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MODULI OF VECTOR BUNDLES
ON K3 SURFACES, AND SYMPLECTIC MANIFOLDS

SHIGERU MUKAI

t

K3 surfaces have been studied from old times as quartic surfaces or as Kum-
mer surfaces. The name ‘K3’ itself was introduced only a quarter of a century
ago. Since then remarkable progress has been made in its study. In the sixties,
the foundations were layed for the modern study on their position in the clas-
sification of surfaces, on their moduli space, and on their period mapping, etc.
In the seventies, the Torelli type theorem was established, which is the main
source of further progress. Now a generalization to higher dimensions is tried
and geometries (singularity, automorphism, degeneration, etc.) of K3 surfaces
are studied in detail by combining with theories in other fields.

The concept of moduli has long been known. For example, it has been well
known that the number of moduli of Riemann surfaces of genus g is equal to
3g — 3. It has been widely understood that the automorphic function is noth-
ing but the function on the moduli space of elliptic curves. In a broad sense,
a moduli space is the set of equivalence classes (isomorphism classes in most
cases) of a certain type of geometric objects, endowed with a suitable structure.
Among geometric objects are manifolds, submanifolds in a fixed manifold, vec-
tor bundles on a manifold, etc. Among structures are topology, differentiable
structure, complex structure, etc. For each type of geometric object and for
each structure, we can study the moduli problem. In this article, we restrict
ourselves to the moduli of vector bundles'. But, even under this restriction,
we meet various situations depending on which vector bundles we consider on
which manifolds. As an example, let us consider complex topological vector
bundles on topological spaces (in the category of CW complexes). In this case,
there exists a vector bundle & on a topological space B with the following
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universal property: For every topological space X , the mapping

{continuous mapping from X to B}/homotopy equiv.
— {vector bundle on X}/isom.

[f: X - Bl = [f"&)]

isbijective. B is called the classifying space and & the universal vector bundle.
In the moduli problem discussed in the sequel, we always fix a complex manifold
X and study the set V', of isomorphism classes of holomorphic vector bundles
on X . Though it seldom exists and we are forced to make a concession and a
modification, the set V, with a structure of complex analytic space is a moduli
space in the most ideal sense if there exists a holomorphic vector bundle c%’x on
the product X x V, with the following universal property: For every analytic
space S, the mapping

{holom. mapping from S to ¥, } — {holom. vector bundle on X x S}/equiv.2
[f: S - Vx]’—' [(lx xf)‘gx]

is bijective. To a vector bundle F on the product X x.S there is associated a set
{F| yxs}ses Of vector bundles on X . This is regarded as a family of vector bun-
dles on X which vary holomorphically on the parameter s. The holomorphic
mapping f: S — V, corresponding to F as above is called the classification
mapping of F. Thus, the moduli space V, controls how holomorphic vector
bundles on X vary holomorphically.

A moduli space parametrizes geometric objects of a certain type. Once it is
constructed, the moduli space itself becomes an interesting geometric object of
study. Absolute moduli spaces, such as the above classification space B and
the moduli spaces of abelian varieties and curves, have rich geometric structures
and plenty of symmetries. For relative moduli spaces, such as the V, above,
we are interested in how V, inherits various properties (cohomology group,
Riemannian metric, structure of algebraic (projective) variety and the field of
definition, etc.) from X . In this article, we study this problem in the case of
K3 surfaces. We are especially interested in how the moduli space of vector
bundles inherits the symplectic structure and the period from K3 surfaces. We
also discuss the relation with the theory of (holomorphic) symplectic manifolds,
higher dimensional analogues of K3 surfaces.

1. K3 surfaces

Vector bundles on K3 surfaces
Symplectic structure of the moduli spaces
Higher dimensional symplectic manifolds
Period of the moduli space

Notes on references

SO o

2 Two vector bundles F and F’ on the product X x S are equivalent if there exists a line
bundle L on S suchthat F®ngL ~ F'. Equivalent vector bundles F and F’ induce the same
family {F|xxs}ses = {F'l xxs}ses of vector bundles on X .
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K3 surface s Manifolds Vector bundles

l (period, metric and projectivity, etc.)
( Symplectic | i1 1 1

structure Moduli space

Notation. An (exterior) differential form of degree r is simply called an r-
form?. Let X bea complex manifold. The sheaf of holomorphic 7-forms on
X is denoted by Q;, . In the case r = dim X, an r-form is called a canonical
form and the sheaf Q) is called the canonical (line) bundle. Holomorphic
O-forms are simply holomorphic functions. The sheaf Q?‘, is denoted by &,
and called the structure sheaf of X .

For a vector space or a vector bundle E, we denote its dual by EY.

1. K3 SURFACES

In a word, K3 surfaces are 2-dimensional analogues of elliptic curves. K3
surfaces and 2-dimensional complex tori have many common properties and
their position in all complex surfaces is almost the same as that of elliptic curves
in all curves (i.e., compact Riemann surfaces). On one hand, every elliptic curve
E is expressed in the following way:

(A) E=CJT, T=x~ZeZ

as a one dimensional complex torus. On the other hand, it has many projective
models. Among them the Weierstrass standard form is the most famous. By
using the p-function“, E is expressed in the form

E:Y=4X-gX-g,. X=p(2),Y=¢(2),

B.1 1 |
(B.1) 8=60 ) —. g=140 > —.
o#yer ? o#yer ?

This shows that E is a double cover of the (complex) projective line P' branch-
ing at four points. This also shows that E is a smooth cubic curve in the pro-
jective plane P?. If we use the d-functions’ , then we obtain Jacobi’s standard

3 Do not confuse the r-form with the following: If {Xp...., Xn} is a system of homogeneous
coordinates of the projective space P”, then a homogeneous polynomial F(Xjp,..., Xn) of degree
d is called a form of degree d on P" .

4 For a suitable coordinate z of the universal covering C of E, the p-function is defined by
p(z) = 1/22 + Toper(1/(z = )2 = 1/73).

5 Replacing by a suitable affine transformation, we may assume that F'=Z+Zr and Im7 > 0.
Put g =™ Then ®-functions of E are defined by

(=]
93(z) = Z g ez = 1 42 Z:q"2 cos2nnz,
nez n=1
. N 0 2
0y(z) = e 4™ 03(z 4+ §) =2 ¢+ cos(2n + )z,
n=0
Bi(2)=0(z+ %) and Bp(z) = 05(z + ).
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form

(B.2) E: { Xy =kX'+KX7, X, =9(2),

X =kx,-k'x,", i=0,1,2,3,
k =9,2(0)/9,2(0), k' =8,7(0)/8,7(0).

This shows that E is a complete intersection 6 of two quadratic surfaces in the
projective space P.

Among all the curves, the elliptic curves are characterized by the property
that they have nowhere zero holomorphic canonical forms. There are exactly
three types of surfaces with this property (Kodaira [46, I, §6]). One is the 2-
dimensional complex tori and another is the K3 surfaces ' . They inherit (A)
and (B) from the elliptic curve, respectively.

Definition (1.1). A surface (i.e., 2-dimensional compact complex manifold) is
a K3 surface if it satisfies

(1) there exists a holomorphic 2-form w e H 0(S , Qz) without zeroes, and
(2) the first Betti number B, is equal to zero.

By (1), K3 surfaces are symplectic manifolds in the following sense.

Definition (1.2). A closed holomorphic 2-form @ on a complex manifold X is
a (holomorphic) symplectic structure if w is nowhere degenerate, i.e., the skew-
symmetric bilinear form w_: ¢,  xt,  — C on the tangent space ¢, , of X
is nondegenerate at every point x € X .

Every two K3 surfaces can be deformed to each other (ibid., §5). The isomor-
phism classes of all K3 surfaces are locally parametrized by a 20-dimensional
complex manifold. It is known that every K3 surface has a Kahler metric® (Siu
[86], cf. [8]). In this article, we do not treat nonalgebraic K3 surfaces. All alge-
braic K3 surfaces® are parametrized by a countable union of 19-dimensional
algebraic varieties. This relationship between all K3 surfaces and algebraic K3
surfaces is similar to that between 2-dimensional complex tori and abelian sur-
faces.

Now we give some examples of (algebraic) K3 surfaces.

Example (1.3) (Quartic surface). Let {X,, X, , X, , X;} be a system of homoge-
neous coordinates of the projective space P’ and f ahomogeneous polynomial

6 An intersection Y = ¥, Nn-.-NY, C X of subvarieties Y,,..., Y, in X is a complete
intersection if the codimension of Y in X isequal to Y 7, codimy Y; at every pointof Y.

7 The third type of surfaces with trivial canonical bundles is called Kodaira surfaces. They are
neither algebraic nor Kihler. Their first Betti numbers are equal to 3.

8 A Hermitian metric 37 =187 dz*dz? of a complex manifold is a Kahler metric if its

fundamental form (V=1/2)Y" ,_, g =dz" AdZF is closed. A smooth projective variety always
a f=1 5,8

has a Kihler metric.
9 Every (smooth compact) algebraic surface has a projective embedding. In particular it has a
Kihler metric.
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of degree 4 in the variables X, X,, X,, and X. ;- The set of zeroes
S: f(X,.X,.X,,X,)=0 inP’

of f isa K3 surface if it is smooth at every point s € S, that is, if the partial
derivatives df/dX; (i=0,1,2, and 3) have no common zeroes.

The quartic surface S satisfies (2) in Definition (1.1) by the theorem of
Lefschetz '°. We show that S also satisfies (1). Let U, be the open subset of

P® defined by X, ;é 0. Then U, is an affine 3-space C® with the system of
coordinates X,/X,, X,/X,, and X;/X, . We expand the 3-form

d(X,/Xy) Nd(X,[Xy) Ad(X,/X,)
on U, formally and obtain ¥, = ‘P/X , where we put
¥ = XodX, AdX, AdX, - X dX, NdX, NdX,
+ X,dXyAdX | NdX, - XydXy NdX| AdX,.
Hence the 3-form

WIS (Xg, X, Xy X)) = Yo/ £(1, X,/ Xy Xy ) Xy X,/ X,)

has simple poles along the intersection S N U, and is holomorphic on U \S.
This is the same for the other open subsets U,: X #0 (i=1,2,and3). Hence

¥/ f(X, ,»X;) is a meromorphic 3- fonn on P with simple poles along
S. The residue Ress(‘-l’/ f) of W/f along S is defined as a meromorphic
2-form w on §. Since S is smooth, w has no zeroes or poles. So we have
proved (1.3).

The above argument also works for higher dimensional projective spaces P” .
We put

n
Y=Y (-1)XdX,A---NdX,_ AdX,  A---NdX

i+1 n
i=0

for a system of homogeneous coordinates X, .. X, of P"If f(X,.... X,
is a homogeneous polynomial of degree n + l then ¥Y/f is an n-form (or
canonical form) holomorphic on f # 0 and has simple poles along f = 0. By

this fact, we obtain another example of a K3 surface.

Example (1.4). Assume that in the projective 4-space P! , a quadratic hypersur-
face

Q:q(Xo,X,,Xz,X3,X4)=0
and a cubic hypersurface
D:d(X XX X, X)) =0

0 If Y is a smooth ample divisor of a smooth projective algebraic variety X , then the natural
homomorphism Hi(X,Z) — H!(Y .Z) is an isomorphism for every 0 <i<dimX (cf. [97] and
[98)).
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intersect transversally, that is, two vectors (d¢/0X,...,04/0X,) and
(0d/dX,, ... ,08d[/0X,) are linearly independent at every point of QND . Then
S =0nD isaK3 surface.

In fact, taking residues of the 4-form ¥/qd first along Q and next along
S, we obtain a holomorphic 2-form on S . In a similar way, we also obtain the
following two examples.

Example (1.5). Assume that three quadratic hypersurfaces
Q;:9,(Xy. X, . X, X5, X,,X5) =0, i=0,1, and 2

intersect transversally in the projective 5-space P’. Then the intersection S =
Q,nQ,NQ;, is a K3 surface.

Example (1.6). Let C: y(X,, X, ,X,) = 0 be a smooth sextic curve in the pro-
jective plane P? and let

:S—oP, Y=y, X, . X,)

be the double covering which ramifies exactly along C . Then S is a K3 surface,
(n*¥/Y is a nowhere zero holomorphic 2-form on §.)

Each example above of a K3 surface carries a natural polarization (an equiv-
alence class of finite morphisms to projective spaces). The next example is a
classical one but has no natural polarization.

