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NEW DEVELOPMENTS
IN THE THEORY OF FANO THREEFOLDS:
VECTOR BUNDLE METHOD AND MODULI PROBLEMS

SHIGERU MUKAI

A compact complex manifold X is called a Fano variety if its first Chern class
c1(X) is positive. A typical example of a Fano variety is the projective space P".
In the case of dimension 1, this is the only example of a Fano variety. There are
more examples in dimension 2, such as the blow-up of the projective planc and the
direct product P! x P! yet, if we assume that they have second Betti number
equal to 1, such Fano varietics are isomorphic to P2, Compared with these, if we
are in dimension 3, then there exist already 17 kinds of Fano threefolds even in
the case B, = 1. The classification of Fano threefolds has been investigated by
using “double projection from lines” introduced by Fano. Recently, however, the
relationship with homogeneous spaces ([39]) and the discovery of those arising from
quasi-homogencous spaces (§5), etc., have inspired us to consider a classification in
terms of vector bundles. The method is based on an explicit description of a system
of defining equations for the projective variety Xo4_o C P91 which is called the
anti-canonical model of a Fano threefold. Our fundamental tools are projective
geometry of homogeneous spaces and higher linear systems on K3 surfaces (§4):
they have been refined and improved several times, and by now we can classify
Fano threefolds with Gorenstein singularities under the assumption that they are
Brill-Noether theoretically! general. We expect that the new approach will be useful
also in various aspects of the study of Fano varieties, such as their moduli spaces,
degeneration, periods, rational points and the Cremona transformation groups in
three variables, etc.

In Sections 1-3, we explain fundamental objects and the background of the sub-
ject; in Sections 4-7, we describe the important steps toward a new classification,
and in Sections 8 and 9, we discuss moduli problems (these two sections are inde-
pendent of the others).

TERMINOLOGY AND NOTATION

Varieties always mean algebraic varieties over the complex number field C. For
an (algebraic) vector bundle E and a vector space V, EY and VV denote their
duals. Let H'(E) be the i-th cohomology group with coefficient in the sheaf E;
we write h*(E) for the dimension of H*(E). x(E) denotes the alternating sum

This article originally appeared in Japanese in Sugaku 47 (2) (1995), 125-144.

2000 Mathematics Subject Classification. Primary 14J45; Secondary 14J10, 14J60.

!The Brill-Noether theory is concerned with the behavior of special divisors on curves (e.g.
[1]). Definitions 3.8 and 6.4 have their origin in the theory; but we omit the details.
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Y (=1)'h*(E). If V is a vector space, then P,V =V — {0}/C* is the space of 1-
dimensional subspaces of V and P*V is the space of 1-dimensijonal quotient spaces
of V.

1. INTRODUCTION TO FANO THREEFOLDS

Very roughly speaking, the family of algebraic varieties X is divided into 3
classes according as ¢;{X) > 0, ¢,(X) =0 or ¢;(X) < 0. For hypersurfaces X with
Fa(zo, -+ ,Z;n) = 0 in the projective space P™, this corresponds to a division by
degree: d <m+1,d=m+1ord>m+1. Of course, there are a large number
of algebraic varicties that satisfy none of these conditions. But, a viewpoint of
classification theory is that their properties are combinations of those in the 3
classes.

Among the three classes of varicties above, those with ¢;{X) > 0 are our main
object, that is, Fano varieties (Definition 2.2). There are far fewer Fano varieties
than there are varieties in the other two classes?. Nevertheless, mathematicians
have obtained a meaningful classification only for those of dimension up to 3. We
do not know yet how to deal with Fano varieties of dimension greater than or equal
to 4.

For a historical reason, 2-dimensional Fano varieties are called del Pezzo sur-
faces. Interpolating relevant properties of del Pezzo surfaces, we explain a classifi-
cation of Fano threefolds. One of the most fascinating features of Fano threefolds
is that we can describe them explicitly by such a simple condition as ¢;(X) > 0. If
S is a del Pezzo surface, then the self-intersection number d := ¢,(S)? is the only
discrete invariant3. For a Fano threefold X, on the other hand, the degree ¢, (X)?3
and the following invariants are important.

(1.1) The second Betti number: By(X) :=rkH*(X, Z).

(1.2) Index: the largest positive integral divisor of ¢;(X) € H%(X, Z).

(1.3) Analytic genus p = B;3(X)/2: the dimension of the intermediate Jacobian
variety JacX of X. Here JacX is the principal polarized abelian varicty obtained
from the periods of p linearly independent harmonic forms on X of type (2,1).

The degree is always even; we put ¢ = ¢;(X)%/2 + 1 and call it the genus of X.
We use genus rather than degree. As we mentioned in the introduction, there are
17 classes of Fano threefolds even in the case By(X) = 1. We give their “periodic
table” with respect to the analytic genus p and index r (see Table 1.4).

Here Q% denotes a quadric hypersurface in P*. Fano threefolds By, 1 < d < 5,
of index 2 are also called del Pezzo varieties of degree d ([12], [24]), where d is 1/8
of the degree (defined earlier in this section). It is known that the 8 classes with
p=10,2,3,7 are rational® and the remaining 9 classes are non-rational® ([26]); but
we do not pursue it here. Among rational Fano threefolds, those with p = 0 are
very special. In fact, many of them are compactifications of C3 ([13]; [42], §8).

The most typical Fano threefolds are the 10 classes Azg_2 of index 1. To study
such threefolds, Fano considered double projection from a line on the anti-canonical
model (§2) of it. Let us give an example.

2The family of Fano varieties of a fixed dimension is bounded ({31}; [30], Chap. 5).
3Only in the case d = 8, the intersection form on H 28,2 ) is also a discrete invariant.
4See {36], [37) for a classification of Fano threefolds with By > 2.

5We prove the rationality of A2 in Example 7.4.

6To be more precise, Ajg, B2 and 3) are known to be non-rational only for generic ones.
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Table 1.4. Fano threefolds with B, = 1.

Example 1.5. Let C; € P3 be a space curve of genus 3 and degree 7. Consider
a homogeneous polynomial F(z) of degree 7 that vanishes twice along Cs, i.c., all
the partial derivatives OF/0x; of F are identically zcro on C;. Choosing a basis
Fi(xg,x1,22,23), - -+ , Fa{xg. 21, 22, 23) for the vector space of such polynomials,
we can define a rational map

P3 Vier Pl()
W W
(ro:ay:ap:2y) — (Fi(x): - F(a)).

For a Fano threefold A, of index 1 and genus 9, there exists a space curve C; ¢ P?
such that A;¢ is isomorphic to the image of ¥¢, and is birational to P? via Yo, .

An advantage of this result is that if A;g exists, then we can conclude imme-
diately that it is rational. But, when we want to construct A;¢ from C; C P3,
we come up with a lot of cumbersome problems, such as when the vector space of
polynomials of degree 7 has dimension 11, when ¥¢ becomes birational, or when
the image of ¢ is non-singular, etc. Contrary to this, an example of A, of genus
8 is easy to construct by a different method that Fano already knew.

Example 1.6. Let G(2,6) ¢ P" be the Grassmannian variety” consisting of 2-
dimensional subspaces of a 6-dimensional vector space C°®. Non-singular threcfolds
obtained as 5-times hyperplane sections of G(2,6) are Fano threefolds Ay of index
1 and genus 8.

It is generally recognized that Grassmannian varieties are representatives of ho-
mogeneous projective variceties; so, it is natural to look into them for more examples
similar to the above. In fact, we find three more examples as follows:

(1.7) ¢ = 7: 10-dimensional orthogonal Grassmannian variety

0 = SO(10)/U(5) c P¥.
(1.8) g = 9: 6-dimensional symplectic Grassmannian variety
Zie = Sp(6)/U(3) ¢ PY
(cf. Example 5.1).
(1.9) g = 10: Gy-variety® X3, ¢ P" (¢f. Example 5.2).

