis of Eff X.

Lemma 3 Let m: X — Y be the blowing up of a projective variety Y at
a point. Then the linear equivalence class of the exceptional divisor E of
belongs to any system of generators of the effective semi-group Eff X.

Proof. Assume that E is linearly equivalent to the sum D; + Dy of two
effective divisors. Let H be the pull-back of an ample divisor on Y. Then
the intersection number (E.H™ 1), m = dim X, is zero. Hence so are
(D1.H™ ') and (Dy.H™™1). Therefore, both Supp D; and Supp D, are
contained in F and either Dy or Dy is zero. [

If X and X’ are isomorphic in codimension one, then the Picard groups
are the same and Eff X = Eff X'. So we call D C X a (—1)-divisor if
there is a birational map f : X --- — X’ and a morphism 7 : X' — Y
such that f is an isomorphism in codimension one, 7 is the blowing up of
a projective variety Y at a smooth point and D is the strict transform of
the exceptional divisor of m. By the lemma, the class of a (—1)-divisor is
contained in any system of generators of Eff X. Hence Eff X is not finitely
generated if X has infinitely many classes of (—1)-divisors.



3 Root systems and elliptic curves

Let A be the lattice of rank n+1 with orthogonal basis h, eq, ..., e,. In view
of the standard Cremona transformation (see the next section especially
the formula (16)), we set (h?) = r — 2 and (e?) = —1 for 1 < i < n. For
A =ah—> " bie; € A, we denote its coefficient a in h by deg A. We put
k=rh—> (r—2)>", e;, which corresponds to the anti-canonial class of
the blow-up of P"~! at points. The orthogonal complement of x together
with its basis

.
e1 —es, €y —e€3, ..., €,_1—e, and h—Zei (12)
i=1
becomes a root system. The Dynkin Diagram is (4), that is, 15, ,_, with
three-legs of length 2,7 and n — r. For a subset I C [n] := {1,2,...,n} of
cardinality r, oy = h — > _._;e; is a root. The reflection R; with respect to
oy is as follows:

h = h+(r—2)ar =(r—1)h—(r—2)> 6
e; — e +ar fori el (13)
ej —r € for y &1

el

Let W be the Weyl group of (12). By definition, W leaves k invariant,
that is, rw(h) — (r —2) Y7, w(e;) = & for every w € W. In particular, we
have

rdegw(h) — (r — 2) Z degw(e;) =r. (14)

Lemma 4 If the inequality (2) holds, then the W-orbit of e,, is infinite.

Proof. The assumption implies r > 3. Let w be an element of the Weyl
group. There exists a subset I C [n] of cardinality r such that

r mn
Z degw(e;) < - Z deg w(e;).
el i=1

By (14) we have

,’,,2

degw(ay) = degw(h) —Zdegw(ei) > deg w(h) —m(

el

deg ’(U(h) o 1))



which is positive by (2). Therefore, degw(R;(h)) — degw(h) = (r —
2) degw(ay) is also positive. It follows that the degree is increased by
a suitable reflection R;. Hence, the orbit W - h is infinite. So is W - e, by
the equality (14). O

The Weyl group of T),,, is infinite if and only if 1/p+1/¢+ 1/r <1
([3] Chap. 4). The lemma also follows from this.

Let C be an elliptic curve and A¢ the (n+1)-dimensional variety Pic” C'x
C™. This is canonically isomorphic to Pic" C' x (Pic' C)". So the factor
permutation of C" and the automorphism

(Dseiy...yen) = (D5, ... c),

n
D' = (r=1)=(r=2)3i,¢
cc = D—-c—-—¢G—+-—¢c for1<i<r
¢ = ¢ forr+1<j53<n

define the action of the Weyl group W on the variety A¢. For a real root
a=ah — > bie; € A" ([3] Chap. 5), the reflection R, interchanges

fo: Ac — Pic’ C, (D;ec1y...ycn) —aD — Zbici.
i=1

with — f,. We denote the fiber f,1(0) by D(a).

Example 3 D(e; — ¢j), i # j, is the diagonal {¢; = ¢;}. D(h — >__; &)
consists of (D;cy,...,¢,) such that >.._, ¢; € |D|.

The Weyl group W acts on the complement of all these fibers:

Ao = {J Do), (15)

a€ATe

4 Standard Cremona transformation

The map
1 1 1
Pl P (rypimpeeim) e (—r— e ), >3,
1 X9 Ty

is a birational transformation of the projective space P"~1. It contracts
the r coordinate hyperplanes to the r coordinate points and its square
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is the identity. A birational map which is projectively equivalent to W
is called a standard Cremona transformation. Let P = {pi,...,p,} and
Q = {q1,...,q} be a pair of sets of r points of P""1. If both P and Q
span P!, then there exists the unique standard Cremona transforma-
tion which contracts the hyperplane H; passing through the r — 1 points
P1y-- -y Diy---,pr to the point g; for every 1 < ¢ < r. We denote this by
Vpo. P and @ are called its center and cocenter, respectively. Wp g is the
rational map associated with |(r — 1)H — (r — 2) Y., pi|, the linear sys-
tem of hypersurfaces of degree (r — 1) passing through P with multiplicity
> r—2. (The sum of r—1 of Hy, ..., H, form a basis of the linear system.)
The indeterminacy locus of ¥pg is the union Ip := Ui<;<j<,H; N H; of the
intersection of all pairs of the hyperplanes H;’s.