Example (1.7) (Kummer surface). Let T = CYr, T ~ Z% be a 2-dimen-
sional complex torus and : the symmetry ¢ — —t of T with respect to the
origin. The fixed point set of : coincides with the set of 2-torsion points %I‘/ r.
Hence the quotient space 7/: has sixteen ordinary double points i, Taking
the minimal desingularization of T/i1, we obtain a K3 surface. We call this K3
surface the Kummer surface associated to T .

2. VECTOR BUNDLES ON K3 SURFACES

In this section, we give some examples of vector bundles on K3 surfaces and
show the existence of a symplectic structure on the moduli space in two concrete
examples.

Definition (2.1). A holomorphic mapping n: E — X between complex mani-
folds is a holomorphic vector bundle 12 of rank r if there exist an open covering
{U,},c; of X and a family of biholomorphic mappings ¢, : n_'(U,.) SC'xU,,

'l An n-dimensional hypersurface singularity O € {f(Xp..... Xn) = 0} is an ordinary double
point if the initial form of f is quadratic and nondegenerate. The singularity is resolved by a single
blowing-up. The exceptional divisor D is isomorphic to a smooth (7 — 1)-dimensional quadric
Q c P" and its normal bundle is isomorphic to &g(—1). In particular, in the case n =2, D is
isomorphic 1o P! and the normal bundle is of degree —2.

12 A vector bundle of rank one is called a line bundle.
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i € I, which satisfy
(h) for every pair of i and j € I, the difference of two mappings ¢, and
@; over the intersection U, N U f is expressed by a holomorphic function

g,:U,nU,-GL(r,.C)cC"
to GL(r,C), that is,

(@il gow,) ™ © (@) oV 1) = (8()v 1)

holds for every vector v€C" and te U;nU;,.

In the above definition, if we assume further that X is an algebraic variety,
U,;’s are Zariski 13 open subsets, and g, j’s are restrictions of rational functions
on X, then E is called an algebraic vector bundle on X . If the base manifold
X 1is a complete (or compact) algebraic variety, then by the GAGA principle
(Serre [84]), every holomorphic vector bundle on X is algebraic. In the sequel,
vector bundle (and its section) always means a holomorphic one unless otherwise
specified.

First we take a K3 surface S in Example (1.5). Let W be the vector space of
quadratic forms g(X,, X, X, ., X;,X,,X;) =0 on P’ which vanish identically
on S. Then W is a 3-dimensional vector space with basis q,, ¢,, and g,
defining S. In other words, the set N of quadrics ' of P’ containing S is a
projective plane spanned by Q,, Q,,and Q,. Let 4, be the symmetric 6 x 6
matrix corresponding to the quadratic form g, , for i = 1,2, and 3. A quadric
Q: aygy+a,g,+a,q, = 0 is smooth if and only if the matrix ay4,+a,4,+a,4,
is regular. Hence the set of singular members in N coincides with

Ny ={Q: aggy+a,q, + a,q, = 0 in P° | det(ayd, + a, 4, + a,4,) = 0}.

Since det(ay4, + a4, + a,4,) =0 is a homogeneous polynomial of degree 6
in the variables a;, a,, and a,, N, is a sextic curve in N =~ P,

Example (2.2) ([62]). Let S be a K3 surface in Example (1.5) and assume
that every quadric containing S is of rank > 5. Let h € H 2(S ,Z) be the
cohomology class (i.e., the Poincaré dual of the homology class) of hyperplane
sections of S C P°. Then the moduli space of stable '° (with respectto S C P’ )

13 A subset of an algebraic variety (resp. a compact complex manifold) is Zariski open if its
complement is a closed algebraic (resp. analytic) subset.

14 A quadratic hypersurface is simply called a (hyper)quadric. N is called a net of (hyper)
quadrics. See [115] for the general theory of nets of quadrics.

I51et X ¢ PY be an n-dimensional projective algebraic variety. We denote the restriction
of the tautological line bundle by &x(1) and its kth power by &y (k). For a coherent sheaf F,
there exists a polynomial Pr(¢) such that Pg(k) is equal to the dimension of the space of global
sections of F ® @y (k) for k > 0. Pgr(t) is called the Hilbert polynomial of F. Pp(f) isa
polynomial of degree < n and n! times the coefficient of (" is equal to the rank r(E) of E. A
torsion free coherent sheaf E is (semi-)stable (with respect to X c PV in the sense of Gieseker
[29)) if Pr(k)/r(F) < Pg(k)/r(E), k > 0 (resp. <) holds for every proper nonzero subsheaf F
of E.
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Ps DO oS
o 21 X
(gg,ggg“) ~ N=x=p?

No:det(z a;A;)=0

rank 2 vector bundles with ¢, = & and ¢, = 4 is a K3 surface described in
(1.6). Moreover, it is canonically isomorphic to the double cover of N ~ P’
with branch the sextic curve N,. (Bhosle [12] generalizes this to complete
intersections of three quadrics in P” )

Now we explain the above relationship between the vector bundles on S and
the net of quadrics N. We recall that the Grassmann variety Grass(Pl cp’ )
of lines in the projective space P’ is a smooth quadric p,,Py, — P3Py +
D14Py; =0 in P’ by the Pliicker coordinates ' Fora point p (resp. a plane
P)in p’ , let L, (resp. L,) be the subset of Grass(Pl C P3) consisting
of lines passing through p (resp. contained in P). Both L, and L, are

planes contained in Grass(Pl C P3) c P°. The family of planes Lp’s are
parametrized by P’ and L p's by the dual projective space of P’. All smooth
quadrics in P’ are isomorphic to each other. Hence we have proved that every
smooth 4-dimensional quadric Q contains two families of planes parametrized
by projective 3-spaces. Take a family of planes on Q and denote it by

. . oS 3
{P,C Q| P isaplane in P} A~P".

1eA’
For every point x of Q, the parameters ¢ with x € P, form aline in A, which
we denote by / . Let V' be the 4-dimensional vector space of linear forms on

A. Then we obtain the exact sequence
0—-F —-V—-E -0,

where F_ is the space of linear forms that vanish on /, and E_ is the space of
linear forms on / . Both F_ and E_ are of dimension 2. So we define a rank
2 subbundle F, and a rank 2 quotient bundle E, of the trivial vector bundle

161et W be an r-dimensional subspace of a vector space V. Then the rth exterior prod-
uct A" W is a l-dimensional subspace of A" V. The Pliicker coordinate of W is the point
of P.(A" V) corresponding to A" W . By the Pliicker coordinates, the Grassmann variety of r-
dimensional subspaces of ¥V (or (r — 1)-dimensional subspaces of P.(V)) is a submanifold of
P.(A\’ V). This embedding Grass(P"~' c P¥-!) c P+)=! is called the Pliicker embedding. In
ourcase, N=4 and r =2, we put p;j =v; Av; forabasis {v|,v;,v3,v4} of VV.
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VxS by

Fy=\JF,x{stcVxS, E,=|JEx{s}—VxS.
seS sES

Under the assumption in (2.2), E, is a stable vector bundle satisfying the
numerical condition in (2.2). Moreover, the family {E,} is a complete set of
representatives of all the isomorphism classes of such vector bundles, where
A runs over all families of planes in quadrics in N . Associating to each A
the quadric @ swept out by planes parametrized by it, we obtain a morphism
from the moduli space to N. If a quadric Q degenerates and has a singular
point, then the two families of planes on it become the same one. Hence this
morphism is generically 2 to 1 and ramifies along N, . This shows (2.2).

Next we consider the K3 surface S ¢ P* in Example (1.4). Let / be a line
that intersects S at exactly two points (counting with the multiplicities) and let
s be a point of §. We denote by V, (resp. F, ) the space of linear forms on

P* that vanish on / (resp. on / and at s). Put

Fi=JF x{stcV,xS.
SES

Unless s lieson /, F, s 1s of dimension 2. Hence F, ,' is a vector bundle over
S\(Sn!). F ,' extends a vector bundle F; on all of S by the following:

Proposition (2.3) ([34]). Let X be a 2-dimensional complex manifold and E a
vector bundle over X minus a point x € X . Then there exists a neighborhood
U of x such that E is trivial over U\{x}. Moreover, there exists a unique
vector bundle E on X whose restriction to X\{x} is isomorphic to E .

Example (2.4). Let S C P* be a K3 surface in Example (1.4) and assume that S
contains no lines. Then F, is a stable (with respect to S C P*) rank 2 vector

bundle with ¢, = —=h and ¢, = 4, where h € HZ(S ,Z) is the cohomology

class of hyperplane sections of S C P, Moreover, for every such stable vector
bundle F, there exists a unqiue line / with #(/NS) = 2 and such that F, > F .

We show the existence of a symplectic structure on the moduli space in the
above case. By our assumption, / is either a line that joins two distinct points
x and y on S or a line tangent to S at a point x € S. The latter is the
limit of the former as y goes to x inside S (y becomes a 1-dimensional
subspace of the tangent space ¢ x of S at x). Sucha y is called an infinitely
near point of x. The set of unordered pairs {x,y}, where x and y are
distinct points on S or one is an infinitely near point of the other, is denoted
by Hilb’S. For every point {x,y} of Hilb’ S , there exists a unique line /
that joins x and y. Let S§xS be the blow-up of the product S x§ of two
copies of S along the diagonal. Then Hilb’ S is isomorphic to the quotient of
§x3 by the involution induced from the factor change. The natural mapping
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Hilb’ S — Sym2 S is the minimal resolution of the second symmetric product
of S. Moreover, by this description '7 of Hilb’S , we have the following.

Proposition (2.5). If S is a K3 surface, then Hilb’ S has a natural symplectic
structure induced from that of S .

This proposition was first stated by Fujiki and established the existence of
higher dimensional simply connected symplectic manifolds, which had been
uncertain before '* . The isomorphism classes of stable vector bundles in (2.4)
are parametrized by the open subset

(Hilb’ )’ = {{x, y} |1, ,nS = {x,y}}

of Hilb’2S. Therefore, we conclude that, in both cases (2.2) and (2.4), the
moduli space of stable vector bundles has a symplectic structure. In the next
section, we show that this always holds over K3 surfaces.

3. SYMPLECTIC STRUCTURE OF THE MODULI SPACES

Let X be a complex manifold. By the moduli space of vector bundles on X
we mean the set of their isomorphism classes endowed with a natural complex
structure. But if we allow all the vector bundles, then we cannot obtain a
good moduli space 19 We must choose a nice class of vector bundles carefully
according to the property we require of the moduli space. The following are
typical examples of nice classes of vector bundles.

(A,,) Simple vector bundles on a compact complex manifold. The moduli

space is an analytic space that may not be Hausdorff 20

(Aalg) Simple vector bundles on a complete algebraic variety. The moduli
space is an algebraic space that may not be separated (Altman-Kleiman [2]).
(Consult [48] for algebraic spaces.)

(Balg) Stable vector bundles on a projective algebraic variety X C P" . The

moduli space is quasiprojective (in particular Hausdorff 2 ). By adding the

'7 Let w be a symplectic structure of S. Then w®?:=n}w + njw is a symplectic structure
of §xS. Since w®? is invariant under the factor change involution 1, w®2|gxs\a descends to
a holomorphic 2-form S2w on (S x S\A)/1 C Hilb® S . It is easy to see that S2w extends to a
symplectic structure Hilb?w on Hilb’S .

I8 Theorem 2 in [15] is false. (2.5) is its counterexample.

19 There exists a family of vector bundles {E;},ec such that E, is isomorphic to a vector
bundle E for every ¢ # 0 but Ep is not. This is called a jumping phenomenon. For example,
let L be a line bundle such that H'(L)> a #0 and HO(L) = 0. By the canonical isomorphism
Ext'(&, L) ~ H'(L), every ta, t € C, determines the extension 0 - L — E;, - & — 0. Then
the family {E(};x0 jumpsto Eg =& &L at { =0. If we allowed such E = E, and Ep in our
moduli problem, then the point [E] would not be closed in the moduli space.

20 There exists a pair of families of simple vector bundles {E;} and {F;} such that E; ~ F;
forevery t # 0 and Eg % Fp. An example of such a pair is given over a curve of genus 3 in
Narasimhan-Seshadri [72, Remark 12.3]).

21 1f a coherent sheaf E is stable, then Pg(k)/r(F) > Pg(k)/r(E), k > 0, holds for every
nonzero quotient sheaf F # E. Assume that both E and E’' are stable and that E' is a
deformation of E . Then every nonzero homomorphism from E to E’ is an isomorphism. This
property of stable sheaves eliminates the jumping and non-Hausdorfl phenomena.
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set of certain equivalence classes 22 4f semistable sheaves, it is compactified
and becomes a projective scheme 2 (Mumford [66], Narasimhan-Seshadri [72]
(dim X = 1), Gieseker [29] (dim X = 2), Maruyama [56]).