"We regard it as a projective variety with Pliicker coordinates (cf. [x7)).
B(Gg-varieties are introduced originally by Borcea [5] to give an example of a K3 surface of
genus 10.
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A Fano threefold A in Example 1.5 can be obtained as a 3-times hyperplane
section of X, C P' in (1.8). In a new classification, we will discuss the following
propertics by making use of the four homogeneous spaces Xy,_o with g = 7,8,9, 10.

(A) All non-singular Fano threefolds with B, = 1 and g = 7,8,9,10 can be
obtained as linear sections of Xpg_2 C P.

(B) There does not exist (unfortunately?) any homogeneous space which realizes
Fano threefolds of genus 12 as its linear sections; but, there is a way of describing
them in a 12-dimensional Grasstnannian variety.

(C) There exist no non-singular Fano threefolds with B, = 1 and genus g = 11
or g > 13.

(D) The three properties above can be generalized to Fano threefolds with canon-
ical Gorenstein singularities.

These statements are not independent of each other. In fact, they are related
closely in the following way: (B) will be shown in the course of proving (A) (§84,5);
(D) leads to a simple proof of (C) (thanks to singularities); the proof of (C) is
based on (A) and (B) (§§6,7). In particular, (D) contains a problem of how to deal
with the condition B, = 1 when singularities are involved. Here we summarize the
result for non-singular Fano threefolds. The anti-canonical line bundle of a Fano
threefold X with B, = r = 1 has no base point. Let §_p : X — P31 denote the
anti-canonical morphism (§2).

Theorem 1.10. The genus g of X is g <10 or g = 12.
(1) If g = 2, then _g : X — P® is a double covering ramified at a seztic
surface.
(2) Ifg=3, then ®_g : X — P" is cither
(2.a) an embedding whose image is a quartic hypersurface, or
(2.b) a double covering of a quadric hypersurface Q* C P
(3) If g > 4, then d_ is an embedding and the following holds, where X242
denotes its image.

Anti-canonical model
X6 = (2) N (3) C P° complete intersection
Xs = (2) N (2) N (2) € P® complete intersection
X10 C P7 is a quadric hypersurface section of a quintic

del Pezzo 4-fold V5 C P.

Vs C P7 may be chosen as the cone of a quintic del Pezzo 3-fold.
7 | X12 C P® is a linear section of a 10-dimensional orthogonal Grassmannian
variety. [Z19 ¢ P®*|nH,N---N Hy
8 | X14 C P® is a linear section of an 8-dimensional Grassmannian variety.
[G(2,6) c P¥InH; N---NHs
9 | X,6 ¢ P™ is a linear section of a 6-dimensional symplectic Grassmannian
variety. [2?6 C Plsl NH,NH N Hy
10 | X158 € P is a linear section of a Go-variety. [X3% C P'°|N H, N H,
12 | X2 C P is isomorphic to a non-singular threefold G(3,7, N) C P (cf.

SO

2
§5) obtained from a non-degenecrate 3-dimensional subspace N C ACT.

We remark on a relation between the four homogeneous spaces and Dynkin di-
agrams, although this has no direct connection with our classification. It is well
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known that del Pezzo surfaces are related with Dynkin diagrams ([33]). For in-
stance, there are exactly 27 lines on a cubic surface, and the configuration of these
lines has symmetry isomorphic to a Weyl group W{(Eg). More precisely, it is related
with £ [83], where E‘g'] is defined in the following extended Dynkin diagram of E' g

E,“‘L;\ﬁ I )
J

as a pair consisting of the diagram Eg obtained from E; by removing 3 consecutive
points from the maximal root ® and (the fundamental weight of Eg corresponding
to) the 4-th root from ®.

In particular, it determines an irreducible representation V of an exceptional Lie
group of type Eg, and the 27 lines can be regarded W (Eg)-equivariantly as a basis
for V (an exceptional Jordan algebra). A similar property holds? for the configu-
ration of lines on a del Pezzo surface of degree d (1 < d < 6) and a representation
of E‘gd].

For a given irreducible representation V of a semisimple algebraic group G,
the orbits of the elements v € V of the maximal weight in the projective space
P.V form a homogeneous projective variety. The four homogeneous spaces Zoq_
that yield Fano threefolds can be obtained in this manner from the representations
corresponding to the following diagrams:

g=7 E@ L33 4 D,

g=8 E® 1 2 3 /4

Ay

g=9 Fp b c.
g=10 Gpm l@ ..

The situation differs considerably from the case of del Pezzo surfaces, and we
do not know how to construct a diagram corresponding to genus 12. But the
phenomenon seems very interesting.

(1.11)

2. DEL PEZZO SURFACES

Before we start a discussion on a classification of Fano threefolds, we explain
some terminology and recall a 2-dimensional classification.

A vector bundle E on a variety X is defined by a system of transition functions
{vas}: Pas : Ua NUg — GL(r,C), which take value in matrices. Here {U,} is a
suitable open covering of X, and » is called the rank of E. The system of transition
functions defined by the determinants {det ¢q3} gives a line bundle on X; this is

9The results may be found in {29], together with its relation with the intermediate Jacobian
varieties of threefolds having del Pezzo surface bundles. The configuration of planes on the anti-
canonical model of the blow-up of P? at (8 - d) points also has symmetry isomorphic to E.[,dl.
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. . r nl nl . . . .
nothing but the exterior power AE over E of highest degree. In particular, if E is

n
the tangent vector bundle Ty, then ATy is called the anti-canonical line bundle
on X. If (21,22,-+- ., 2,) is a local coordinate of X with n = dime X, then a local

. n . . .
section of ATy is expressed in terms of a (regular) function f as
0 4]
—_— A A ——,
(?Zg 62,,

We call it a (local) anti-canonical form on X.

g
(2‘1) f(:1732$"'w:n)-rd—;;/\

Definition 2.2. A projective algebraic variety X is called a Fano variety if }I\T,\—
is ample. It is called a Fano variety of the principal series if ?\Tx is very ample.

A line bundle, L, is said to be very ample if the vector space HO(X, L) of the

global sections has a basis aj,ag,- - ,an satisfying the following two conditions:
(2.3) L has no base point: that is, a;,a2,--- ,ay have no common zeros.
(2.4) The map

é,: X — P¥!
w w
p — (ap):az(p):---an(p))
is an embedding.

If L= 7\7’.\’ and (2.3) is satisfied, then the map of (2.4) is denoted by @_g.
The clements a;,as, -+ ,ay themseclves are not functions, but their ratios a;/a;
are (holomorphic) functions on X by (2.1). Hence ¢_k is defined globally (the
same is true for a more general @;). The morphism is called the anti-canonical
morphism. If (2.4) holds, then the image of ¢ _k (as a projective variety) is called
the anti-canonical model of a Fano variety of the principal scries.

A line bundle L is said to be ample if L®¥™ becomes very ample for some
m > 0. About this, the Nakai-Kleiman criterion is used so often that it is sometimes
confused with the definition. We recall it in the case of surfaces.

Theorem 2.5 (Nakai [54]). A line bundle L on a projective algebraic surface S is
ample if and only if i (L)% > 0 and (c;(L),C) > 0 for all (irreducible) curves C on
S.

Let S = S(p1,p2.--- ,pn) be the surface obtained by blowing up the projective
plane P? at n distinct points pi.p2.--+ .pp. Write h for the pull-back of a line
and E; for (the cohomology class of ) the exceptional divisor over p;. Then the first
Chern class of S is

(2.6) a(S)=3h-E\-E;—----E,
and ¢,(S)? = 9 — n. Furthermore, if S is a del Pezzo surface, then n < 8.

