Fano 3-folds

Shigeru MUKAI

Abstract: In the beginning of this century, G. Fano initiated the study of 3-dimensional projective varieties
Xoy-2 C P97 with canonical curve sections in connection with the Liiroth problem.! After a quick review
of a modern treatment of Fano’s approach (§1), we discuss a new approach to Fano 3-folds via vector bundles,
which has revealed their relation to certain homogeneous spaces (§§2 and 3) and varieties of sums of powers
(885 and 6). We also give a new proof of the gunus bound of prime Fano 3-folds (§4). In the maximum genus

(g = 12) case, Fano 3-folds Xo5 C P!? yield a 4-dimensional family of compactifications of C? (§8).

A compact complex manifold X is Fano if its first Chern class ¢;(X) is positive, or
equivalently, its anticanonical line bundle Ox(—Kx) is ample. If Ox(—Kx) is generated by
global sections and ®|_k | is birational, then its image is called the anticanonical model of
X. In the case dim X = 3, every smooth curve section C' = X N H, N Hy C P97! of the
anticanonical model X C PY"! is canonical, that is, embedded by the canonical linear system
|Kc|. Conversely, every projective 3-fold Xp, o C P9"! with a canonical curve section is
obtained in this way. The integer %(—K %) + 1 is called the genus of a Fano 3-fold X since
it is equal to the genus g of a curve section of the anticanonical model.

A projective 3-fold Xy, o C P9™! with a canonical curve section is a complete intersection
of hypersurfaces if ¢ < 5. In particular, the Picard group of X is generated by Ox(—Ky).
We call such a Fano 3-fold prime. If a Fano 3-fold X is not prime, then either —Kx is
divisible by an integer > 2 or the Picard number p of X is greater than one. See [15], [7]
and [9] for the classification in the former case and [24] and [25] in the latter case.

§1 Double projection The anticanonical line bundle Ox(—Kx) is very ample if X is a
prime Fano 3-fold of genus > 5 (¢f. [15] and [41]). To classify prime Fano 3-folds Xy, o C
P91 of genus g > 6, Fano investigated the double projection from a line* ¢ on X, o, that
is, the rational map associated to the linear system |H — 2¢| of hyperplane sections singular
along /.

Example 1 Let X5 C P be a prime Fano 3-fold of genus 9. Then the double projection
Toe from a line { C Xy is a birational map onto P3. The union D of conics which intersects
¢ is a divisor of X and contracted to a space curve C C P3 of genus 8 and degree 7. The
inverse rational map P3— — X5 C P is given by the linear system |TH — 2C| of surfaces
of degree 7 which are singular along C'.

The key for the analysis of 7o, is the notion of flop. Let X~ be the blow-up of X along
¢. Since other lines intersect ¢, X~ is not Fano. But X~ is almost Fano in the sense that
| — Kx-| is free and gives a birational morphism contracting no divisors. The anticanonical
model X of X~ is the image of the projection X— — P?® from ¢. The strict transform
D~ C X~ of D is relatively negative over X. By the theory of flops ([33], [19]), there exists
another almost Fano 3-fold X which has the same anticanonical model as X~ and such
that the strict transform Dt C X* of D~ is relatively ample over X. X7 is called the
D~-flop® of X~.

1 A surface dominated by a rational variety is rational by Castelnuovo’s criterion. But this does not hold
any more for 3-folds. See [5], [44] and [18].
2 The existence of a line is proved by Shokurov [42].

# The smoothness of X follows from [19, 2.4] or from the classification [6, Theorem 15] of the singularity
of X.
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Theorem([23], [17]) Let X, ¢ and D be as in Ezample 1. Then the D™ -flop X* of the
blow-up X~ of X along { is isomorphic to the blow-up of P3 along a space curve of genus 3
and degree 7.

For the proof, the theory of extremal rays ([22]) is applied to the almost Fano 3-fold X .
If X is a prime Fano 3-fold of genus 10, then X is isomorphic to the blow-up of a smooth
3-dimensional hyperquadric @ C P* along a curve of genus 2 and degree 7. In the case
genus 12, X7t is the blow-up of a quintic del Pezzo 3-fold* V5 C P% along a quintic normal
rational curve.