(B,,) Vector bundles with Einstein-Hermitian metrics on a compact Kéhler
manifold (X, g). The moduli space is a Hausdorff analytic space. The Kihler
metric g induces a natural Kihler metric 2 on the nonsingular part of the
moduli space (Kobayashi [45]).

(Byy) Differentiable 25 vector bundles with anti-self-dual Yang-Mills con-
nections on a compact Riemannian manifold (X, g) of real dimension 4. The
moduli space is Hausdorff. The Riemannian metric g induces a Riemannian
metric on the moduli space.

A vector bundle E on X is simple if every (holomorphic) endomorphism
of E is the multiplication by a holomorphic function on X . If X is compact,
then every endomorphism of a simple vector bundle is a constant multiplication.
A Hermitian metric 2 of a vector bundle E on (X, g) satisfies the Einstein
condition if the mean curvature g~'99logh € C*(€nd(E)) is a constant mul-
tiplication. For a vector bundle on a projective variety, we have

pi-stable 26 = stable = semistable =  u-semistable

f

indecomposable E-H simple = indecomposable Einstein-Hermitian

In this section, we show that the moduli space of vector bundles on a K3
surface inherits the symplectic structure. We note that this is generalized in the
following form.

(C) Simple vector bundles on a compact symplectic manifold (X, w). The
symplectic structure @ induces a symplectic structure on the smooth part of
the moduli space (Kobayashi [44]).

2 If E is a semistable sheaf, then there exists a filtration 0 = EgC E, C - C E;_  C Es=E
such that each successive quotient F; := E;/E;_, is stable and satisfies Pr,/r(F;) = Pg/r(E).
This filtration is called a JHS-filtration of E . The isomorphism class of the direct sum Gr(E) :=
@j_, Fi does not depend on the choice of a JHS-filtration. Two semistable sheaves E and E’
are S-equivalent if Gr(E) ~ Gr(E').

3 (Bgig) is a beautiful application of the geometric invariant theory developed in Mumford
[67) (cf. [77)).

24 The imaginary part of a Kihler metric induces a real symplectic structure. (Ban) can be
viewed as a combination of two inheritances of Riemannian metrics and of real symplectic struc-
tures [5, p. 46).

25 If the Riemannian 4-fold is Kihlerian, then the vector bundles with anti-self-dual Yang-Mills
connections are holomorphic and essentially the same as the Einstein-Hermitian vector bundles in
(Ban) ([43] and [103]).

26 A vector bundle E on an n-dimensional projective variety X C P is u-stable or stable in
the sense of Mumford and Takemoto [88)] (with respect to X ¢ P¥ ) if (¢;(F)-h""!)/rank F <
(ci(E) * h"—V)/rank E (resp. <) holds for every nonzero subsheaf F of E (or &(E)) with
rank F < rank E , where 4 is the cohomology class of hyperplane sections of X ¢ P¥ . Kobayashi
[43, 105) proved that every Einstein-Hermitian vector bundle is a direct sum of u-stable bundles
with the same slope and conjectured that the converse holds on projective varieties. In the case
dim X = 1, this conjecture is essentially the same as the equivalence of the stable vector bundle and
the unitary representation of the fundamental group, which had been proved by Narasimhan and
Seshadri [72] (see also [19]). Donaldson [20] has proved this conjecture in the case dimX =2,
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(Cym) Anti-self-dual Yang-Mills connections on a compact Riemannian 4-
fold with a covariantly constant quaternion structure. The moduli space also
has a covariantly constant quaternion structure (Itoh [39]).

The first (A,) is a consequence of the existence of the Kuranishi space for
vector bundles ([22, 25, 87]).

Theorem (3.1). Let E be a simple vector bundle on a compact complex manifold
X . Then there exist an analytic space M(E) with a base point * and a vector
bundle & on the product X x M(E) which satisfy the following.

(1) The restriction &| ., of & to X x x is isomorphic to E .

(2) Let T be an arbitrary analytic space with a base point . If &' is a vector
bundle on X x T with &'| xxs = E, then there exists a holomorphic mapping
@ from a neighborhood of the base point of T to M(E) such that ¢(x) = + and
&' ~(1x9)&.

(3) The above mapping ¢ is unique as a germ of holomorphic mapping from
(T ,x) to (M(E),+*).

((M(E),*) and & are called the Kuranishi space and the Kuranishi family
of E, respectively.)

Since simpleness is an open condition 2 , we may assume that the restriction
E, of & to X xt is simple for every point ¢ € M(E). We define topology and
complex structure on the set of isomorphism classes of simple vector bundles
on X by those of M(E). We denote by SV, the analytic space obtained in
this manner.

In order to show some local properties of SV, and an existence of holo-
morphic 2-forms on it, we consider the infinitesimal deformation of vector
bundles. By Definition (2.1), to each vector bundle on X there are associated
a pair of an open covering { U,.},.e ; of X and a set of holomorphic mappings
g;:U;nU; — GL(r,C). We denote by GL(r,&,) the sheaf of regular matri-
ces of size r whose entries are holomorphic functions. Then g, j’s are sections
of GL(r,&,) and satisfy 888, =1 for every i,j,k € I. Hence the set
{g,.j},.. jel is a (multiplicative) 1-cocycle with values in GL(r,&,). Moreover,
the set of isomorphism classes of rank r vector bundles is identified with the
cohomology set B H l(X ,GL(r ,&0y)). Let ¢ be the infinitely small number
such that ¢ = 0 and ¢ # 0. We put g,.j = g,.j(l +ea,.j), where a; is an
r x r matrix whose entries are holomorphic functions on X . The l-cochain
{8}, jer 18 considered as a first order infinitesimal deformation of {g; itijer

27 For every family {E;} of vector bundles, the function ¢ — dim End(E;) is upper semi-
continuous.

28 Consult, e.g., {101]. In particular, all the isomorphism classes of line bundles on X are
parametrized by the cohomology group H!(X .@y). From the exact sequence 0 —» Z — &y <p
&y — 1, we have the exact sequence H'(X.Z) — H'(X .6x) - H'(X .6y) —» HY(X ,Z). By
the Hodge theory, the neutral connected component Coke[H'(X ,Z) - H'(X ,&y)] of H\(X B8
is a complex torus if X is Kihlerian.

MN’
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It is a 1-cocycle if and only if
-1
(3.2) ik Wij&jk + Ajpe = Ay
holds for every i,j,k € I. This is the same as saying that {aU}‘.' jel is an

(additive) 1-cocycle with values in the sheaf &nd(E) of (local) endomorphisms
of E. By this correspondence we obtain the canonical isomorphism

(3.3) {first order infinitesimal deformation of E}/isom. ~ H l(X ,&nd(E)).

If E is simple, by our construction of SV, and Theorem (3.1), this is
equivalent to saying

(3.4) the Zariski tangent space of SV, at the point [E] is canonically iso-
morphic to the cohomology group H' (X.,&nd(E)).

Here the Zariski tangent space at the point p is the dual vector space of the
quotient m/m2 , where m is the maximal ideal at p. In particular, we have the
inequality

(3.5) dim;, SV < dimH'(X ,&nd(E)).
The equality holds if and only if SV, is smooth at the point [E].
For an endomorphism of a vector bundle, its trace is a scalar. Hence we have

the trace homomorphism Tr: &nd(E) — &, . Associating Tr(f o g) for each
pair (f,g) of endomorphisms, we obtain the bihomomorphism

&nd(E)x End(E) — &, .
Since this is symmetrical in f and g, the induced bilinear mapping
(3.6) H'(X ,&nd(E)) x H'(X ,&nd(E)) » H (X ,8,)
is skew-symmetric. Combining with (3.4), we have (3.7).
(3.7) The Zariski tangent space of SV, has a natural skew-symmetric bilinear

form with values in H(X ,Oy) at each point.
Let F and G be vector bundles on a compact complex n-fold X and

(3.8) FxG-Q)

a bihomomorphism with values in the canonical line bundle Q; . This induces
a bilinear mapping

(3.9) H'(X,F)x H"(X,G) - H"(x ,Q")

for every i. The duality theorem of Serre [82] claims that H"(X ,Q}) is 1-
dimensional and that (3.9) is nondegenerate if (3.8) is nondegenerate at every
point of X . Applying this fact to our situation (F = G = &nd(E)), we have
that if X is a K3 surface, then (3.6) is nondegenerate. This and (3.7) are the
reasons why the moduli space of vector bundles on a K3 surface has a symplectic
structure. To prove it we need to show the following.
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(3.10) When is SV, nonsingular?

(3.11) Does the bilinear mapping (3.6) vary holomorphically as [E] moves in
SV, ? Is the 2-form obtained in this way always closed?

First we consider (3.10). If SV, is smooth at the point [E], then the Kuran-
ishi space M(E) of E is smooth at * and its tangent space is isomorphic to
H'(X ,&nd(E)). Hence shrinking it if necessary, we may assume that M (E)
is an open neighborhood of 0 in cV, N=dimH l(X ,&nd(E)). The Kuran-
ishi family & (or {E},cpr)» E, = &€l xy, see Theorem (3.1)) satisfies the
following:

The infinitesimal deformations «, = 0E, /0t |,_,,v=1,2,... ,N,
(€) along ¢, at t =(¢,,...,ty) = 0 formabasis of H' (X ,&nd(E)) .

So, we try to construct a family of deformations {E,} ., of E with (¢) for
a neighborhood T of 0 in C" in search of a condition for the smoothness of
SV, . We assume that the vector bundle E is given by a 1-cocycle {g,.j} i jel
for a sufficiently fine open covering {U;},,, of X. We deform E by finding
a family of 1-cocycles {G( N} el parametrized by T such that G; (0) 8;ij

for every i,j € 1. We expand G, ( ) in a power series of ¢ = (t,,...,¢y).
(u) u
Gij(t) = E &ij g
H=(1) oo HN)
Let {o'V, ..., o™} beabasisof H'(X,&nd(E)). Weassume that o'", ...,
o™ are represented by 1-cocycles {af})}i,jel ) ,{af.j.v)}i'je, . By (¢), we may
put zlul lg(“)t" =8 Z:’ lafj”t, Hence G(1) satisfies

G,}(z)—g,j+g,12afj’ , mod(t,, ... ty)".

When {g(“)}, Jje
cocycle condition modulo (¢, ...,y

; are defined for |u| < n so that {G,.j(t)},. iel satisfies the 1-

)"+ we ask whether {g(”)},_je (Ju| =

n+1) can be chosen so that {G,;(t)}; ,, isa l-cocycle modulo (¢, ... )

An easy analysis 2% leads us to define the 2-cocycles {obf.j.‘,g} with coef-

i.j.kel
ficients in the sheaf &nd(E). Their cohomology classes are denoted by ob®
and are called obstructions. The above is possible if and only if its cchomol-
ogy class ob™ € HZ(X ,&nd(E)) vanishes for every u with |g|=n+1.1In
particular, SV, is smooth®® at [E] if H*(X ,&nd(E)) =0

2 If {G;j(1)}ijer isa l-cocycle modulo (¢ ...., t§)"*!, then there exists a family of matrices

obﬁj‘,: whose entries are holomorphic functions on U; N U; N Uy such that Gj;{1)G(1)G(t) =

1+ Zlu|~n+l°buk’” mod (1) ...., tn)"*2. For every u with |u| = n+ 1, {obf.jf,f}.-,j.ke, is a
2-cocycle with coefficients in &nd(E) .

30 Assume that all the cohomology classes ob") € H2(X ,&nd(E)) vanish. We can choose
g‘(j" so that the power series G;;(!) = 3 gf}"l“ converges in a neighborhood of 0. {Gi;j(1)}; jer
defines the Kuranishi family & of E.
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Now we look for a better sufficient condition for the smoothness of SV,.
Note that if {G,.j(t)},..je, is a 1-cocycle modulo (¢, ... ,tN)"+l , then so is
{det(G,;(1))}; j; - The key observation is this. The trace {Tr(obi.j.',g)},._ i kel
of an obstruction cocycle {ob(’f,Z}i' jker 1 an obstruction cocycle for

1)
{det(G (1))}, ;¢; to extend a 1-cocycle modulo (¢, ... ,t,)""*. We denote by
Then the trace

detE the line bundle defined by the I-cocycle {detg, itijer

Tr(ob(“)) is an obstruction for the moduli space (of line bundles) to be smooth
at the point [det E]. In other words, the following diagram is commutative.