Theorem 2.7 ([27)). S(p1,--- .pn) is @ del Pezzo surface if and only if n < 8 and
the points p1,--- ,pn salisfy the following three conditions:

(i) no three of them are on a line;

(ii) no siz of them are on a conic;

(iii) if n = 8, then there exists no (rational) cubic curve passing through all these
points and being singular at a point p;.
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Under these conditions, the set of all homogeneous cubic polynomials F(z,y, z)
that vanish at py.--- ,p, has dimension 10 — n. If Fy, Fy,--- , Fy_,, denote a basis
for it, then the following rational map induces the anti-canonical morphism of
S(p1,+- s pn):

P2 N P9—n
w w
(ao:a1:a2) — (Fola): Fi(a):---: Fy_,(a)).

If # < 6 in the above, then the anti-canonical bundle is very ample and the
anti-canonical model is a surface Sy of degree d in P? withd =9 — n. Conversely,
such a projective surface is the anti-canonical model of a rational surface if it is
projectively normal (del Pezzo [8]). It is well-known that a cubic surface in P is
the anti-canonical model of a blow-up S(py,-++ ,pg) of P? at 6 points.

Example 2.8. On the Fermat cubic surface
X3+Y3+Z2°+T% =0
the 6 pointsare (1:0:0), (0:1:0), (0:0:1), (1:1:1), (1 :w:w?), (1:w?:w),

where w is an imaginary cube root of unity.

The next proposition is another important result in the theory of del Pezzo
surfaces.

Proposition 2.9. Del Pezzo surfaces with Ba = 1 are isomorphic to P2.

Based essentially on these properties, we obtain the following (c.g. [37], §1).

Theorem 2.10. A del Pezzo surface is isomorphic either to a blow-up S(py, -+, pn)
of P? which satisfies the conditions of Proposition 2.7, or to the product P! x P!.

Although the correspondence is not so simple, the classification of Fano threefolds
with Bz > 2 in [36) and Theorem 1.10 are, in some sense, 3-dimensional versions of
Theorem 2.7 and Proposition 2.9, respectively.

3. CANONICAL CURVES AND FANO VARIETIES

A hyperplane scction S C P9 of the anti-canonical model X ¢ P9*! of a Fano
threefold of the principal serics is a projective model of a polarized K3 surface. Its
hyperplane section C ¢ P97 ! is then a canonical curve. We are able to classify Fano
threefolds, since we have a good understanding of K3 surfaces and of (canonical)
curves. We begin with the latter.
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In what follows, a curve means a compact Riemann surface or a complete non-
singular algebraic curve. They are controlled by the Riemann-Roch theorem:

dim H°(L) — dim H'(L) = degL + 1 — g,
HY (L) = HYwc LYY,

where g is the genus of C, we denotes the canonical line bundle on C and L is

an arbitrary line bundle. The theorem implies that the vector space H(wc) of

differential forms of the first kind has dimension g. Choosing a basis wy, -+ ,w, for
it, we define a map $x by

3.1)

¢ — p9!
(3.2) W W
p o (wWi(p): - wy(p)).

A straightforward application of (3.1) gives the following.
Proposition 3.3. w¢ is very ample (82) if and only if C is not hyperelliptic.

In this situation, the image of @ is a projective curve Coy_o C P -1, We call it
the canonical model of C. When C is not specified, it is called simply a canonical
curve of genus g.

A surface S (a 2-dimensional compact complex manifold) is called a K3 surface

2
if ATs = Og and H'(Ogs) = 0 (48], §1). They play an intermediate role between
the theory of Fano threefolds and the theory of curves.

Theorem 3.4 ([65]). If X is a Fano threefold, then there ezists a non-zero anti-

canonical form o € HO(/\TX) on X such that the zero locus S = (a)g of o is
non-singular.

It follows from the adjunction formula. the Kodaira vanishing theorem, the Lef-
schetz theorom ete. (cf. [17]), that S is a K3 surface. Further, if L denotes the

restriction of /\Ty( on S, then the following sequence is exact:
(3.5) 0 — Ca — H”(/\Tx) — H%(S, L)y — 0.

Since /S\'J‘x is ample, L is also ample.

In gencral, a polarized K3 surface is defined to be a pair (S, L) consisting of
a K3 surface S and an ample line bundle L on S; the integer ¢ = ¢;(L)?/2 + 1 is
called its genus. As in Definition 2.2, we say that (S, L) is of the principal series if
L is very ample. Polarized K3 surfaces outside the principal series can be classified
completely ([61]). Based on this result and (3.5), we may classify Fano threcfolds
outside the principal series ([24]). From a Riemann-Roch type formula

(3.6) dim HY(ATx) = g + 2, dim H(S,L) = g +1

we find that the anti-canonical model of X is a subvaricty Xag—2 C P9*! of degree
2g ~ 2 and its hyperplane section Syy_2 C P9 is the image of a K3 surface S via
&, . The latter is called the projective model of (S, L).

Proposition 3.7. For a projective surface T C P? of degree 2g — 2, the following
three conditions are equivalent:

(i) T C PY is isomorphic to the projective model of a polarized K3 surface (S, L)
of the principal series of genus g;
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(ii) non-singular hyperplane sections of T C P? are canonical curves of genus g;
(iii) T is not e ruled surface.

Similarly, a projective threefold whose hyperplane section is the projective model
of some K3 surface is an anti-canonical model of dimension 3. Hence, as we find from
the title of [10], Fano threefolds of the principal series are nothing but “threcfolds
with canonical curve sections.”

The following terminology is useful for a classification of Fano threcfolds with
certain singularities (Theorem 6.5).

Definition 3.8. A polarized K3 surface (5, L) is said to be BN-general if
RO(ANRO(N) < h(L)
for every pair of non-trivial line bundles M and N such that M @ N = L.

In the moduli space of polarized K3 surfaces of genus g, the family of BN-general
surfaces forms a non-empty Zariski open subset. For low genera, their projective
models are given as follows:

genus projective model of a BN-general K3 surface
2 S, — P? double covering ramified at a sextic curve
(3.9) 3 S; € P? quartic surface
: 4 | Ss =(2)N(3) C P complete intersection
5 Sg = (2)N(2) N (2) C P° complete intersection
6 Sw=VWVnN (2) c P®

The case ¢ < 5 of Theorem 1.10 follows immediately from this!®. When g =
7,8,9, 10, writc P for a g-dimensional subspace of P which intersects the homoge-
neous space Xyg_o C P of §1 transversally. Then § = PN Xy,_o C P9 = P is the
projective model of a polarized K3 surface. We furthermore have the following.

Theorem 3.10. The polarized K3 surfaces S = PN Xy, _o C PY (¢ =7,8,9,9,10)
are BN-general.

Conversely, every BN-general polarized K3 surface of genus 7,8,9,10 can be ob-
tained in this way. This is the first step toward a proof of Theorem 1.10, as we will
explain in the next section.

4. VECTOR BUNDLES ON K3 SURFACES

In [48], we discussed the structure of the moduli space of vector bundles on K3
surfaces together with their applications to the study of (holomorphic) symplectic
varicties. As representations are important for the study of groups and as the cen-
tral object of ring theory has shifted naturally from ideals to modules, 1 believe
that vector bundles can still play many more significant roles in the study of alge-
braic varieties. Here we make use of the Grassmannian morphisms associated to
vector bundles in order to investigate Fano varieties. We prepare some terminology
about higher linear systems before going into a proof of Theorem 1.10 (and its
generalization).