Let Xp and X be the blow-up of P"™! with center P and @, respec-
tively. Wp ¢ induces the birational map U r,o from Xp to Xg. The diagram

G
Xp RSN X0
3 \J
Pl ... - Ppri
Tpo

is commutative and ¥ p, induces an isomorphism between the complement
of the strict transform of /p and that of I. Hence U p,o is an isomorphism
in codimension one. (More precisely, U ro : Xp--- — Xq is the composite
of certain flops.) In particular it induces an isomorphism Pic Xp —
Pic X between the Picard groups and that between the semi-groups of
effective classes. Let {h,e1,...e,} be the standard basis of Pic Xp. Then
the standard basis of Pic X consists of

.
(r—1)h—(r—2) Zei, and h—ej—---—€—---—p,, 1<i<r. (16)
i=1

Proof of Theorem. Let C be an elliptic curve and take an (n + 1)-tuple
(D;cy,...,cy) from the W-invariant open subset (15) of A¢. The complete
linear system |D| embeds C' into the (r — 1)-dimensional projective space
Pp := P*H(C,O¢(D)). Let pi,...,p, € Pp be the image of ¢i,...,c,
by the embedding ®p. Since (D;cy,...,¢,) does not belong to the divisor
D(e; —ej) C A¢ for any 1 < i < j < n, the n points py,...,p, are
distinct. Moreover, since it does not belongs to D(«;) for any I C [n] with
|I| = r, any r of p1,...,p, spans the projective space Pp (Example 3).

9



Hence we can perform the standard Cremona transformation of Pp with
any r of py,...,p, as center. Put (D';c,...,c,) = Ri(D;cy,...,c,) and
p; = ®pi(c)) for 1 < i < n. Then we have the commutative diagram:

C = C
¢p | I @p
Pp \1;—> Pp
I

where U7 is the standard Cremona transformation whose center is {p; | i €
I'} and cocenter is {p} |7 € I}. Any point of C other than {p; |7 € I'} does
not lie in the indeterminacy locus of ¥;. Let m : X — Pp be the blowing
up at the n points py,...,p, and @’ : X — Ppr at pi,...,p,. Then ¥,
induces ¥y between X and X’ and we have the commutative diagram:

C = C
x s x
T 1
PD ...... — PD’
I
By our choice of (D;ecy,...,¢,), the images pj,...,p), of ¢c1,...,¢, are

distinct and any subset of cardinality r spans Pp/. Hence we can perform
the standard Cremona transformation with any r of p},...,p!, as center.
We can continue this as many times as we like. Hence we have the following

by (13) and (16):

Lemma 5 If an (n+1)-tuple (D;cy, ..., c,) belongs to the open subset (15)
of Ac and if « is in the orbit W - e,, then there exists a (—1)-divisor D
whose linear equivalence class is .

It is obvious that the same holds for the blow-up X at py,...,p, if the
n-tuple (p1,...,p,) € P™! x --- x P""! belongs to a neighborhood of
(p1,...,pn) in the classical topology. Hence, by virtue of Lemma 4, X
contains infinitely many classes of (—1)-divisors if (2) holds. Therefore,
S for a general G C C" is not finitely generated by Corollary and two
lemmas in §2. [
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Remark 1 Following [5], Steinberg [10] and independently the author [4]
consider the diagonal subring

ST —|—Z n-.nihg R[z*1], x:ﬂxi,
i=1

b>0

of (9), which is isomorphic to

P H(Xa,Ox(ah —bler + -+ +€n))), (17)

in the case where n = 9 and G C C? is of codimension 3. They show
that this is not finitely generated if 3D — Z?:l ¢; € C is of infinite order.
The infinite generation of S¢ follows from this easily. Note that ST¢
becomes finitely generated if 3D — Z?:l ¢; is torsion but still S¢ is not
finitely generated if the differences ¢; — c; are general. Note also that
k = 3h — Z?:l e; € A corresponding to 3D — Z?:l ¢; 1s an imaginary root
of the affine root system s+ of type T 3.

Remark 2 If (2) holds and if ¢y, ...,¢, € C are general, then the image
of the restriction map

=TC(Xg) — TC(C|Dscy,....cr) = @  HC,Oc(aD— Zbcl

a bl, ,b €Z

is not finitely generated. This gives another proof of Theorem. The image
is similar to the bi-graded ring

@ H(C, Oc(me + nd))

m,nez

obtained from two points ¢,d € C'. If the difference ¢ — d € C'is of infinite
order, then the support is {m +n > 0} U {(0,0)}, which is not finitely
generated as semi-group (cf. [7]).
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