{obstruction for deformation of E} — {obstruction for deformation of det E}
N N
H*(X ,&nd(E)) I H (X ,0,)

But every infinitesimal deformation o € H'(X ,8,) = H'(X ,&nd(L)) of a
line bundle L can be integrated by exp(a) € H'(X ,&,) on a complex man-
ifold. Hence every obstruction vanishes for deformation of det E. It follows
that Tr(ob®)) vanishes. So we have

Proposition (3.12). Let E be a vector bundle on a compact complex manifold
X . Then every obstruction for the moduli space SV, to be smooth at [E] lies
in the kernel of the natural linear mapping

2
HY(Tr): H(X ,&nd(E)) - H(X ,0,).
In particular, SV, is smooth at [E] if Hz(Tr) is injective.

Since E is a vector bundle, the sheaf &nd(E) is the direct sum of a structure
sheaf @, and the sheaf & nd®(E) of trace zero endomorphisms of E. So the
kernel of HZ(Tr) is isomorphic to H> X.&€ ndo(E)). Proposition (3.12) and
its proof have the advantage of being easily generalized to the case that E is a
sheaf that may not be locally free (cf. [62]).

Corollary (3.13). If X is a K3 surface, then SV, is smooth.

In fact, since the canonical line bundle is trivial, the injectivity of H 2(Tr)
is equivalent to the surjectivity of the linear mapping C =~ HO(X Oy) —
HO(X ,&nd(E)) by virtue of the Serre duality. The latter holds since E is
simple.

Next we discuss (3.11). Let {G;;(1)}, je; be a family of l-cocycles parame-
trized by an open subset 7 of C". {G, j(t)},.‘ jel defines a family of vector
bundles on X . We denote it by {E,},cr - Let ¢ be its classification mapping
from T to the moduli space. Forevery ae T, (dp),: ¢, o= H'(X,gnd(Ea))
maps the tangent vector 9/dt_|,_, to the cohomology class of the (additive) 1-
cocycle {G,;(a)™'(8G,,(1)/0t,)],_,}; je; - Let @, be the bilinear mapping in
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(3.7) and put w = {wm}[ Elespl, - Then we have

) w(3)
-1l q. U{G."iG. }
r({ Yoo, U}',jel s 6tﬂ * j kel

={Tr( ;‘ZG 6: G;‘)} e HY(X.,8,).
fa g i.j.kel

By the cocycle condition G; JG}kG 1, the pull-back of w by ¢ is ex-
pressed as follows:

G oG,
Jk
(3.14) 0w 22:{ (,“ 7 azﬂ)},_ di, Aty .
ij.kel

Hence w is holomorphic. The pull-back of its exterior derivative is equal to

. 1 8G;; Gy, 8G,;
d(‘”w)—EZ{Tr(a: at o )| dr, Adty A dt,
a.f.y i.j.kel
e H (X Oy)® QT.
By the cocycle condition of {G; j} i jerr We have

6t'—_(GJ"G =G 1" o,

Hence it follows that

199 (%x o1\ (% 5
dip’w) = ¢ ; Tr [{ y _azj 3{1 Gy —az; Gy
a.py
6%\ %5 L6, 65 S\ g nde, ndr, =0,
W\ B oty K\ at fa NaLg NG, =

Thus we have proved the following

8G;;
— 1 —1 ~—1 ij .1
ZkGl6 + G 6 w65

Proposition (3.15). Let SV, be the moduli space of simple vector bundles on a
compact complex manifold. Then the smooth part (SVy),.. of SV has aclosed

holomorphic 2-form w with coefficients in HY(X ,Oy) such that wg, coincides

with (3.6) for every [E] € (SVX)reg'

If X is a K3 surface, then (3.6) is nondegenerate. Combining with (3.13),
we have

Theorem (3.16). If X is a K3 surface, then the moduli space SV, is smooth
and has a natural symplectic structure.

As is easily seen from its proof, the theorem also holds for 2-dimensional
complex tori.
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SV, has an infinite number of connected components. Here we calcu-
late their dimensions. For a pair of vector bundles E and F, we denote by
#Zom(E , F) the sheaf of (local) homomorphisms from E to F. (#Zom(E,F)
is a sheaf of (local) sections of the vector bundle E¥ ® F .) We define the Euler-
Poincaré characteristic of the pair (E, F) by

(3.17) X(E . F)=Y (-1) dimH'(X ,Zom(E , F)).

i
Let r(E) and c(E) = Y c,(E) be the rank and the Chern class of E. The
Euler-Poincaré characteristic x(E, F) is expressed in terms of r(E), r(F),

¢(E), and c(F) by virtue of the Riemann-Roch type theorem. If X is a K3
or an abelian surface, then we have

(3.18) X(E,F)=r(E)s(E) - (¢,(E)-c,(F))+s(E)(F),
where we put s(E) =er(E)+ %(cl (E)z) —¢,(E), ¢ isequal to 1 or 0 according
as X is of type K3 or abelian, and (-) is the intersection pairing on H 2(X VZ).

For a better understanding of (3.18), we introduce a lattice, i.e., a free Z-
module with an integral bilinear form. For a K3 or abelian surface X, put

HX.,Z)=ZeH'X.Z)®Z.
We extend the inner product (-) by
(3.19) . 1s)-(' 0 syy==rs'+(-I'-s'

and call H (X ,Z) with (-) the extended K3 lattice. Moreover, for a vector
bundle E on X, we define the vector v(E) associated to E by

(3.20) v(E)=(r(E),c,(E),s(E)) € H(X,Z).
Then (3.17) becomes the following simple form:
(3.21) X(E,F)=—(v(E)-v(F)).

If E is simple, then by the Serre duality theorem ([82], see (3.9)), we have
dim HA(X ,&nd(E)) = dim H*(X , €nd(E)) = 1.

Hence, combining with (3.4) and (3.13), we have

(3.22) dimyz, SV = dimH'(X,g’nd(E)) = (v(E)Z) +2.

For a vector v in H (X,Z), we denote by SV, (v) the set of isomorphism
classes of simple vector bundles E with v(E) = v. Since the rank and the
Chern class are invariant under deformation, SV, (v) is open and closed in
SVy . By (3.13) and (3.22), S¥,(v) is of pure dimension ('02) +2.

Here we explain a generalization of Theorem (3.16) to coherent sheaves. The
existence of Kuranishi spaces for (coherent) sheaves (of &, -modules) is proved
by Siu and Trautman [87]. Hence, in the same way as vector bundles, a complex
structure is defined on the set of isomorphism classes of simple sheaves on X .
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We denote by Spl, the analytic space obtained in this way. For a vector bundle
E, we denote the sheaf of its sections by @, (E). &,(E) is locally free and
the mapping E — &, (E) gives an open immersion®! of SV, into Spl, . So
we identify SV, with its image in Spl, . All assertions so far for SV, remain
true and are proved by improving the above arguments if we replace SV, with
Spl, and H'(X ,&nd(E)) with Ext'(E E).

Theorem (3.23) ([62]). If X is a K3 or an abelian surface, then the moduli space
Spl, of simple sheaves on X is smooth and has a natural symplectic structure.
Moreover, for every simple sheaf E on X, the dimension of Spl, at the point

[E] is equal to (v(E)z) +2.

This honest generalization of (3.16) yields two important corollaries. We
denote by Hilb” X the set of 0-dimensional subschemes N of length n of
X . Hilb" X has a natural complex structure as a connected component of the
Hilbert scheme Hilb, of X (Grothendieck [100]). Hilb" X is compact if X
is compact. By forgetting the scheme structure of N, we obtain the O-cycle
[N]= Zp m,(N)(p) of length n, where p runs the support of N and m,(N)
is the dimension (or multiplicity) of N at p. [N] is regarded as a point of the
nth symmetric product Sym" X of X. The mapping ¢: Hilb" X — Sym" X,
N — [N] is holomorphic. If dim X <2, Hilb" X is smooth and connected ** .
Hence the mapping ¢ is a desingularization of Sym” X . So we call Hilb" X
the nth Hilbert product of X in the case dimX = 2. For a 0-dimensional
subscheme N of X, let %, be the sheaf of ideals defining N. The sheaf
S5 ® L is a simple sheaf of rank 1 for every line bundle L on X . Every small
deformation of %, ® L is also of the form ., ® L' . Hence the isomorphism
classes of all .#, ® L with length N = n form an open subset U in Spl, .
If dimX >2, A, ®L ~.%,®L' implies N=N' and L~ L'. Hence U
is isomorphic to the product of Hilb” X and the Picard variety 3% PicX of
X. If X is a K3 surface, then PicX is discrete. If X is a complex torus,
then every connected component of Pic X is isomorphic to the dual torus X
of X. Hence (3.23) implies the following generalization of (2.5), which was
first proved by a different method in Beauville [9].

Corollary (3.24). If X is a K3 (resp. an abelian) surface, then the Hilbert product
Hilb" X (resp. the product X x Hilb" X) has a natural symplectic structure.

Thus we have obtained compact symplectic manifolds as open subsets of the
moduli of rank 1 simple sheaves. Now we consider the case of rank > 2.

31 By Definition 2.1, the sheaf &y(E) is isomorphic 1o &x®" on each open subset U;. A
sheaf with such an open covering {U,};e; is called a locally free sheaf (of &y-modules) of rank
r. A family of vector bundles E is recovered from a family of locally free sheaves &y (E).

32 See Fogarty [26]. In contrast to this fact, Hilb" X can be reducible if dim X > 3 (see [102)).

33 The moduli space of line bundles on X is denoted by Pic X and called the Picard variety of
X . Since the tensor product ® induces a group structure, Pic X is also called the Picard group.
If X is projective, then Pic X is an abelian variety (cf. [112] and footnote 28).
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The moduli space SV, (v) (see (3.22)) very rarely contains a compact open
subset**. In contrast with this, the moduli space Spl,(v) of simple sheaves
E on X with v(E) = v often contains a compact open subset by virtue of
(Ba]g). We fix a projective embedding X C P" . For a vector v = (r,1,s) of
the extended lattice H(X,Z), let M «(v) be the set of isomorphism classes 3
of stable (with respect to X C pY ) sheaveson X . A stable sheaf is simple and
semistable. Since stability is an open condition (Maruyama [107]), M, (v) isan
open subset of Spl,(v). By (Bals) » M, (v) is naturally compactified by adding
the equivalence classes of nonstable, semistable sheaves E with v(E) = v.
Therefore, if it happens that every semistable sheaf E with v(E) = v is stable,
then M, (v) is compact. This happens, for example, if the greatest common

divisor of the three integers r, (/-h), and s is equal to one *®, where 4 is the
cohomology class of hyperplane sections of X C PY.

Corollary (3.25). Let X be a K3 or abelian surface and v = (r,l,s) a vector
of the extended lattice H(X -Z). If GCD(r,(I - h),s) = 1, then every con-
nected component of the moduli space M, (v) is a smooth projective variety of
dimension (vz) + 2 with a natural symplectic structure.

Corollary (3.24) is the special case of (3.25) with v = (1,0,¢ —n). The
moduli space M, (v) is connected in many cases, e.g., if r < 2.

Conjecture. The moduli space M, (v) is connected for every v if X isa K3
or an abelian surface.

4. HIGHER DIMENSIONAL SYMPLECTIC MANIFOLDS

In this section, we recall the general theory of compact Kihler manifolds with
(holomorphic) symplectic structures. We give some examples of them and pose
some problems concerning them.

If w is a symplectic structure of 2n-dimensional complex manifolds, then
its Pfaffian
WA AN
N, s’
n times
is a (holomorphic) canonical form without zeroes. Hence the canonical line
bundle of a symplectic manifold is trivial. Conversely, let X be a compact
complex manifold with trivial canonical line bundle. We further assume that

34 As an example we consider the moduli space of vector bundles in Example 2.4. The K3
surface S is contained in a quadric Q and every linein Q meets S at three points. Hence the
moduli space = (Hilb?S)? of stable vector bundles is not compact. Take a curve {xt . yi}iea in
Hilb2S such that {x,, y} € (Hilb’S)0 forevery 0 #t € A c C and {xp,yo} €& (Hilb>S)°,
then lim,_g E;, is not a vector bundle at the third point of Iy NS, where / is a line joining x,
and y; .