Classically, a linear system is defined to be a pair consisting of an (algebraic)
line bundle L on an algebraic varicty X and a space V C H°(L) of global sections;

10A classification of those of genus 6 can also be obtained by using vector bundles. See [4) for
a different approach.



134 SHIGERU MUKAI

the case V = H(L) is used most frequently. By Nakayama's lemma, L has no base
point if and only if the following canonical homomorphism of sheaves is surjective:

evy: HYLY®Ox — L

W w
Ssefi — s
1 1

We call evp the evaluation homomorphism of L. Let E be an (algebraic) vector
bundle on X of rank r. Then, as in the case of line bundles, the pair consisting of
E and a subspace V ¢ HO(E) is called a linear system of rank r. Again, the case
V = H%E) is important.

Definition 4.1. We say that E is base point free if the evaluation homomor-
phism evg : HY(E) ® Ox — E is surjective.

When E is base point free, the fiber E; of E at cach point * € X is an r-
dimensional quotient space of H%(E). The dual space EY is an r-dimensional
subspace of H°(E)V. Hence by the correspondence  — [EY], one can define a map

(4.2) $p: X — G, H'(E)Y).

Since E is algebraic, @ is regular.
The Grassmannian variety G(r, H*(£)V) is a projective variety with Pliicker

T r
coordinates. In our case, it is embedded into P* A HO(E). Let X — P* A HY(E)
be the composite of this embedding with ¢. To explain more about it, we consider
the rth exterior product of the evaluation map evg:

Aevg : /’;HO(E) R0y — AE.
This induces a lincar map

(4.3) Ar: AHY(E) — HY(AE)

and coincides with the composite of A, ®1 with the evaluation map of AE. Thinking
of the meaning of the Pliicker embedding, we obtain the following proposition easily.

Proposition 4.4. Let E be of rank r and base point free. Assume that A, :
/r\HO(E) — H 0(/r\E) is surjective. Then the following diagram is commutative:

X 25 G, HYE))
@ | N Pricker
P'H(L) — P A HY(E)

-
where L denotes AE and o is a linear embedding induced from a surjective map A,.

We now come back to K3 surfaces. A polarized K3 surface has a stable vector
bundle which may be characterized by topological conditions!!. We apply it for a
classification of Fano threefolds.

11 Note that by the Riemann-Roch-Hirzebruch Theorem, the Euler-Poincaré characteristic x( £)
of a vector bundle E is a topological invariant.
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Theorem 4.5. Let (S, L) be a polarized K3 surface of genus g. Assume that g is
equal to the product of two positive integers, rs. Then

(1) there erists a semi-stable veclor bundle E,. of rank r satisfying /r\E,. = [ and
X(Er)=r+s;

(2) if there exists a stable vector bundle among such E,’s, then all the vector
bundles in (1) are isomorphic to it.

In general, we have g — r(x{(E) — ) > 0 for every stable vector bundle E with

AE = L. Twice the left-hand side of this inequality is equal to the moduli number
of E ([40], Corollary 0.2). In this sense, E,. of the theorem is sometimes called a
rigid bundle. The values for g, r, s that we actually use in our classification are as
follows:

g 6 ] 819 10 12
s 2-3|2-4|3-3|2-5=5-2|3-4=2-6

(4.6)

Theorem 4.7. The projective model of a BN-general polarized K3 surface (S, L) of
genus g = 7.8,9,10 is isomorphic to a linear section PN Xs,_5 of the homogeneous
space XKaq_2 C P in (1.6)-(1.9).

If (S. L) is BN-gencral, then Theorem 4.5 (2) holds and H'(E,) = H%(E,) = 0.
In particular, dim H%(E,) = r + s.

First, in the case of genus 8, one has dim H°(E;) = 6 for the rigid bundle E; of
rank 2. The assumption of Proposition 4.4 is satisfied, and the following diagram
is commutative:

s 25 @6
& | [ Piiicker

P — P4

The theorem amounts to saying that the diagram is cartesian, ie. § = PN
G(2,6). Although we omit the details here, the essential part of proof is a thorough
consideration of why P® N G(2,6) is of dimension 2 (sce [45]). The classification of
singular hyperplane sections of X3, 2 C P, i.e. the structure of projective dual, is
a key to the proof; this applies also to the other cases.

In the case of genus 9, we use the rigid bundle Fy of rank 3. It is not sufficient
to consider Az of (4.3). We also need a linear map

(4.8) Aot AHO(By) — HO(REj),

which can be obtained similarly. Since Aq is not injective, the image of @ can be
embedded into a symplectic Grassmannian variety X6 (cf. Example 5.1) and the
following diagram is commutative:

s 25 ¥ c GB.6)

@, | N () Pliicker

P’ < PY¥ c P"

Theorem 4.7 claims that the left half of the diagram is cartesian.
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For K3 surfaces of genus 10, the assertion follows from the non-injectivity of
either of the following two linear maps:

S2HY(Ey) — HO(S?Ez), AHO(Es) — HO(AEs).

In the latter case, we use the expression of Ga-manifolds by trivectors (Example
5.2).
The proof of the theorem in the case of genus 7 is different from the other three

5
cases; it employs a vector bundle E of rank 5 with AE = L®2, Specifically, E is
chosen to be a twist N p® L®? of the conormal bundle Ny /P of the projective

model Sia € P7, whereas, in other cascs, E, is constructed from special divisors on
curves. The set V' of homogeneous quadratic polynomials in 8 variables vanishing
on S)2 has dimension 10, and the canonical homomorphism V ® Os — FE is
surjective. The linear system (E, V') of rank 5 defines an embedding of S into a 25-
dimensional Grassmannian variety. The image is in Zy2. Moreover, it is a complete
linear section of X3 C P!, These follow from analogous properties of curves of
genus 7 ({46]).

5. FANO THREEFOLDS OF GENUS 12

Fano threefolds of genus 12 were overlooked by Fano himself ([60}, p.91) and
discovered by Iskovskih [25]. Subsequently, a special type of Fano threefolds Uy,
which carry an action of PGL(2) were constructed in [50] from a different point
of view (cf. Remark 5.6). The normal bundle of a line on Uss has a very special
property. It gave a motivation to reconsider the classification by the double pro-
jection method ([28]). On the other hand. it has been recognized that the study
of lines on a generic Fano threefold of genus 12 is related with the theory of plane
quartic curves. A consequence of this is the discovery of an expression of such Fano
threefolds in terms of varieties of sums of powers ([41], Theorem 5; [42], §6). Like
this, Fano threcfolds of genus 12 have a particular history; in addition, they are not
linear sections of homogencous spaces like others. But, if we look at them from the
viewpoint of vector bundles we explained in the previous section, then they are not
exceptional at all. Moreover, in this framework, we can describe them naturally in
Grassmannian varieties. Here we proceed by choosing the case associated with the
rigid bundle E3 of Theorem 4.5; but, if we choose Es instead, then we will obtain
another interesting expression ([41],83).

Let

m: Vx--oxV-—0C
‘kp_/
be a skew-symmetric k-linear form on a vector space V. Write G(r, V,m) for the
set of r-dimensional subspaces U of V such that the restrictionof mon U x --- x U
becomes zero. If £ denotes the dual of the universal vector bundle on the Grass-
mannian variety G(r, V), then

k k
HE)=VY. HY(AE)=AVY
and G(r,V,m) is a closed subscheme of G(r,V) defined as the zero locus of the

k
global section s of AE corresponding to m. By the higher Bertini’s theorem ({43],

k . . . .
§1), if m € AVV is generic, then G(r,V,m) is non-singular and has codimension
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k
equal to the rank of AE. Here m can be regarded as a (partial) differential operator

of the exterior algebra AV. Note that Pliicker coordinates on elements of G(r, V, m)
are annihilated by m.