§2 Bundle method A line on X5, 5 C P9 can move in a 1-dimensional family. Hence
the double projection method does not give a canonical biregular description of Xy, o C
P9™L. In the case g = 9, e.g., there are infinitely many different space curves® C' C P3 which
give the same Fano 3-fold X4 C P'°. By the same reason, the double projection method
does not classify Xp;_» C P9 over fields which are not algebraically closed. Even when
a Fano 3-fold X is defined over k& C C, it may not have a line defined over k. Our new
classification makes up these defects. It is originated to solve the following:

g+n—2

Problem® : Classify all projective varieties Xoy—o CP of dimension n > 3 with a

canonical curve section’ .

We restrict ourselves to the case that every divisor on X is cut out by a hypersurface. In
contrast with the case g < 5, the dimension n cannot be arbitrarily large in the case g > 6.
In each case 7 < g < 10, the maximum dimension n(g) is attained by a homogeneous space
Egg_g.

Table
g [ n(g) [ Sgs C PFI2 r(EB) [ X(E) | 1 (B)ea(E)
6 6 | Hyperquadric section of the cone 2 5 4
of the Grassmann variety®
G(2,5) Cc P?
7 10 | 10-dimensional spinor variety ) 10 48
SO(10,C)/P C P¥
8 8 | Grassmann variety G(2,6) C P 2 6 5
9 6 | Sp6,C)/PcCP? 3 6 8
10 5 | Gy/P C PP 5 7 12
12 3 |G(V,3,N)CP? (See Theorem 3.) | 3 7 10

We claim that every variety X C P with canonical curve section of genus g > 6 is a
linear section of the above Xy, o C P9t9)-2 Since each Y9¢—2 has a natural morphism to a
Grassmann variety, vector bundles play a crucial role in our classification. Instead of a line,
we show the existence of a good vector bundle £ on X. Instead of the double projection,
we embed X into a Grassmann variety by the linear system |E| and describe its image.
The vector bundle is first constructed over a general (K3) surface section S of X and then
extended to X applying a Lefschetz type theorem (c¢f. [8]).” The numerical invariants of £

4 A smooth projective variety V; C P4*"~2 with a normal elliptic curve section is called del Pezzo. The
anticanonical class —Ky is llinearly equivalent to (n — 1) times hyperplane section. All quintic del Pezzo
3-folds are isomorphic to each other (see [15] and [9]).

5 The isomorphism classes of curves C' are uniquely determined by the Torelli theorem since the interme-
diate Jacobian variety of X is isomorphic to the Jacobian variety of C.

6 Roth [36] [37] studied this problem by generalizing the double projection method.

" The anticanonical class of X3, , is (n — 2)-times hyperplane section. In the case n = 2, X3, is a
(polarized) K3 surface. The integer g is called the genus of X.

8 G(s,n) denotes the Grassmann variety of s-dimensional subspaces of a fixed n-dimensional vector space.

9 By our assumption on X and [21], there exists a surface section with Picard number one. Hence every
member of |Og(—Kx)| is irreducible. We use this property to analyze ®|g|.
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are as in the above table.!® All higher cohomology groups of E vanish and F is generated
by its global sections. The morphism'' ® g : X — G(H°(E),r(E)) is an embedding if
g > 7. The first Chern class ¢;(E) is equal to 2¢1(X) if ¢ = 7 and equal to ¢;(X) otherwise.
E is characterized by the following two properties:

1) r(E), c1(E) and c3(FE) are as above, and

2) the restriction'? of E to a general surface section is stable.

In the case g = 9, |E| embeds X into the 9-dimensional Grassmann variety G(V,3),
where V = H(X, E). Consider the natural map

Ao /2\H°(X, E) — H°(X, /2\ E).