35 See [29), [55), or [57, Part 1] for a more precise definition of My .

36I1f E is semistable and not stable, then there exists a subsheaf F of E with
(1/r(F)Xr(F).(cr(F)-h},s(F)) = (1/r(E))r(E).(c;(E)+h).s(E)) and 0 < r(F) < r(E). Hence
r(E).(c;(E)-h),and s(E) have a common divisor greater than one.
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X has a Kihler metric. (This is the case if X is a projective algebraic variety.)
By virtue of Yau’s [95, 96] solution of Calabi’s conjecture, X has a Kihler
metric g = (g,.j) whose Ricci curvature (R,.J.) is identically zero. Let X be the
universal covering of X . The decomposition of the holonomy representation
(with respect to g ) into irreducible ones induces a decomposition of X into the
product of a complex Euclidean space and Kihler manifolds with irreducible
holonomy representations. (This is called the de Rham decomposition.)

Decomposition Theorem (4.1) (Bogomolov [14], Kobayashi [42], Beauville
on % Let X bea compact Kdhler manifold and assume that the first Chern
class ¢ (X) e H 2(X ,Z) is torsion. Then there exists a finite unramified covering
X' of X which is isomorphic to the product

Tx[Ju, x][v;.
i J

where

(1) T is a complex torus,

(2) each U, is a simply connected projective variety such that H Su QP =
0 for every 0 < p<dimU,, and

(3) each V., is a simply connected symplectic manifold such that

dimH(V, Q) =1.

Remark (4.2). The holonomy group is a special unitary group SU(*) for each
U, and a symplectic group Sp(*) for Vj. The hypersurfaces of degree n + 1
in the projective spaces P" are examples of U j’s. Algebraic K3 surfaces satisfy
both (2) and (3).

The manifold ¥ satisfying (3) in the theorem is called an irreducible sym-
plectic manifold. The symplectic structure @ of V is unique up to constant
multiplications. Moreover, the algebra @, HV . Qf ) of holomorphic forms
on V is generated by w.

For a K3 surface S, its Hilbert product Hilb"S is an irreducible sym-
plectic manifold (Corollary (3.24)). For a 2-dimensional complex torus T,
the fibers of the Albanese mapping Hilb"*' T — T are irreducible symplec-
tic manifolds. We denote their isomorphism class by Kum"” T and call it the
nth Kummer product of 7. Kum” T is a desingularization of the subvariety
{{ty, ..., t,} |22 t, =0} of the (n+ 1)st symmetric product Sym™' T of T.
The first Kummer product is nothing but the Kummer surface (1.7) associated
to T. Kum" T appears as a decomposition factor when we apply (4.1) to the
symplectic manifold T x Hib"' T (see (3.24)). In fact, the mapping

TxKum"T - Hib™' T, (¢, {ty, ... .t, )= {tg+1,... .1, +1}

is an unramified Galois covering of degree (n + l)4 .

37 The Decomposition Theorem is also proved by Michelsohn [108]. But Theorem 7.18 in [108]
is not correct because an incorrect Theorem 2 in [15] is applied.
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Example (4.3) (Donagn-Beauvxlle [11]). Let ¥V be a smooth cubic hypersurface
in P° and Grass(P C Ps) the Grassmann variety of lines in P°. Let F V)
be the subvariety of Grass(P c P’ ) consisting of the lines contained in V.
Then F(V) is an irreducible symplectic manifold.

Itis proved in [1] that F(V) has a trivial canonical line bundle and that F 1)
is a 4-dimensional subvariety of degree 108 in P'* by the Pliicker coordinates.
If V is deformed to another cubic hypersurface V', then F (V) is deformed
to F(V'). Hence, in view of (4.1), for the proof of (4.3), it suffices to show
(4.3) for one cubic hypersurface. In [11]}, this is shown by using a K3 surface of
degree 14. Here we prove it by using a K3 surface of degree 6. Let ¥V, be a cubic
hypersurface in P’ which has an ordinary double pointat p = (0: 0: 0: 0: 0: 1)
and is smooth elsewhere. The defining equation of V, is of the form

Vo a(Xo, X, Xy X5, X)Xs+d(X, . X, X,, X,,X,) =0 inP°

for quadratic and cubic forms ¢ and d. Let S be the surface in P* defined as
the common zero locus of ¢ and 4. By our assumption on ¥V, » the intersection
of 4 =0 and 4 =0 is transversal. Hence S isa K3 surface by Example (1.4).
It is easy to see that for every pair of points {a,b} Hilb’ S of S, there exists
a unique line [, p in ¥V, that meets the two lines pa and pb. The mapping

¢: Hilb’S — F(Vy), {a.b} — I, , is holomorphic and birational. F(V,)
has ordinary double points along a subvariety isomorphic to S and ¢ is its
minimal resolution. Since Hilb’S$ is a symplectic manifold and since F(V)
is a deformation of F(V,), F(V) is also a symplectic manifold % for every
smooth V.

As another example, we explain a way to obtain a new symplectic manifold
from an old one. Let X be a 2n-dimensional complex manifold with a sym-
plectic structure @ and Y a complex submanifold of X . There exists a natural
exact sequence

0-T,-T |}'_"NY/X—'0

and @ induces a skew-symmetric bilinear form on T,. An n-dimensional
submanifold Y is called Lagrangian (with respect to w) if the restriction of
@ to T, is identically zero. Since the restriction of w to T x|y 1s nondegen-
erate, the normal bundle N, , and the tangent bundles T, of a Lagrangian
submanifold are each other’s dual. Since a global (holomorphlc) 2-form on a
rational variety is always zero, an n-dimensional rational submanifold of X is
always Lagrangian. Let us consider the special case Y ~ P". We blow up X
along Y. The inverse image Y of Y is isomorphic to the projectivization of
the normal bundle N, Yx = T . Hence Y is isomorphic to the (partial) flag
variety

{( p.H)| p€Y and H is a hyperplane passing through p} c Y x ¥*

8If X has ordmary double points along a (smooth) subvariety of codimension 2, then the
minimal resolution X is a flat deformation of X .
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of Y, where Y* is the dual projective space of Y. Y isa P"~'-bundle not
only over Y but also over Y*. The situation is symmetrical in ¥ and Y*. ¥
can be blown down in the direction ¥ — Y* in X. We obtain a new complex
manifold X* which contains Y* and such that X*\Y* ~ X\Y. Moreover,
X" has a symplectic structure:

Theorem (4.4) ([62]). Let X be a 2n-dimensional symplectic manifold and Y
its submanifold isomorphic to P" . Then there exist a symplectic manifold X",
its submanifold Y* canonically isomorphic to the dual projective space of Y,
and a birational mapping ¢: X --- — X" that satisfy the following:

\

(1) ¢ (resp. ™) is not defined on Y (resp. on Y*) but an isomorphism
outside it, and

(2) the indeterminacy of ¢ (resp. (a_') is resolved by the blowing up along
Y (resp. Y).

This theorem can be easily generalized to the case in which Y is a subman-
ifold of codimension r and is a P’-bundle over a manifold. The mapping
@ (resp. the symplectic manifold X*) is called the elementary transformation
(resp. elementary transform) of X along Y . The elementary transformation is
an example of a birational mapping that is not an isomorphism but an isomor-
phism in codimension 1. This phenomenon does not occur for manifolds of
dimension < 2: Every birational mapping ¢ between surfaces X and Y is an
isomorphism if both ¢ and ¢" are defined in codimension one. Concerning
the elementary transformation, the following problems are interesting.

Problem (4.5). Classify the birational mappings between symplectic manifolds,

especially in the 4-dimensional case .

39 The birational mappings between two 3-folds with trivial canonical bundles, more generally
between two minimal models of 3-folds, are classified by Kawamata [104] and Kollar [106].
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Problem (4.6).40 Are the elementary transforms X* of X always a deforma-
tion of X ?

An irreducible symplectic manifold is a higher dimensional analogue of a
K3 surface in many respects, e.g., period, polarization, deformation, etc. In
the next section we shall discuss the period. Here we consider torus fibrations,
which can be regarded as degenerate polarizations. A K3 surface often has an
elliptic fibration 7: S — P' over P'. This fibration is very useful for the study
of S (see e.g. [114]). A torus fibration is a higher dimensional analogue of
an elliptic fibration. A 2n-dimensional irreducible symplectic manifold often
has a morphism f: X — P" onto P" whose generic fiber is an #n-dimensional
complex torus. The following are typical examples.

Example (4.7). The nth Hilbert product
f =Hilb" z: Hilb" S — Hilb"P' = Sym”"P' ~ P"
of an elliptic fibration 7: S — P' of a K3 surface S.
Example (4.8). The nth Kummer product
f =Kum"7: Kum" T — Kum" E = (fiber of Sym"*' E — E) ~ P"
of an elliptic fibration 7: T — E of a 2-dimensional complex torus T .

Example (4.9) ([62]). Let p: S — P’ be a K3 surface in Example (1.6). For a
pair of points {a,b} € Hilb’ S (see §2) of S, we denote the line joining p(a)
and p(b) by I, ,. Theline /, , isuniquely determined unless {a,b} = (%)
for a point x € P’. So we obtain the rational mapping f': Hilb’S .- — P,,
{a,b} — l, , from Hilb’S onto the dual projective plane P, of P’. This
mapping f~ is not defined on the subvariety Y = {p_'(x) | x € P2}. But the
indeterminacy of f’ is resolved by the elementary transformation ¢ along Y,
that is, the composite f = f’ o (o_': (Hilb2 S)" — P, is a morphism. If / is
a line of P? , then the fiber of f over [/] € P, is isomorphic to the Picard
variety of the curve p_l(l) of genus 2. Hence f is a torus fibration.

The study of torus fibrations will be useful for the classification of symplectic
manifolds.

Problem (4.10). When does the total space X of a torus fibration X2" — P"
over P" have a symplectic structure?

5. PERIOD OF THE MODULI SPACE

Both K3 surfaces and curves (= compact Riemann surfaces) have the prop-
erty that their isomorphism classes are determined uniquely by their periods.
40 For every 3-fold X, the (pure) Hodge structures IH;(X ,Z) are independent of the choice

of a minimal model X of the 3-fold ([106, Corollary 4.12]). Problem. Are the Hodge sturctures
H!(X .Z) birational invariants of a symplectic manifold X ?
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We expect that higher dimensional symplectic manifolds have a similar prop-
erty. In this section we formulate a Torelli type problem for them and study the
periods of symplectic manifolds that are obtained as moduli spaces of vector
bundles (Corollary (3.25)).

In a naive sense, a period is the integral of a (holomorphic) r-form on a
topological r-cycle or a set of such integrals. Let C be a curve of genus g. We
take a basis w,, ... 0, of the space HO(C Q) of holomorphic 1-forms on
C and a basis a, ... V0, of the first homology group H,(C,Z) of C. We
obtain 2g2 integrals fa,— w, (1<i<g,1<j<2g). The g x2g matrix
( fa,- ;) <i<g. 1<j<2g is called the period matrix of C. The Torelli theorem
asserts that the isomorphism class of C is uniquely determined by a certain
equivalence class of its period matrix. To a 1-form @ we associate a homo-
morphism f,: H,(C,Z) - C, e [, o. We identify* e H(C,Q) with
f, € Hom(H,(C,Z),C) and HO(C ,Q) with a subspace of HI(C,C). The
natural orientation of C and the cup product induce the intersection pairing

(5.1) (-):H(C,Z)x H(C.,Z) - Z

on the first cohomology group H l(C ,Z). The following form of the Torelli
theorem seems to be most natural in the geometric point of view.

Torelli Theorem in Strong Form (5.2) (Matsusaka [58]). Let C and C' be
curves of the same genus and let 9: H'(C' ,Z) > H'(C,Z) be an isomorphism
between their first cohomology groups. Assume that ¢ is compatible with the
intersection pairings (5.1) and that ¢ ® C maps H°(C',Q) onto H’(C,Q).
Then their exists an isomorphism f: C 5 C' from C onto C' that induces ¢
or —@ on the first cohomology group.

Torelli Theorem (5.3) (Weil [94], Andreotti [3]). 2 A curve C is isomorphic to
C' if and only if there exists an isomorphism ¢: H ! (C".\Z)S H ! (C,Z) that is
compatible with the intersection pairings and such that ¢ ® C maps HO(C' , Q)
onto H%(C,Q).

In the case of K3 surfaces, we use 2-forms and 2-cycles instead of |-forms
and l-cycles. As in the case of curves, we identify the space HO(S ,Qz) of
holomorphic 2-forms on S with a subspace of the second cohomology group
H 2(S ,C). The natural orientation of S and the cup product induce the inter-
section pairing

(5.4) (+): H(S.Z)x H(S.Z) > Z

on the second cohomology group H 2(S ,Z). Though the situation is different
in that the intersection pairing (5.4) is symmetric while (5.1) is skew-symmetric,
an analogue of (5.3) holds for K3 surfaces.