Example 5.1. If £ = 2, dimV = 2r and m is non-degenerate, then G(r,V,m) is
non-singular and of dimension r(r + 1)/2. It parametrizes the Lagrange subspaces
of the symplectic space (V,m) and can be embedded into the projective space of
dimension (%) - (,*",) — 1 by Pliicker coordinates. When r = 3, G(r, V,m) coincides
with 16 ¢ P of (1.8).

Example 5.2. If k = 4. dimV = 7 and m is generic!?, then G(5,V.m) c PP isa
Ga-variety in (1.9).

We now come back to Theorem 4.5. Let (S, L) be a BN-general polarized K3
surface of genus 12 and let E3 be the rigid bundle of rank 3 in Theorem 4.5. As in
the case of genus 9, we consider a map

2 2
A2 /\HO(Eg) —_ HO(/\E;;).
Its kernel, N, is of dimension 3, and the image of & : § — G(3, H(E3)Y) is
contained in the intersection ((G(3, H*(E3)Y,m), where m ranges over N.

2
Given a 7-dimensional vector space V' and a 3-dimensional space N C AVY of
skew-symmetric bilinear forms, we denote by G(3, V, N) the subscheme N G(3, V, m)
of the 12-dimensional Grassmannian variety. Let {m,,my, m3} be a basis for N

2
and let s).s2,53 be the corresponding global sections of AE. Then G(3,V,N) is

the zero locus of the global section (s, s2, 83) of the vector bundle (/2\8 )®3 of rank
9. Hence, if N is generic, then G(3,V, N) is non-singular and of dimension 3. It
is embedded into P'? by Pliicker coordinates and has degree 22 by the Schubert
calculus ([17], Chap. 1). The adjunction formula implies that G(3,V,N) c P is
an anti-canonical model. More precisely, we have the following.

2
Definition 5.3. N C AVY is said to be non-degenerate if the intersection of
3
the subspace P,(N A VV) with the Grassmannian variety G(3,VV) Cc P, AVV is
empty.
2
Theorem 5.4. If N C AVV is non-degenerate, then G(3,V, N) is a non-singular

Fano threefold with By = 1 and genus 12. The set M of elements of ?\V annihilated
by the elements of N has dimension 14. The Plicker embedding G(3,V,N) C P.M
gives the anti-canonical model of M.

Using the embedding associated to the vector bundle Ej, we obtain the following.

Theorem 5.5. The projective model of a BN-general polarized K3 surface of genus
12 is isomorphic to a hyperplane section of G(3,7, N) C P'3 for some non-degener-

2
ate N C AC". The converse is also true.

3 -
1275 be more precise, this means that m belongs to an open orbit of AC* with respect to the
action of GL(7) (cf. [19], §35).
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Remark 5.6. Let Vs be the irreducible representation of SL{2) of dimension 7.

Then the irreducible component V, of dimension 3 of the exterior power /2\V(; ™
Vio © Vs @ V5 is non-degenerate in the sense of Definition 5.3. If W denotes the
irreducible component of dimension 3 of the representation Vg restricted to the
icosahedral group Icosa, then a non-singular compactification of the SL(2)-orbit of
a point [W] is isomorphic to the Fano threefold G(3, Vi, V2) of genus 12. Although
our method of construction is different, the result is the same as the equivariant
compactification Ups of SL(2)/Icosa discovered in [50}.

6. GORENSTEIN FANO THREEFOLDS

It turns out to be more natural to classify Fano threefolds with terminal singu-
laritics. Furthermore, those with canonical singularities are indispensable to the
study of degeneration of Fano threefolds and a compactification of their moduli
space (§9). We begin by generalizing Theorem 1.10 to Fano threcfolds with such
singularities.

First, we give a quick example of a singular Fano threefold by blowing up a
projective space P32, In order to emphasize the three-dimensionality, we look at
a blow-up 3 : Y — P*® with center a curve C; the situation is similar when we
blow up at a point. Let h be the pull-back of a plane and let E be the exceptional
divisor over C. Then we have ¢,(Y) = 4h — E, as in (2.6). Since there are oc?
number of lines in P3, usually there exists a line that interscets with C at 4 points
(quadrisecant). In fact, the “number” of such lines is equal to

(d=-2)(d-3)*d—4) p(d®-T7d+13-p)

3.1
(6-1) 12 2

)

where d and p are the degree and genus of C, respectively ([17] Chap. 2; [18]).
If ¥ C Y denotes the proper transform of a quadrisecant [ ¢ P? by 3, then
(er(Y), ") = 0. Hence, for Y to be Fano, we ought to assume that (6.1) is not
positive. Indced, using several inequalities about d and p, we see that there are
exactly 12 space curves with no quadrisccants, namely

(i) rational curves of degree < 4 and elliptic curves of degree 3,4, 5;

(i1) (d, p) = (5»2)9 (6,2). (6.3), (7*5)' (9,10).

The condition ¢,(Y)3 > 0 is weaker than this. If it holds, then ?\Ty is base point
frec in many cases, and the anti-canonical morphism @ _ - becomes “almost embed-
ding”. This means that there are only a finite number of curves Cy,Cs,--- .Cy on
Y having intersection number zero with ¢;(Y), and é_x is an embedding outside
these curves; compare with !’ above. In this situation, the image of ®_ is singular
at the images of curvw C;, which are a finite number of points, and the line bundle

corresponding to /\T is ample. This is a typical example of a Fano threefold with
Gorenstein terminal singularities.

Example 6.2. A generic sextic rational curve Rg C P3 has exactly six quadri-
secants Iy, -+ ,lg. We sce that ¢;(Y)® = 14. and the anti-canonical morphism
d_k : Y — P? is an embedding outside the proper transforms of 4y, -+ 1. The
image of &_ is a Fano threcfold of genus 8 with six ordinary double points, and
non-singular elsewhere.
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A large number of singular Fano threefolds obtained in this manner are a natu-
ral 3-dimensional version of the non-singular del Pezzo surfaces, which are all con-
structed as blow-ups at n points in general position satisfying ¢;(S)2 =8 —n > 0.
(Theorem 2.7).

Definition 6.3 (Reid [57]. [59]). We say that a normal algebraic varicty X has at
most terminal singularities if X is @-Gorenstein and there exists a resolution of
singularities f : Y — X satisfying the condition:
(*) for all exceptional divisors E; of f, the coeflicients a; in Ky = f*Kx+) a;E;
1

are positive.

If this holds, then the singular locus of X has codimension greater than or equal
to 3. In particular, X is non-singular in dimension 2 and it has only isolated
singularities in dimension 3. The origin of the hypersurface 22 + y%2 + 22 +t" =0
in C* is a typical example of a Gorenstein terminal singularity. (When n = 2, it is
called an ordinary double point.) If X is an algebraic variety with only Gorenstein
singularities, then the inverse Ox(—K) of the dualizing sheaf associated with the

divisor Ky in Definition 6.3 has the same meaning as AT in the non-singular case.
Thus, we may call Ox(—K) the anti-canonical line bundle and define X to be Fano
if it is ample.

From now on, we assume that X is a Fano threefold with at most Gorenstein
terminal singularities. Asin Theorem 3.4, there exists a global section a of Ox (- K)
such that the zero locus S is non-singular ([58]). Since the vanishing theorem, etc.,
for non-singular Fano threefolds are still valid in this case, S is a K3 surface.

Definition 6.4. X is said to be BN-general if there exists a global section o €
H®(Ox(—K)) such that the associated polarized K3 surface (S, Os(-K)) is BN-
general, where Og(—K) is the restriction of Ox(-K) to S.