The kernel is generated by a nondegenerate bivector ¢ on V. Hence the image of X is
contained in the zero locus G(V, 3, o) of the global section of A?E corresponding to o, where
£ is the universal quotient bundle on G(V,3). G(V,3,0) is a 6-dimensional homogeneous
space of Sp(V, o) and a projective variety Y14 C P? with a canonical curve section of genus
9. In the case dim X = 3, we have

Theorem 2 A prime Fano 3-fold X1 C P10 of genus 9 is isomophic to the intersection of
Y16 and a linear subspace PV in P13,

By the above characterization, F is defined over k C C if X is so. Hence the theorem holds
true for every Fano 3-fold X6 C P}? over k C C such that X ® C is prime.

The results are similar for ¢ = 7,8 and 10. In the case ¢ = 7 and 10, the natural
mappings oy : S?HY(X,E) — H°X,S%?E) and A\, : AN*HY(X,E) — HY(X,\'E) are
considered instead of X\y. In the case ¢ = 6, X is a double cover of a linear section of
G(2,5) € P? if the linear subspace P passes through the vertex of the Grassmann cone.

Otherwise, X is isomorphic to the complete intersection of a 6-dimensional hyperquadric
Q C P and G(2,5) C P?.

§3 Fano 3-fold of genus 12 A prime Fano 3-fold!® X of genus 12 cannot be an ample
divisor of a 4-fold. = But the vector bundle E gives a canonical description of X in the
12-dimensional Grassmann variety G(V,3),V = H°(X, E). Consider the natural map A, :
N H(X,E) — H°(X,A\*E) as in the case g = 9. Its kernel N is of dimension 3. Let
{o1,09,03} be a basis of N.

Theorem 3 A prime Fano 3-fold X55 C P2 of genus 12 is isomorphic to the common zero
locus G(V,3, N) of the three global sections of N\>E corresponding to oy, 0y and o3, where £
is the universal quotient bundle on G(V,3).

The third Chern number deg c3(E) is equal to 2. Hence every general global section of E
vanishes at two points. Conversely, since V' is of dimension 7, there exists a nonzero global
section s, , vanishing at x and y for every pair of distinct points  and y. If  and y are
general, then s, , is unique up to constant multiplications. The correspondence (x,y) +— [s;.,]
gives the birational mappings II : S?X— — P, (V) ~ P® and I, : X— — P.(V,) ~ P3 for
general z, where V,, C V is the space of global sections of £ which vanish at x. In particular,
X is rational. The birational mapping II, is the same as the triple projection of X5, C P13
from .

The bundle method gives another canonical description of prime Fano 3-folds of genus
12 in the variety of twisted cubics ([29, §3]). This description is useful to analyze the double
projection of Xs» C P'3 from a line.

10 The bundle method works for other values of g, e.g., 18 and 20 and gives a description of polarized K3
surfaces (see [30]).

1 For a vector space V, G(V,r) denotes the Grassmann variety of r-dimensional quotient space of V.

12 The restriction of E is rigid and characterized by its numerical invariants and stability ([27, §3]).

13 Prime Fano 3-folds of genus 12 were omitted in [38, Chap. V, §7] and first constructed by Iskovskih [16].
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Remark 4 The third Betti number of a prime Fano 3-fold of of genus g > 7 is equal 2(n(g)—
3). In particular, prime Fano 3-folds of genus 12 have the same homology group as P3.

84 Genus bound The descriptions given in §§2 and 3 complete the classification of prime
Fano 3-folds by virtue of Iskovskih’s genus bound:

Theorem 5 The genus g of a prime Fano 3-fold satisfies g < 10 or g = 12.

This is proved in the course of the classification by the double projection method. Here
we sketch a simple proof using a correspondence between the moduli spaces of K3 surfaces
and curves. Let F,; be the moduli space of polarized K3 surfaces (S, h) of degree 2g — 2. A
smooth member of |h| is a curve of genus ¢g. Hence we obtain the rational map ¢, from the
P9-bundle P, := [I(sn)er, |k over Fy to the moduli space M, of stable curves of genus g.
The key observation is this.