41 The mapping H%(C,Q) — H!(C.C) isinjective by the theorems of de Rham and Dolbeault

(see e.g., [102]).
42 The ideas of its several proofs are illustrated in [69, Lecture IV].
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Torelli Type Theorem (5.5) (Pijateckii-Sapiro and Safarevit [81, 16, 52]). 4
K3 surface S is isomorphic to S’ if and only if there exists an isomorphism
o: H’ (8'.Z2) > HY(S, Z) that is compatible with the intersection pairing (5.4)
and such that ¢ ® C maps H°(S',Q%) onto HY(S,Q?).

A Torelli type theorem in strong form, which is an analogue of (5.2), is
also proved for K3 surfaces (Looijenga and Peters [52], Burns and Rapoport
[16], cf. [7]). We call the pair of the lattice H*(S,Z) ~ Z®?* and a subspace
HO(S,QZ) ~C of H 2(S,Z) ® C the period of S. The Torelli type theorem
claims that the isomorphism class of S is uniquely determined by its period.

Remark (5.6). The period of a 2-dimensional complex torus T is also defined
in the same way by using 2-forms and 2-cycles. But (5.5) does not hold for
complex tori. In fact, T and its dual torus 7 have the same period with
respect to 2-forms. Shioda [85] has proved that every 2-dimensional complex
torus with the same period as T is isomorphicto T or T.

Let X be a 2n-dimensional irreducible compact symplectic Kihler mani-
fold. We identify the space H 0(X ,Qz) of holomorphic 2-forms on X with
a subspace of Hz(X ,C) as in the case of a K3 surface. For a cohomology
class o € Hz(X .Z), we denote by (a") its self-intersection number, that is,
o’ € H"(X,Z) measured by the natural orientation. The self-intersection
form HZ(X L) - Z, ar (az") is not quadratic if n > 2. But the second
cohomology group H 2(X ,Z) still has a natural inner product (-) (Beauville
[10], Fujiki [27]). The following is also interesting from the view point of the
topology of symplectic manifolds.

Theorem (5.7) ([27]). Let X be as above. Then the self-intersection form on

H 2(X ,Z) is an nth power of a quadratic form. To be precise, there exist an
integral bilinear form

() H}X.Z)x H(X .Z) -~ Z
and a rational number r such that
(™) =r(a-a)"
holds for every o € H*(X ,Z).

We normalize the inner product so that {w - @) is positive and the greatest
common divisor of the {a-B)’s is equal to 1, where o and # run over H2(X ,Z)
and w is a symplectic structure of X . Then the rational number r is equal to
(2n)!/n12" (resp. (2n)!(n + 1)/n'2") if X is the nth Hilbert (resp. Kummer)
product of a K3 surface (resp. a 2-dimensional complex torus). By virtue of
the inner product ( - ), we can define periods of similar type as K3 surfaces
for symplectic manifolds. It is important that the period thus defined be a
birational invariant of X .
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Proposition (5.8). Let X and Y be irreducible compact symplectic Kéhler man-
ifolds. Assume that X and Y are birationally equivalent, that is, there exist
a complex manifold Z and proper holomorphic mappings f:Z — X and
g:Z — Y that are isomorphisms over nonempty Zariski open subsets. Then
the homomorphism

O =g of HX,Z)— H(Y.Z)

induced by the rational mapping ® = f o g'lz Y.--- = X is an isomorphism.
Moreover, ®" is compatible with the (normalized) inner products { - ) and
®* ® C maps H(X ,Q%) onto H'(Y ,QY).

Since the canonical line bundles of X and Y are trivial, the exceptional
divisors of f and g are the same. This is a key to the proof of the proposition.

We denote by NS(X) the subgroup of HZ(X ,Z) consisting of the inte-
gral cohomology classes that are perpendicular to the symplectic structure w €
H 0(X ,Q? ) with respect to the inner product (- ). We call NS(X) with the
restriction of (-) the Néron-Severi lattice of X . NS(X) is identified with the
set of Chern classes of all line bundles on X .

Corollary (5.9). If two irreducible compact symplectic Kdhler manifolds are bi-
rationally equivalent, then their Néron-Severi lattices NS(X) and NS(Y) are
isomorphic to each other.

Two symplectic manifolds with the same period are not necessarily isomor-
phic to each other [17]. By Proposition (5.8), we formulate the Torelli type
problem for symplectic manifolds as follows.

Torelli Type Problem (5.10). Let X and Y be compact irreducible symplectic
Kdhler manifolds of the same deformation type. Assume that there exists an iso-
morphism ¢: H 2(X ,Z) S H 2 (Y ,Z) that is compatible with the (normalized)
inner products { - ) and such that p ® C maps H°(X ,Q%) onto HY(Y, QY.
Is X birationally equivalent to Y ?

Now we calculate the period of the moduli space of stable sheaves on a
K3 surface §. We fix a projective embedding S C P of S and a vector
v = (r,l,s) of the extended K3 lattice H(S,Z). Let Mg(v) be the moduli
space of stable sheaves £ on S with v(E) = v (§3). By Theorem (3.16),
Mg(v) has a symplectic structure. By Corollary (3.25), M(v) is projective
if GCD(r,(h-1),s) = 1. We first consider the case of dim M (v) = 2. By
Corollary (3.25), this happens if and only if v is isotropic, i.e., (v?) =0. In
this case, a period is constructed from the extended K3 lattice (3.19) in the
following way.

(1) Let v* be the orthogonal complement of v in fI(X ,Z). Since v is
isotropic, the inner product on H(X ,Z) induces an inner product on
the quotient group 'vl/Zv .
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(2) Since the Chern class of E is algebraic, v = v(E) is perpendicular to
HO(S , Qz) in H(X,Z). Hence HO(S , QZ) is contained in v ® C
and determines a one-dimensional subspace of (vl/Z'v) ®C.

Theorem (5.11) ([63]). Let S be an algebraic K3 surface and assume that Mg(v)
is compact and of dimension 2. Then My(v) is a K3 surface and its period is

equal to v* /Zv constructed above. (In particular, Mg(v) is connected.) To
be precise, there exists an isomorphism ¢: vt /Zv > H 2(Ms).(v) ,Z) that is
compatible with the inner products and such that ¢ ® C maps H 0(S,Qz) to
H(M,(v), Q).

Define the linear mapping y: H*(S,Q) — H(S,Q) by a— (0,a, (l-a)/r).
Then w induces an isometry between Hz(S ,Q) and (vJ‘/Zv)®Q. Since y®C
maps HO(S , Qz) onto itself, we have the following.

Corollary (5.12). Under the same conditions as in Theorem (5.11), the two K3
surfaces S and Mg (v) have the same period over Q.

Remark (5.13). (1) Theorem (5.11) also holds for abelian surfaces 7. This
follows, e.g., from an explicit description of M (v). If M.(v) is of dimen-
sion 2, then it is an abelian surface isogeneous to 7. Every member of M (v)
is a vector bundle and is said to be semihomogeneous or projectively flat, in
the case r > 0. A detailed analysis of semihomogeneous vector bundles shows
that M (v) is isomorphic to f"/(p,(Tr) [59], where T is the dual abelian sur-
face of T, T, is the group of r-torsion points of 7 and ¢,: T — T is a
homomorphism associated to a line bundle L with ¢,(L) =1 (cf. [68]).

(2) Applying Theorem (5.11) to Example (2.2), we obtain a relation between
periods of two types of K3 surfaces (1.5) and (1.6). A generalization of this
relation is studied by O’Grady [79].

A sheaf & on the product § x Mg(v) is called a universal sheaf if it satisfies
the following three conditions:

(a) & is flat over M(v) (this is automatically satisfied if & is locally
free),

(b) the restriction of & to S x [E] is isomorphic to E for every member
E of M¢(v), and

(c) the restriction of & to S x U[ E) is isomorphic to the Kuranishi family
of E (cf. (3.1) and [87]) for every member E of Mg(v) and for a
sufficiently small neighborhood Uig of [E].

The homomorphism ¢ in Theorem (5.11) can be constructed from the Chern
class of a universal sheaf. But a universal sheaf does not always exist. Hence we
need its substitute. A sheaf & on S x M(v) is called a quasiuniversal sheaf of
similitude s if it satisfies (a), (b’) the restriction of & to S x[E] is isomorphic
to E® and (c') the restriction of & to S x U, g 18 isomorphic to the direct
sum of s copies of the Kuranishi family of E, for every member E of M¢(v).



166 SHIGERU MUKAI

A quasiuniversal sheaf of some similitude always exists. If both & and &’ are
quasiuniversal sheaves on S x M(v), then there exist vector bundles ¥ and V'
on Mg(v) such that & @, V ~& @, V', where m,,: S x Mg(v) — M(v)
is the projection to the second factor. We construct an algebraic cycle 3 Z,
on § x M (v) from the Chern class of a quasiuniversal sheaf and define the
homomorphism 5

H(S,Q) - H' (M(v),Q)

by amn,, «(Z,- n;a) . We consider the restriction of its H 2-part to vt ®Q:

L 2
(5.14) GU.Q:v ®Q — H (Mg(v),Q).
By the above uniqueness property, 6, Q is independent of the choice of a quasi-
universal sheaf. Since Z, is algebraic, g, . maps H 0(S , QZ) to H 0(Ms(v) ,Q° ).
In the case dim M¢(v) =2, 6, 0 is surjective and its kernel is Qu, which is

the essential part of Theorem (5.11). In the case dim M¢(v) > 2, we have the
following:

Theorem (5.15). Let S be an algebraic K3 surface and fix a projective embedding
ScP". Let v be a vector ofrank 1 or2 in H(X ,Z) and M (v) the moduli
space of stable sheaves E on S with v(E) = v . Assume that Mg (v) is compact
and of dimension > 4. Then the homomorphism (5.14) induces an isomorphism

~ 122
8,:v" 3 H (Mg(v),Z)
between the orthogonal complement of v in H(S , Z) and the second cohomology

group HZ(MS('U),Z) of Mg(v). Moreover, 6, is compatible with the inner
products (-) and (-) “ and 6, ®C maps HO(S,QZ) onto HO(MS('U),QZ).

Corollary (5.16). The Néron-Severi lattice NS(Mg(v)) of the moduli space
M(v) is isomorphic to the intersection of v* and Z & NS(S)®ZC H(S.Z).

In the rank one case, say v = (1,0, 1—n), every stable sheaf with v(E) = v
is an ideal (sheaf) defining a 0-dimensional subscheme of length n. Hence
Mg(v) is isomorphic to Hilb"S. (This does not depend on the choice of
the embedding S C pY .) The orthogonal complement vt s generated by
0=(1,0,n-1) and H 2(S ,Z) . Hence the period of Hilb" S is isomorphic to
the pair of the lattice Z6 L H*(S, Z)and H 0(S ,Q%). In particular, the Néron-
Severi lattice of Hilb"S is isomorphic to Z& L NS(S) with (62) =-2(n-1).
This can be proved also by direct computation (see Beauville [9]).

Example (5.17). Let Grass(P' c P*) be the Grassmann variety of lines in the
projective 4-space P*. Let

Grass(P' c P*) c P°

43 See [63] for the explicit construction.
4 Since Mg(v) is connected, H2(Ms(v).Z) has the inner product () by (5.7).
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be the Pliicker embedding and cut it three times by a general hyperplane and once
by a general hyperquadric. Then we obtain a (polarized) K3 surface 8 ScPs.
We denote by h the cohomology class of hyperplane sections of S c P®. We
assume that the three hyperplanes and the hyperquadric are sufficiently general 46
so that NS(S) is generated by h. Then we can describe all members of M. s(v),
v=(2,h,2).

Let Q be a singular hyperquadric of P® that contains S. The projection
from a singular point of Q induces a morphism from S to P°. The image of
S is contained in the image Q of Q. Q is a hyperquadric in P°. Hence, as
in Example (2.2), we obtain a rank 2 vector bundle from a family A of planes
in Q. Moreover, we can show that all locally free members of My(2,h,2) are
obtained in this way.