The following is a generalization of Theorem 1.10.

Theorem 6.5. If X is BN-general, then its genus g satisfies g < 10 or g = 12.
Furthermore,

(1) if g =2, thend_x : X — P> is a double covering ramified at a sextic
surface;

(2) if g > 3, then d_k is an embedding and Theorem 1.10 (2.a) and (3) hold
Jor the anti-canonical model Xog4_o.

We will prove statement (2) of the theorem for g = 7,8,9,10 using Theorem
4.7. It is known that a hyperplane section Syq_3 C P? of the anti-canonical model
Xag—2 C P9*! is a linear scction of the homogencous projective variety Z,-o C P.
We will show, by a Lefschetz-type argument, that the same is true for Xo4_, C P? +1
itself. (By Theorem 5.5, the same argument works also for the case g = 12).

First. we extend the canonical embedding ¢ : § — X to the formal neigh-
bourhood Sx of X along S. Specifically, we expand along S the expected regular
map j : X — X into a power serics and determine its coefficients inductively
from a lower term. The coeflicient of the term of degree 1 is equal to the global
section of the vector bundle Ts: | ®Ng;x. The obstacles in determining the coeffi-
cients of higher terms globally are given inductively by the first cohomology classes
of Ty |s ®N ;’/"\ for n > 1. Fortunately, by Bott’s vanishing theorem [6], these

cohomology groups disappear and we obtain an extension i : Sy — X of i.
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-

FIGURE 2

i induces a linear map H%(Ox(1)) — H°(Sx, O(1)), and the projectification 3 :
P9*! s P of (the dual of) this map makes the diagram in Figure 2 commutative.
As Sy is mapped to I by 3, so is X. Besides, § |x is an extension of ¢ to
X. Suppose that 3 is not an embedding. Then it becomes the composite of the
projection P9%! ..s PY from a point p with the natural inclusion a. But this
implies that X is the cone over S with vertex p, which is a contradiction. Therefore
3 is an embedding. As S is a complete linear section of X, so is 8(X) = X.

7. GENUS BOUND AND NO MOVING DECOMPOSITION

We will complete a proof of Theorem 6.5 by proving the genus bound “g < 10
or g = 12”. We begin by explaining the idea of proof in the case of dimension
2. Let S ¢ P? be the anti-canonical model of a non-singular del Pezzo surface
and let 3 : S, — S be the blow-up of S at a point p. There is a one-to-one
correspondence between the set of anti-canonical forms on S vanishing at p and the
set of anti-canonical forms on S,. This gives rise to the commutative diagram

[
Sp —=% pd-1

(7.1) Ja T

5=, pd

where 7, is the projection from p.

Since S ¢ P? has only a finite number of lines, we may choose p so that it lies
on none of these lines. Then S, is a del Pezzo surface of degree one less than the
degree of S.

Next, let X C P9*! be the anti-canonical model of a Gorenstein Fano threefold
and again let 8 : X, — X be the blow-up of X at a non-singular point p. In
this case, the set of anti-canonical forms on X vanishing twice at p is in one-to-
one correspondence with those on X,. Let 72, be the projection from the tangent
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(projective) space at p. Then we obtain a commutative diagram

L ]
Xp—— p9-3

+

(72) Jf‘i | T2p
P K I

X _x_) Pq+1

As in the case of del Pezzo surfaces, we may choose p so that it will not lie ou
any lines on X ¢ P!, But, unlike 7p, the map my, contracts conics passing
through p to a point. Further, such a conic usually exists (similar to the existence
of a quadrisccant in the previous section). Hence X, itself is not a Fano threefold.
However, if ¢;(X,)® = ¢1(X)3 — 8 > 0, then X, becomes “almost” Fano ([56]).
About this, we summarize the results relevant only to the genus bound.

Proposition 7.3. Let X be a BN-general Fano threefold with at most Gorenstein
terminal singularities. Let p € X be a generic point. Then the following assertions
hold.

(1) If X has genus g > 7, then the image Y,, = P_g(X,) is also ¢ BN-general
Fano threefold with at most Gorenstein terminal singularities.

(2) If g > 11, then X, C P93 contains a Veronese surface P given by the image
of the exceptional divisor of the blow-up 3. If (P) = P® denotes its linear envelope,
then (PyNX, = P.

Example 7.4. When g = 7, Y,, is a singular quartic hypersurface in P* containing
a quartic surface P isomorphic to P2. There cxists exactly one trisecant of P c P?
that passes through generic points of X,, and of a hyperplanc P°. Hence Y,, is
rational ([66]). Thercfore X itself is also rational.

Example 7.5. When ¢ = 12, )_('p is isomorphic to the image Y of &_x in Example
6.2. The Veronese surface P in X, C P? is the image of a cubic surface containing
the rational sextic curve Rg.

There is an inductive structure on Fano threefolds with terminal singularities:
the genus decreases by 4 in the process of obtaining X, from X. When they arc BN-
general, we can prove, by contradiction, the non-existence of higher genera, based
on the properties of Fano threefolds of genus 7, 9, 10, 12 that we have already
established.

Proof of Theorem 6.5. By part (1) of the proposition above, it suffices to prove the
impossibility of genus 11, 13, 14, 16. We consider only the last two cases, which are
rather easy. Suppose that X has genus 16. Then X, has genus 12 and contains a
Veronese surface. But, from what we established about Theorem 6.5 (§6), we find
that X, is non-singular and its Picard group is generated by Ox(-K) (Theorem
5.4); this is a contradiction. Suppose now that X has genus 14. Then X has
genus 10. It is a linear section of a Ga-variety X153 C P!3. But we see, using a
cellular decomposition, that £3 does not contain any quartic surface. This is again
a contradiction. O

Finally, we discuss canonical singularities and moving decomposition. This com-
pletes our explanation about our classification of Fano threefolds by vector bundles.
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Canonical singularities are singularities defined by the same condition as in
Definition 6.3 except that (*) is weakened to be a; > 0. They are a higher dimen-
sional analogue of rational double points of surfaces. For example, in dimension 3,
rational double points along a line and the vertex of a cone in a del Pezzo surface
are canonical singularities. Del Pezzo surfaces with rational double points have
been well investigated ([9]).

Example 7.6. Let S(p;,--- ,ps) be a blow-up of P? at 6 points. Consider the
image S3 C P® of the anti-canonical morphism ®_x associated to S(py,-- - ,pe)-
(a) If the 6 points are vertices of a complete quadrangle, then S; is a cubic (del
Pezzo) surface with 4 ordinary double points (=rational double points of type 4,).
(b) If p1,p2, p3 are not collinear and if py, ps, ps are their infinitely near points
lying in the direction of pypa, paps, pap1, respectively, then Ss has 3 rational double
points of type A,.

a) b)
P {]

D

Ps
P+ 143 Ps D s P

/ \ /

Hyperplane sections of the anti-canonical model of a Fano threcfold with only
Gorenstein canonical singularities are K3 surfaces with at most rational double
points. We can deal with them in the same way as with non-singular K3 surfaces.
In addition, the process X = X, (the image of double projection from a point)
yields only terminal singularities. Hence Theorem 6.5 and its proof remain valid if
we replace “terminal” by “canonical”.

Denote by | — Kx| the family of the zero locus (divisors) of all non-zero global
sections s € H®(Ox(—Kx)) of the anti-canonical line bundle. For a Weil divisor
D, let |D| be the set of positive divisors lincarly equivalent to D (complete linear
system).

Definition 7.7. If | — K x| contains a sum of two divisors A + B such that both
dim|A| and dim |Bj| arc positive, then —Kx ~ A + B is said to be moving de-
composition.