Proposition 6 If a prime Fano 3-fold of genus g exists, then the rational map ¢g4 : Py— —
My is not generically finite.

By a simple deformation argument, we have that the generic hyperplane section (S, h) of
the generic prime Fano 3-fold is generic in F,. Take a generic pencil P of hyperplane sections
of Xo,_o C P9"!. The isomorphism classes of the members of P vary since the pencil P
contains a singular member. But every member of P contains the base locus of P, which is
a curve of genus ¢g. This shows the proposition.

Since dim P, = g + 19 and dim M, = 3g — 3, dim P, < dim M, holds if and only if
g > 11. We recall the proof of the generic finiteness of ¢1; in [25]. Let C' C P® be a sextic
normal elliptic curve and S a smooth complete intersection of three hyperquadrics containing
C. Let H be a general hyperplane section of S and put I' = H U C. The S is a K3 surface
and I is a stable curve of genus 11.

Theorem([25, (1.2)]) For every embedding i : T' — S" of T in to a K3 surface S’, there exists
an isomorphism I : S — S’ whose restriction to I" coincides with 1.

This implies that the point ¢ € P;; corresponding to (S,T") is isolated in ¢17'(¢11(€)).
Hence ¢;; is generically finite and a prime Fano 3-fold of genus 11 does not exist. The
non-existence of prime Fano 3-folds of genus > 13 is proved in a similar way. Note that
the elliptic curve C' induces an elliptic fibration of S, which we denote by 7 : S — P! We
consider the case in which 7 has two singular fibers of the following types:

1) E1 U E2 U E3 with (EQEg) = (EgEl) = (ElEQ) = 17 and
where E, is isomorphis to P! and satisfies (E,.H) = v for evey 1 < v < 4. It is easy to
construct a stable curve I'y of genus > 13 on S from I' by adding fibres of w. For example,
I''uFEs;, I'UFEy and I'U Ey U E3 are of genus 13, 14 and 15, respectively. Note that to add
one general fibre of 7 increases the genus by 6. Byt the above theorem, it is easy to show
that every embedding of I'; into a K3 surface S’ is extended to an isomorphism from S onto
S’. Hence we have

Theorem 7 The rational map ¢4 : P,— — M, is generically finite if and only if g = 11 or
g > 13.

This completes the proof of Theorem 5.

Remark 8 The map ¢4 is generically of mazimal rank except for g = 10,12. In the case of
g = 10, the image of ¢1g is is a divisor of My (See [28]).
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85 Theory of polars Prime Fano 3-folds of genus 12 are related to the classical problem
on sums of powers, which is a polynomial version of the Warring problem. Let Fj be a
homogeneous polynomial of degree d in n variables.

1) Are there N linear forms fy,-- -, fy such that F; = >N fd?
2) If so, then how many?

In the following cases, every general Fj is a sum of d-th powers of N linear forms and the
expression is unique:

(1) n =2 and d = 2N (Sylvester[43]),

(2) n =4, d =3 and N = 5(Sylvester’s pentahedral theorem [34] [39]), and

(3) n =3, d=>5 and N = 7(Hilbert [14, p. 153], Richmond [34] and Palatini [32]).

We consider the case n = 3. Let C and I' be the plane curves defined by Fy and [TV f;,
respectively. T is called a polar N-side of C if F; = YV f¢. The name comes from the
following;:

Example 9 Let C be a smooth conic and {1, {5 and U3 three distinct lines. Then the following
are equivalent:

(1) A =ty + Uy + U5 is a polar 3-side of C' in the above sense, and

(2) the triangle A is self polar with respect to C, that is, each side is the polar of its
opposite vertez.

§6 Variety of sums of powers We regard the set of polar N-sides of C' : Fy(z,y,z) = 0 as
a subvariety of the projective space of plane curves of degree N. We denote its closure!* by
VSP(C,N) or VSP(F;, N). The homogeneous forms of degree N form a vector space of
dimension (d + 1)(d + 2). The N-ples of linear forms form a vector space of dimension 3N.
Hence the dimension of VSP(C, N) is expected to be 3N — £(d + 1)(d + 2) for general C.
In the case (d, N) = (2,3), this is true.