Since Grass(Pl C P4) is a projective variety of degree 5 in P° , we have (hz) =
10. Hence the moduli space My(2,h,2) is a 4-fold by Corollary (3.25). This
4-fold is explicitly described as follows: Let N be the set of all hyperquadrics of
P® that contain S and N, the subset consisting of singular ones as in Example
(2.2). Then N is isomorphic to P° and N, is a hypersurface of degree 7 in N .
But N, is reducible: Let N‘; be the set of restrictions of all hyperquadrics of P’
that contain Grass(Pl C P4). Né is a hyperplane®’ of N contained in N,.
Hence N, is the union of Ny and a sextic hypersurface N, of N . The moduli
space M(2,h,2) is a double cover of the (singular) sextic hypersurface Né’ in
NP,

In this example, the intersection of the orthogonal complement v* and Z®
NS(S)®Z is generated by u = (1,0, — 1) and w=(2,4k,3) since NS(S) =
Zh . Hence, by Corollary (5.16), the Néron-Severi lattice NS of M(v) is
isomorphic to the lattice

Zu®Zw, with (u’)=2, (u-w)=—1and (w?) = -2.

This is an even integral quadratic form in two variables of discriminant 5. In
particular, NS is indecomposable. Hence Mg(v) is not birationally equivalent

to Hilb’S$ for any K3 surface S by Corollary (5.9).48 Moreover, M¢(v) is not
birationally equivalent to any symplectic 4-fold obtained as in Example (4.3),

45 This kind of construction of (polarized) K3 surfaces from Grassmann varieties is extensively
generalized in [110] and [111].

46 Moishezon (109] proved the following generalization of Noether’s theorem: Let X ¢ PV
be a projective 3-fold. If dim H%(Y,,Q2) > dim H%(X ,Q?) for a smooth hyperplane section Yo
of X C PV, then there exists a smooth hyperplane section Y such that the restriction mapping
Pic X — PicY is an isomorphism.

47 Let {v,..., vy} beabasisof ¥V andput p;; = v;Av; . The Grassmann variety G(2, V) C
P.(A2V) is defined by (’X) quadratic forms g; = p;;jpy — Pix Pj1+ Pybjx =0, where I runs
over all 4-element subsets {i < j <k </} of {I,..., N} . In particular, the set of quadratic forms

identically zero on Grass(P! C P4) Cc P? is a 5-dimensional vector space spanned by these Pliicker
relations.
48 This will dispell the doubt expressed in [9, p. 781].
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since NS has no length 6 vectors. % Thus we have obtained a new irreducible
symplectic manifold as a moduli space of stable sheaves on S'.

Though we can construct many new symplectic manifolds in a similar way,
every component of the moduli space of rank 2 stable sheaves on a K3 surface
becomes birationally equivalent to a Hilbert product of a K3 surface under a
suitable deformation of complex structure. 50 (It is expected that this will also
hold in the higher rank case.) Hence the following is still open.

Problem. Is there any irreducible symplectic manifold that is not equivalent to
Hilb” S or Kum” T modulo deformation of complex structures and modulo
birational modification?

6. NOTES ON REFERENCES

The following is a short guide to references related to the topics on vector
bundles, discussed in this article.

The projective line P' has the unusual property ' that every vector bundle
over it decomposes into a direct sum of line bundles [30]. Atiyah [4] classified
the vector bundles on an elliptic curve on C. Later Oda [78] classified them over
an arbitrary algebraically closed field. By their classification, the moduli space of
indecomposable vector bundles with fixed rank and degree is always isomorphic
to the base elliptic curve. This is also an unusual property. The moduli space
of vector bundles on a smooth projective variety X contains arbitrarily higher
dimensional subvarieties if X is not a projective line or an elliptic curve. The
rank 2 vector bundles on a curve of genus 2 and their moduli space are explicitly
described by [71, 74], etc. Desale and Ramanan [18] generalize this result to
rank 2 vector bundles over a hyperelliptic curve of an arbitrary genus. For the
moduli space of rank 2 vector bundles over an arbitrary curve, its topology
and rationality are studied by Newstead [73, 75, 76], Harder [31], Harder and
Narasimhan [32]. Mumford and Newstead [70] study the relationship between
the periods of a curve and the moduli space of vector bundles on it. 52

The global property of the moduli space of vector bundles over an abelian
surface was first studied by Umemura [91, 92]. The author [61] has found a
Fourier transformation for vector bundles on an abelian variety. The Fourier
transformation is very useful for the study of vector bundles on abelian varieties

49 For every cubic 4-fold ¥ c PS5, the Néron-Severi lattice of F(¥) contains an (integral)
vector of length 6. In fact, the cohomology class # € H*(F(V),Z) of hyperplane sections of
F(V) C Grass(P' C P%) C P4 satisfies () = 108 [1]and (h2) = \/(h%)/3 = 6. Let hL be the
orthogonal complement of 4 in H2(F(V).Z) with respect to ( - ). Then the Hodge structure A+
is isomorphic to the orthogonal complement of c,(¥) in H4(V ,Z) with respect to the intersection
pairing.

50 This is also true for the symplectic manifolds in (4.3) as we saw in §4.

51 Cf. [53, Corollary 3.4.1}.

52 As a corollary to its main theorem, it is proved there that the isomorphism class of a curve
C is uniquely determined by that of the moduli space of rank 2 stable vector bundles with a fixed
determinant line bundle of an odd degree on C. This Torelli type theorem, together with its
generalization to higher rank vector bundles, is also proved in [89] and [90).
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([60, 64, 65]). 53 The vector bundles on the projective plane are studied by many
authors. In the rank 2 case, the moduli space is explicitly described by Barth [6]
(cf. [57, Part 1)), Ellingsrud and Stremme [24], and Hulek [35). The moduli of
vector bundles of an arbitrary rank on P? is studied by Drezet-Le Potier [23].
Le Potier [50, 51] studies the Picard group of the moduli space. Among varieties
of higher dimension, the vector bundles over P" are well studied. Consult [33,
80] and their references on this subject.

The moduli space of (u-stable) vector bundles can be regarded as the mod-
uli space of anti-self-dual Yang-Mills connections or as the moduli space of
Einstein-Hermitian metrics. Many problems on the moduli space of vector bun-
dles, e.g., topology, complex structure, Kihler metric, compactification, sym-
plectic structure, etc., can be approached by the differential geometric technique.
(See Atiyah and Bott [5], Kobayashi [45], Itoh [36], Donaldson [19], Kirwan
[40].) Recently Donaldson [21, 99] constructed an example of two compact
complex surfaces that are homeomorphic but not diffeomorphic to each other.
He defined new invariants for differentiable manifolds by using the moduli of
Yang-Mills connections. The moduli space of stable vector bundles plays an
important role in the calculation of his invariants (cf. [28, 93]).

In this article, we have restricted ourselves to the moduli space. Last we
note that the geometry of vector bundles themselves on a K3 surface is also
interesting. It has applications to special divisors on a curve [49] and to the
classification of Fano 3-folds [110, 111].

REFERENCES

1. A. B. Altman and S. L. Kleiman, Foundations of the theory of Fano schemes, Compositio Math.
34 (1977), 3-48.

. ——, Compactifying the Picard scheme, Adv. in Math. 35 (1980), 50-112.
- A. Andreotti, On a theorem of Torelli, Amer. J. Math. 80 (1958), 801-828.
- M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. 7 (1957), 414-452,

- M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans.
Royal Soc. London A 308 (1982), 523-615.

. W. Barth, Moduli of vector bundles on the projective plane, Invent. Math. 42 (1977), 63-91.

. W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Springer-Verlag, Berlin,
Heidelberg, New York, and Tokyo, 1984.

8. A. Beauville, Surfaces K3, Sém. Bourbaki 609 (1982/3).

wm A W N

~N O

9. —, Variétés kdhlériennes dont la premiere classe de Chern est nulle, J. Differential Geom.
18 (1983), 755-782.
10. —, Some remarks on Kdhler manifolds with ¢, = 0, Classification of Algebraic and Analytic

Manifolds, Progress in Math., vol. 39, Birkhiuser, Boston, 1983, pp. 1-26.
11. A. Beauville and R. Donagi, La variété des droites dune hypersurface cubique de dimension 4,
C. R. Acad. Sci. Paris 301 (1985), 703-706.

12. U. N. Bhosle, Net of quadrics and vector bundles on a double plane, Math. Z. 192 (1986),
29-43,

53 For a vector bundle on a K3 surface, its reflection is defined in [63, §2]). The reflection is an
analogue of the Fourier transformation and plays an important role in the study of bundles on K3
surfaces.



170

13

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32,

33.

34,

35.
36.

37.

SHIGERU MUKAI

. F. A. Bogomolov, Kdhler manifolds with trivial canonical class, 1zv. Akad. Nauk SSSR. Ser.
Mat. 38 (1974); English transl. in Math. USSR Izv. 8 (1974), 9-20.

. ___, On the decomposition of Kdhler manifolds with trivial canonical class, Mat. Sb. 93 (1974);
English transl. in Math. USSR Sb. 22 (1974), 580-583.

. —, Hamilton Kihler manifolds, Dokl. Akad. Nauk SSSR 243 (1978); English transl. in
Soviet Math. Dokl. 19 (1978), 1462-1465.

D. Burns and M. Rapoport, On the Torelli problems for Kéhlerian K3 surfaces, Ann. Sci. Ecole.
Norm. Sup. (4) Ser. 8 (1975), 235-274.

0. Debarre, Un contre-exemple au théoreme de Torelli pour la variétés symplectiques irré-
ductibles, C. R. Acad. Sci. Paris 299 (1984), 681-684.

U. V. Desale and S. Ramanan, Classification of vector bundles of rank 2 on hyperelliptic curves,
Invent. Math. 38 (1976), 161-185.

S. K. Donaldson, A new proof of a theorem of Narasimhan and Seshadri, J. Differential Geom.
18 (1983), 269-278.

—, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector
bundles, Proc. London Math. Soc. 50 (1985), 1-26.

—, La topologie différentiable des surfaces complexes, C. R. Acad. Sci. Paris 301 (1985),
317-320.

1. F. Donin, On analytic Banach spaces of modules of holomorphic fiberings, Dokl. Akad. Nauk
SSSR 195 (1970); English transl. in Soviet Math. Dokl. 11 (1970), 1591-1594.

J. M. Drezet and J. Le Potier, Fibrés stables et fibrés exceptionnels sur Py, Ann. Sci. Ecole
Norm. Sup. 18 (1985), 193-243.

G. Ellingsrud and S. A. Stremme, On the moduli space for stable rank 2 vector bundles on P 2,
Inst. of Math., Univ. of Oslo, preprint.

O. Forster and K. Knorr, Uber die Deformationen von Vectorraumbiindeln auf kompakten
komplexen Raumen, Math. Ann. 209 (1974), 291-346.

J. Fogarty, Algebraic families on an algebraic surface, Amer. J. Math. 90 (1968), 511-521.

A. Fujiki, On the de Rham cohomology group of compact Kdhler symplectic manifolds, Alge-
braic Geometry, Sendai, 1985, Adv. Studies in Pure Math., no. 10, Kinokuniya, Tokyo and
North-Holland, Amsterdam, 1987, pp. 105-165.

R. Friedman and J. Morgan, On the diffeomorphism types of certain elliptic surfaces, 1, J.
Differential Geom. 27 (1988), 297-369.

D. Gieseker, On the moduli of vector bundles on an algebraic surface, Ann. of Math. 106 (1977),
45-60.

A. Grothendieck, Sur la classification des fibres holomorphes sur sphere de Riemann, Amer. J.
Math. 79 (1957), 121-138.

G. Harder, Eine Bemerkung zu einer Arbeit von P. E. Newstead, J. Reine Angew. Math. 242
(1970), 16-25.

G. Harder and M. Narasimhan, On the cohomology groups of moduli spaces of vector bundles
on curves, Math. Ann. 212 (1975), 215-248.

R. Hartshorne, Algebraic vector bundles on projective spaces: a problem list, Topology 18
(1979), 117-128.

G. Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. London Math.
Soc. 14 (1964), 689-713.

K. Hulek, Stable rank-2 vector bundles on P, with ¢, odd, Math. Ann. 242 (1979), 241-266.

M. Itoh, Yang-Mills equation with special regard to instantons and monopoles, Sogaku 37
(1985), 322-337. (Japanese)

—_, The moduli space of Yang-Mills connections over a Kdéhler surface is a complex manifold,
Osaka J. Math. 22 (1985), 845-862.



38.

39.

40.

41.

42.

43.
44,

45,

46.

47.

48.

49,

50.

51

52

53.

54.
35.
56.

57.

58.

59.

60.

61.

62.

63.

MODULI OF VECTOR BUNDLES 171

—, Geometry of anti-self-dual connections and the Kuranishi map, J. Math. Soc. Japan 40
(1988), 9-33.

——, Quaternion structure on the moduli space of Yang-Mills connections, Math. Ann. 276
(1987), 581-593.