Proposition 7.8. Let X be a Fano threefold with at most Gorenstein canonical
singularities. Assume that —Kx has no moving decomposition. Then X is BN-
general, except for the case:

‘(**) X has genus 3 and _ is a double covering of a quadric hypersurface in
P

For a non-singular Fano threefold with B, = r = 1, H*(X, Z) is generated by
c1(X). Hence every element of | — K| is irreducible. Therefore Theorem 1.10
follows from the proposition and Theorem 6.5.

8. FANO THREEFOLDS AS MODULI SPACES OF ABELIAN SURFACES

Quoticents of the Poincaré upper half-plane by congruence subgroups [H(N) or
I'(N) are rational curves when N is small. They become isomorphic to P! by
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adding cusps. Similarly. let

o = {Z = ( T2 ) € Sym,C

T2 T2

ImZ is positive deﬁnite}

be the 3-dimensional Siegel upper half-space. Then several Fano threefolds can
be obtained as suitable compactifications of the quotient spaces I'\$z of $H, by
some arithmetic subgroup I". First, we look at the case where principally polarized
abelian surfaces are parametrized.

Example 8.1. Segre cubic hypersurface: it has 10 ordinary double points and it
can be defined by

5 5
Vi : Z;r,— = Zz? =0 in PP.
i=0 =0

Analogously, write Vy(a) C P* for the quartic hypersurface in P® defined by the
two symmetric equations

5 5 2 5
Zx,- = (Z:rf) - az:cf =0.
i=0

i=0 1=
Example 8.2. V;(4) ¢ P is singular along 15 lines.
Example 8.3. V,(2) ¢ P has 45 ordinary double points.

Let | 2h —p; — - -- — p5 | be the linear system of a quadric surface in P* passing
through 5 points in general position. The threefold in Example 8.1 is the image of
the rational map P*-.. — P* associated to the linear system ([63], Chap. 8). It
contains 15 planecs P,,,,1 < g < v < 6, which are the images of exceptional divisors
given by blowing up the 5 points and of the planes passing through 3 points. We
will explain that the cubic hypersurface V3 parametrizes Kummer surfaces.

Let (A,L) be a principally polarized abelian surface. The image S of @y :
A — P? is called a Kummer quartic surface. S is isomorphic to the quotient of
A by its automorphism —14, and it has 16 ordinary double points. As S is fixed

by an action of a Heisenberg group, its defining equation can be written as
A(z' + ' + 21 + 1Y) + B(z2y? + 222)

(8.4) 2,2, 242 2,2, 2.2

+ C(x2* + y°t*) + D(x*t* + y*2°) + Exyzt = 0

(c.g. 51], §5). The discriminant A of the equation vanishes at the singularitics of

Proposition 8.5. The discriminant A of the quartic equation (8.4) is a homoge-
neous polynomial of degree 108 in A,B.C,D.E. It is factored into

A= A}\? H A?j?

1<€i<j<6

where Ay is cubic and each A;; is linearts.

13The claim of [51}, I, p.354 is false.
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If we choose (A : B : C : D : E) as coordinates of P*, then Ax = 0" gives
the Segre cubic hypersurface Vi in P'. Equation (8.4) becomes a Kummer sur-
face if and only if Ax = 0 and A;; # 0. The union of 15 hyperplanc sections
Ak = 4A;; = 0 coincides with the union of 15 planes P, in the above. In par-
ticular, we obtain a morphism from V3 \ | P,, to the moduli space I'(2)\$2 of
principally polarized abelian surfaces (A, L, (Z/2)®! = A,) with level 2 structure,
where Ay is the abelian group of 2-torsion points in A. Analyzing the boundary
correspondence, we see that the blow-up of V3 at the 10 ordinary double points is
the Igusa compactification!® of I'(2)\$..

The quartic hypersurface in Example 8.2 is the projective dual of that in Example
8.1, i.e. the image of the following rational map:

v
(8.6) Vs 3 p — [tangent hyperplane of V3 at p| € P*.

The 15 planes P,, C V3 correspond to the 15 lines [, that are the singular locus
of V4(4). On the other hand, (8.6) induces a rational map from I'(2)\$2 to Vi(4).
It gives an isomorphism between the Satake compactification of I'(2)\ %2 and V4(4)
(sce [14], where the morphism is constructed in a different way). The boundary
component of dimension 1 is mapped to the union of lines I,,,,. The symmetric group
S on six letters acts on both V3 and Vy(4) by permuting the coordinates, and
Sps(F2) acts on I'(2)\H2. The above correspondence is equivariant with respect to
these actions. In particular, the Satake compactification of Spy(Z)\ 92 is Gs\Vi(4),
and is isomorphic to a weighted projective space P(2:3:5:6) (cf. [22]).

The threefold in Example 8.3 is called a Briickhardt quartic hypersurface and is
birational to I'(3)\$2 ({3], [15]). The simple group Sp4(E3) of order 15,200 (which
is a subgroup of index 2 in a Weyl group W(Eg)) acts on it. Besides, 45 is the
maximal number of ordinary double points that a quartic hypersurface may take.
It is also equal to the moduli number of quartic hypersurfaces ([11]).

Next, we consider the case with non-principal polarization. Given a prime p, set

z Z Z pZ
pZ pZ pZ p*Z
Z z z »pz
Z z Z pz

Then the quotient space of $)2 by the congruence subgroup I , is the moduli space
of triples consisting of the following data:

(i) an abelian surface A,

(ii) a line bundle L on A of degree 2p, and

(iii) a level structure (Z/pZ)®? = {a € A|TIL > L}.

It is known that the Horrocks-Mumford bundle E'y 5 is an indecomposable vector
bundle on P* of rank 2. The zero locus (s)o C P* of a general global section s of
Ear is an abelian surface of degree 10. By the correspondence Cs — (8)p, we
obtain a birational map ({20])

P3 = P . HYP' Expr)- - — N s\Da

Np=S9€Sm(Z)lg- 1€

6 6 6
14 A5 in Maschke [35], if we express (8.4) as > a,¥; = 0 with 5 a; = 0, then Ax = 3 a? and
=1 i=1 i=1
4;; = a; —aj.
15This compactification is given in [22]. It coincides with the toroidal compactification of [2].
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The birational map has been investigated very well, and its properties are summa-
rized in [21]. To simplify our description, it is convenient to use a Fano threefold
Usz € P of genus 12 (Remark 5.6) that is the equivariant compactification of
SL(2)/Icosa. Let p be an interior point in Uz;. As in Section 7, consider a double
projection ma, : Usg -+ PY at p and let U;‘, denote the image. Then U;‘, is a Fano
threefold of genus 8 with six ordinary double points, say p,,- - - , pg, at the images of
the six conics passing through p: it contains a Veronese surface P = P? (a special
case of Example 6.2).

Proposition 8.7. Let B C U;,, be the image of my, at the boundary B of Uss.
Then the complement of B is isomorphic to the open subset of the moduli space
I 5\92 of polarized abelian surfaces of degree 10 defined by removing P* x P! that
parametrizes the direct products of elliptic curves (with product polarization). The
isomorphism is equivariant with respect to the action of the icosahedral group on
U;4 and with respect to that of SL(2, F's) on the moduli space. Furthermore, the
isomorphism induces a parametrization of abelian surfaces with real multiplication
in Q(V/5) (Comesatti surfaces) by the complement of the siz singularities py,--- , pe
in the Veronese surface P.

In the case p = 7, the moduli space Il ,\$2 is also related closely with Fano
threefolds of genus 12 ({34]), especially with a description by the net of quadric
surfaces ([41], §3; [72]).

In addition to abelian surfaces, some vector bundles can be parametrized by
Fano threefolds. See [47] and [71] for a relation between Fano threefolds of genus 7
and the moduli space of special stable vector bundles on a curve.

9. MODULI SPACE OF FANO THREEFOLDS

We discuss the moduli spaces of del Pezzo surfaces of degree 2,3 and of del Pezzo
threefolds of degree 4 (B, in Table 1.4). We describe also their compactifications.
In the case of dimension 3, there is an interesting relation between degeneration and
period. whereas more general cases are left as a subject for further investigation.

I. Let Fy(x,y,2,t) = 0 be a defining equation for a cubic (del Pezzo) surface
Ss C P3. Two cubic surfaces S3 and .S'; are isomorphic if and only if their defining
equations F;;,FS'. € S3C? belong to the same orbit with respect to the action of
the general linear group GL(4). Hence the orbit space (S3C?)*weoth /GL(4) gives
the moduli space of non-singular cubic surfaces!'®, where (S3C™*)*M00th denotes the
open subset of $2C* defined by the non-vanishing of the discriminant A # 0.

Definition 9.1. Let F € SYC" be a homogeneous polynomial of degree d in n
variables. Write O(F') for the SL(n) orbit of F. Then:

(i) F is semi-stable <= the closure of O(F) does not contain 0;

(ii) F is weakly stable!” «= O(F) is a closed set;

(ili) F is stable <= F is weakly stable and its stabilizer is finite.

Using a numerical criterion of Hilbert and Mumford, we obtain the following.

Proposition 9.2 ([52], §1.14). Let S: F(x,y,2,t) = 0 be a cubic surface. Then:
(1) F is stable <= S has only a finite number of ordinary double points as its
singularity;

165ee [55] for another way of describing the moduli space of cubic surfaces.
17We followed [16] for this terminology.
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(2) F is weakly stable <= F is stable or it can be transformed to zyz + t3 by
the action of GL(4).

Let (SIC™)* (resp. C (S?C™)**) be the open set of stable (resp. semi-stable)
homogeneous polynomials F of degree d. A categorical quotient space

($1C™)*//GL(n)

exists as a projective algebraic variety, and the orbit space (SYC")*/GL{n) is con-
tained in it as an open subset. In the case of cubic surfaces, we obtain a compactifi-
cation (S3C*)**//GL(4) of the moduli space (S3C*)* /G L(4) of cubic surfaces with
only ordinary double points by adding a point [b] represented by Sy : zyz + 2 = 0.
The cubic surface Sy is the quotient of P? by a group of automorphisms of order
3; this coincides with (b) of Example 7.6.

S e P“/“phm P‘XP‘[”H a
@,

ordiney
donble points

kS ar double :::‘l"‘)';ll:’l; ,
cubic surface a ' Plx p!

cover of P?

oot oot

FIGURE 3. Moduli spaces of del Pezzo surfaces of degree 3 and 2.

II. Let S be a del Pezzo surface of degree 2. The anti-canonical morphismn
&_j : S —> P? is a double covering ramified at a quartic curve C : Fy(z,y,2) = 0.
Hence (S1C3)¥mooth /G [(3) is the moduli space of non-singular del Pezzo surfaces
of degree 2.

Proposition 9.3. Let S: 72 = F(x,y,2) be a quadric del Pezzo surface. Then:
(1) F is stable <=> the singularities of S are only rational double points of type
A; or As;
(2) F is weakly stable <= F is stable or it can be transformed to (zz — y2)? by
the action of GL(3).

Here (S4C®)*/GL(3) is the moduli space of quadric del Pezzo surfaces with at
most rational double points of type A, A>. By adding a point b represented by the
surface S : 72 = (xz — ¥%)?, we thus obtain a compactification of it. Sy is, however,
reducible. A better compactification is given by blowing up the point b.

Proposition 9.4. Let M be the blow-up of (SYC*)**//GL(3) with center b and let
E denote its exceptional divisor.

(1) E is isomorphic to the moduli space (S*C?)** / /GL(2) of polynomials fs(x,y)
of degree 8 in two variables.

(2) There exists a family of surfaces {S,, : m € M} parametrized by M such that
the following two conditions hold:

(i) M\E = (84C3)5/GL(3) parametrizes double covers of P? in the same way
as before.

(ii) For m € E, let fs(x,y) be the corresponding polynomial and let C be the
hyperelliptic curve of genus 8 defined by z? = fa(z,y). Then the image Cg C p®
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of Poyc at C is (lmta'incd in the cone F4 of a quartic rational curve. Each S, is a
double cover of F'y ramified at Cg.

The surface S, in (ii) above has 2 singularities other than rational double points.
They belong to a class of singularities called log terminal singularities (this is
always expected even in the case of dimension 3). If fg(z,y) = z*y? in (ii), then
S,,, is isomorphic to the quotient of P! x P! by a group of automorphisms of order
4. The proposition can be proved in the same way as in [64].

Remark 9.5. We may regard M as a compactification of the moduli space of curves
of genus 3. It is similar to the compactification of Schubert [62] rather than that
of Deligne and Mumford [7].

HI. A del Pezzo threefold of degree 4 is a complete intersection of two quadric
hypersurfaces in P® which may be defined by

2 2 2
_ . alxl +(123’2+"'+ﬂ6x6 =0’
V=Via:d) { by2? + by} + -+ + bsz? = 0.

6
The sextic homogencous polynomial fi-{&,n) = [] (a:£+ ;%) in two indeterminates

i=
£,n is called the characteristic polynomial of V. All the non-singular del Pezzo
threcfolds of degree 4 can be expressed in this way. Further, V(e : b) and V(a' : V')
are isomorphic if and only if their characteristic polynomials belong to the same
orbit with respect to the action of GL(2). Hence N = (S8C?)**//GL(2) gives a
compactification of their moduli space. Depending on the type of a weakly stable
characteristic polynomial fy, the singularities of V are described as follows:

(i) if fv(&,7) = 0 has no triple root, then there are twice as many singularities
on V as double roots of the equation, and all the singularities are ordinary double
points (in particular, terminal singularities);

(i) if fi(€,7) is equivalent to £35%, then V has ordinary double points along 2
quadric curves (these are canonical singularities).

In the case where V is non-singular, the analytic genus p defined in (1.3) is equal
to 2 and its intermediate Jacobian variety is isomorphic to the Jacobian varicty
of the curve 72 = fy(£,n) of genus 2. Hence the period map can be extended
naturally to N except at the point corresponding to (ii). By this correspondence,
N is isomorphic to the quotient of the cubic hypersurface in Example 8.1 by an
action of the symmetric group on 6 letters; in other words, it is isomorphic'® to the
weighted projective space P(2:4:5:6).

In every case of I ~ II1 above, the moduli space can be compactified by adding
irreducible Fano threefolds with at most mild singularities'®. It seems interesting
to me to study, using the new classification explained earlier in this article, whether
or not this type of compactification can also be achieved in other cases ([49]).
On the other hand, there is a close relation between the Einstein-Kihler metric
and a compactification of the moduli space of del Pezzo surfaces (see {32] and its

184 is known that the degree-even picce of the invariant ring of binary sextic polynomials is
gencrated by the invariant polynomials of degree 2.4,6,10 (Clcbsch-Gordan Theorem, c.g. [38],
p.66; Igusa [70]; Schur [73]). P(2:4:5:6) is isomorphic to P(2:4: 6 : 10). See [69).

19The statement is true also for 3-dimensional cubic hypersurfaces. The moduli space of those
with only terminal singularities (which is of dimension 10) can be compactified by adding a point
represented by the secant varicty of a rational quartic curve (work of Mutsumi Yokoyama [74) and
Alicock [68]).
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references). Another interesting direction to pursue would be to investigate such
phenomena for Fano threcfolds.
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