F. C. Kirwan, Partial desingularisations of quotients of nonsingular varieties and their Beiti
numbers, Ann. of Math. 122 (1985), 41-85.

S. Kobayashi, First Chern class and holomorphic tensor fields, Nagoya Math. J. 77 (1980),
5-11.

—, Differential geometry of holomorphic vector bundles, Seminar Note 41 (1982), Dept.
Math., Tokyo Univ. (Japanese)
—, Curvature and stability of vector bundles, Proc. Japan Acad. 58 (1982), 158-162.

—, Simple vector bundles over symplectic Kdhler manifolds, Proc. Japan Acad. Ser. A Math.
Sci. 62 (1986), 21-24.

——, Differential geometry of holomorphic vector bundles, Publ. Math. Soc. Japan, no. 15,
Iwanami Shoten, Tokyo, 1987.

K. Kodaira, On the structure of compact complex analytic surfaces 1, Amer. J. Math. 86 (1964),
751-758; 11, Amer. J. Math. 88 (1966), 682-721; III, Amer. J. Math. 90 (1969), 55-83; IV,
ibid., 1048-1066.

(no [47] in original paper)

D. Knutson, Algebraic spaces, Lecture Notes in Math., no. 203, Springer, Berlin, Heidelberg,
and New York, 1971.

R. Lazarsfeldt, Brill-Noether-Petri without degeneration, J. Differential Geom. 23 (1986), 299-
307.

J. Le Potier, Fibres stables de rang 2 sur P;(C), Math, Ann. 241 (1979), 217-256.

. ——, Sur le groupe de Picard de l'espace de modules des fibres stables sur P, , Ann. Sci. Ecole

Norm. Sup. (4) 13 (1981), 141-155.

E. Looijenga and C. Peters, Torelli theorems for Kdhler K3 surfaces, Compositio Math, 42
(1981), 145-186.

M. Maruyama, On a family of algebraic vector bundles, Number Theory, Algebraic Geometry
and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo, 1973, pp. 95-146.

—, Stable vector bundles on an algebraic surface, Nagoya Math. J. 58 (1975), 25-68.
——, On algebraic vector bundles, Sagaku 29 (1977), 322-333. (Japanese)

—, Moduli of stable sheaves 1, J. Math. Kyoto Univ. 17 (1977), 91-126; 11, J. Math. Kyoto
Univ. 18 (1978), 557-614.

—, Moduli of stable sheaves—generalities and the curves of jumping lines of vector bundles on
P2, Algebraic Varieties and Analytic Varieties, Adv. Studies in Pure Math., no. 1, Kinokuniya,
Tokyo and North-Holland, Amsterdam, 1983, pp. 1-27.

T. Matsusaka, On a theorem of Torelli, Amer. J. Math. 80 (1958), 784-800.

S. Mukai, Semi-homogeneous vector bundles on an abelian variety, J. Math. Kyoto Univ. 18
(1978), 239-272.

—, On classification of vector bundles over Abelian surfaces, Recent Topics in Algebraic
Geometry, Proc. Sympos. Res. Inst. Math. Sci., Kyoto Univ., 1980, Res. Inst. Math. Sci.
Kokyuroku 409 (1980), 103-127: Zbl. Math. 479.14011. (Japanese)

—_, Duality between D(X) and D(X) with its application to Picard sheaves, Nagoya Math.
J. 81 (1981), 153-175.

—, Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent.
Math. 77 (1984), 101-116.

—, On the moduli space of bundles on K3 surfaces 1, Vector Bundles on Algebraic Varieties,
Proc. Bombay Conference, 1984, Tata Institute of Fundamental Research Studies, no. 11,
Oxford University Press, 1987, pp. 341-413,



172

64.

65.

66.

67

69.
70.

71.

72.

73.

74.

75.

76.

77.

78.
79.

80.

81.

82.
83.
84.

85.

86.
87.

88.

89.

SHIGERU MUKAI

——, Fourier functor and its application to the moduli of bundles on an abelian variety, Alge-
braic Geometry, Sendai, 1985, Adv. Studies in Pure Math., no. 10, Kinokuniya, Tokyo and
North-Holland, Amsterdam, 1987, pp. 515-550.

——, On vector bundles over Abelian varieties, Theta Functions and Related Topics, Proc.
Sympos. Res. Inst. Math. Sci., Kyoto Univ., 1986, Res. Inst. Math. Sci. Kokyuroku 597 (1986),
6-53. (Japanese)

D. Mumford, Projective invariants of projective structures and applications, Proc. Internat.
Congr. Math. Stockholm, 1962, pp. 526-530.

. ——, Geometric invariant theory, Springer-Verlag, Berlin, Heidelberg, and New York, 1965.
68.

——, Abelian varieties, Tata Inst. Fund. Res. Studies in Math., no. 5, Oxford Univ. Press,
1970.

——, Curves and their Jacobians, Univ. of Michigan Press, Ann Arbor, 1975.

D. Mumford and P. E. Newstead, Periods of @ moduli space of bundles on curves, Amer. J.
Math. 90 (1968), 1200-1208.

M. S. Narasimhan and S. Ramanan, Moduli of vector bundles on a compact Riemann surface,
Ann. of Math. 89 (1969), 19-51.

M. S. Narasimhan and C S. Seshadri, Stable and unitary vector bundles on a compact Riemann
surface, Ann. of Math. 82 (1965), 540-567.

P. E. Newstead, Topological properties of some spaces of stable bundles, Topology 6 (1967),
241-262.

——, Stable bundles of rank 2 and odd degree over a curve of genus 2, Topology 7 (1968),
205-215.

——. Characteristic classes of stable bundles of rank 2 over an algebraic curve, Trans. Amer.
Math. Soc. 169 (1972), 337-345.

——. Rationality of moduli space of stable bundles, Math. Ann. 215 (1975), 251-268; Correc-
tion in 249 (1980), 281-282.

——, Introduction to moduli problems and orbit spaces, Tata Inst. Fund. Res. Lectures on
Math. and Phys., no. 51, Springer, 1978.

T. Oda, Vector bundles over an elliptic curve, Nagoya Math. J. 43 (1971), 41-71.

K. G. O’Grady, The Hodge structure of the intersection of three quadrics in an odd dimensional
projective space, Math. Ann. 273 (1986), 277-285.

C. Okonek, M. Schneider, and H. Spindler, Vector bundles on complex projective spaces,
Progress in Math., no. 3, Birkhauser, Boston, 1980.

I. . Pjateckii-Sapiro and 1. R. Safrevic, A Torelli theorem for algebraic surfaces of type K3, Izv.
Akad. Nauk SSSR Ser. Mat. 35 (1971); English transl. in Math. USSR Izv. 5 (1971), 547-588.

J. P. Serre, Un théoreme de dualité, Comment. Math. Helv. 29 (1955), 9-26.

——, Faisceaux algébriques cohérents, Ann. of Math. 61 (1955), 197-278.

——, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier (Grenoble) 6 (1956),
1-42.

T. Shioda, The period map of abelian surfaces, 1. Fac. Sci. Univ. Tokyo Sect. IA Math. 25
(1978), 47-59.

Y. T. Siu, Every K3-surface is Kdhler, Invent. Math. 73 (1983), 139-150.

Y. T. Siu and G. Trautman, Deformations of coherent analytic sheaves with compact supports,
Mem. Amer. Math. Soc., no. 238, Amer. Math. Soc., Providence, RI, 1981.

F. Takemoto, Stable vector bundles on algebraic surfaces, Nagoya Math. J. 47 (1972), 29-48;
II, Nagoya Math. J. 52 (1973), 173-195.
A. N. Tjurin, Analogue of Torell's theorem for 2-dimensional bundles over algebraic curves of

arbitrary genus, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969); English transl. in Math. USSR
Izv. 3 (1969), 1081-1101.



90.

91.

92.

93.

94.
95.

96.

97.

98.
99.
100.
101.

102.

103.

104.

105.

106.
107.

108.

109.

110.

1.
112.

113.

MODULI OF VECTOR BUNDLES 173

—, Analogue of Torelli’s theorem for multi-dimensional bundles over an arbitrary curve, 1zv.
Akad. Nauk SSSR Ser. Mat. 34 (1970); English transl. in Math. USSR Izv. 4 (1970), 343-370.

H. Umemura, On a property of symmetric products of a curve of genus 2, Proc. Internat,
Sympos. on Algebraic Geometry, Kyoto, 1977, Kinokuniya, Tokyo, pp. 709-721.

—, Moduli space of the stable vector bundles over abelian surfaces, Nagoya Math. J. 77
(1980), 47-60.

A. Van de Ven, On the differentiable structure of certain algebraic surfaces, Sém. Bourbaki 667
(1985/6).
A. Weil, Zum Beweis des Torellischen Satzes, Nachr, Akad. Wiss. Gottingen, 1957, pp. 33-53.

S. T. Yau, Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad.
Sci. USA 74 (1977), 1798-1799.

—, On the Ricci-curvature of a Kdhler manifold and the complex Monge-Ampere equation,
Comm. Pure Appl. Math. 31 (1978), 339-411.

REFERENCES ADDED IN TRANSLATION

A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math. 69
(1959), 713-716.

R. Bott, On a theorem of Lefschetz, Michigan Math. J. 6 (1959), 211-216.
S. K. Donaldson, Polynomial invarianis for smooth four-manifolds, 1988, preprint.
A. Grothendieck, Fondaments de géométrie algébrique, collected Bourbaki talks, 1962.

F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, Berlin and New
York, 1966.

A. larrobino, Reducibility of the families of O-dimensional schemes on a variety, Invent. Math.
15 (1972), 72-77.

M. Itoh, On the moduli space of anti-self-dual Yang-Mills connections on Kdhler surfaces, Publ.
Res. Inst. Math. Sci. 19 (1983), 15-32.

Y. Kawamata, Crepant blowing-up of 3-dimensional canonical singularities and its application
to degeneration of surfaces, Ann. of Math. 127 (1988), 93-163.

S. Kobayashi, Einstein-Hermitian vector bundles and stability, Global Riemannian Geometry,
Ellis Horwood, Chichester, 1984, pp. 60-64.

J. Kollar, Flops, Nagoya Math. J. (1987) (to appear).

M. Maruyama, Openness of a family of torsion free sheaves, J. Math. Kyoto Univ. 16 (1976),
627-637.

M. L. Michelsohn, Clifford and spinor cohomology of Kihler manifolds, Amer. J. Math. 102
(1980), 1083-1146.

B. Moishezon, Algebraic homology classes on algebraic varieties, 1zv. Akad. Nauk SSSR 31
(1967), 225-268.

S. Mukai, Curves, K3 surfaces and Fano 3-folds of genus < 10, Algebraic Geometry and

Commutative Algebra, in honor of Masayoshi Nagata (to appear).
—, New classification of Fano threefolds and Fano manifolds of coindex 3, 1988, preprint.

D. Mumford, Lectures on curves on an algebraic surface, Princeton Univ Press, Princeton, NJ,
1966.

C. S. Seshadri, Theory of moduli, Algebraic Geometry, Arcata, 1974, Proc. Symp. Pure Math,
Vol. 29, Amer. Math. Soc., Providence, RI, 1975, pp. 263-304.



174 SHIGERU MUKAI

114, T. Shioda, On singular K3 surfaces, Complex Analysis and Algebraic Geometry (W. L. Baily

and T. Shioda, eds.), Iwanami Shoten, Tokyo, and Cambridge Univ. Press, Cambridge, 1977,
pp. 119-136.

115. A. N. Tjurin, On intersections of quadrics, Russian Math, Surveys 30 (1975), 51-105.

Translated by S. MUKAI

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, NAGOYA UNIVERSITY, CHIKUSA-KU,
NAGoOYA 464, JAPAN

Current address: Department of Mathematics, University of California, 405 Hilgard Avenue,
Los Angeles, California 90024

34 (F) AMS £) &R 374 g
A .Cas b/ () Dilgecber

B )

‘{:.ﬁn\' quq;u

2 34Sp D 9 bl

G/ (B (Ui

4/( o[ Z T\
Qé(ux. - 7Y 7 )‘))sl
St |- Bt Yy () Dl

a 15:‘ kP
‘ l\ }"[ "i‘-x A
PKL\',\ Loo%y
(g (8) Usich, A
T (Ceskn)

&4 OGuacly 10164
/ o f 2/2(/h) 4’1:)
Chq Traver

e 70 (Tal)

l%o Db*“ ‘{,! (.U"‘f--\/
Markmens (7 )

| SRR