Proposition 10 If C' is a smooth conic, then VSP(C,3) is a smooth quintic del Pezzo
3-fold.

Let V4 be the vector space of quadratic forms. If A : f; fofs = 0 is a polar 3-side of C', then
the defining equation Fy of C' is contained in the subspace < f7, f2, f2 > of V4. Therefore,
A determines a 2-dimensional subspace W of V* := V,/CF;. Hence we have the morphism
from V.SP(C,3) to the 6-dimensional Grassmann variety G(2,V*) C P%. Let ¢: Vo — C
be the linear map associated to the dual conic of C. For a pair of quadratic forms f and g,
consider the three minors J;(f,g), i = 1,2, 3, of the Jacobian matrix

o fy [

9z Gy 9=
and put o;(f,9) = q(Ji(f,g)). Then o; are skew-symmetric forms on V5 and F; is their
common radical. Therefore, each o;, i = 1,2,3, determine three hyperplanes H; of P =

P.(A?V*). VSP(C,3) is isomorphic to the quintic del Pezzo 3-fold G(2, V*)N H, N Hy N Hs.
Now we consider plane quartic curves C' : Fy(z,y, z) = 0. The dimension count

3N — 15 = dim VSP(C, N)

does not hold for N = 5:
Let {0y = 0%/0x?,--+,0s = 0*/02%} be a basis of the space of homogeneous second order
partial differential operators.

14 The closure is taken in the symmetric product Sym™P2. But this is a temporary definition. In practice,
we choose a suitable model of Sym™P? to define VSP(C, N).
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Theorem (Clebsch [4]) If a plane quartic curve C : Fy(x,y,z) = 0 has a polar 5-side, then
Q(F) = det(@iajF)1§i7j§6 =0.

In particular, general plane quartic curves have mo polar 5-sides.

In other words, polar 5-sides are not equally distributed to quartic curves. Once a quartic
curve has a polar 5-side, it has a 1-dimensional family of polar 5-sides. (The same happens
for polar 2-sides of conics.)

Polar 6-sides of plane quartics was studied by Rosanes [35] and Scorza [40]. The dimension
count is correct for N = 6 and we obtain 3-folds.

Theorem 11 (1) If a quartic curve C' has no polar 5-sides or no complete quadrangles as
its polar 6-sides, then the variety V.SP(C,6) of polar 6-sides of C' is a prime Fano 3-fold of
genus 12.

(2) Conversely every prime Fano 3-fold X of genus 12 is obtained in this way. The
1somorphism class of C' is uniquely determined by that of X.

By virtue of Theorem 3, it suffice to show that G(V, 3, N) is isomorphic to V.SP(C,6).
Let V3 be the vector space of cubic forms. If I' : fifo--- fs = 0 is a polar 6-side of C,
then the partial derivatives Fy, F, and F, of the defining equation Fj are contained in <
213, f&>. Hence I' determines a 3-dimensional subspace of V* :=V3/ < F,, F,, F, >
and we obtain a morphism ¢ from V.SP(C,6) to G(3,V*). Three skew-symmetric forms
01,09 and o3 on V* are defined as in the case of V.SP(F3,3) and the image of ¢ is contained
in G(3,V* 01,09,03).

Conversely, let V and N C AV be as in Theorem 3. The multiplication in the exterior
algebra A®V induces the map o3 : SN — A®V. This is surjective and its kernel is of
dimension 3.

Lemma 12 There exists a quartic polynomial F(x,y,z) € S*N whose partial derivatives
Fx, Fy and Fz form a basis of the kernel of o3, where {z,y, 2z} is a basis of N and {X,Y, Z}
18 1ts dual.

The conics on (the anticanonical model of) G(V,3, N) is parametrized by the projective
plane!® P,(N) For every point = of G(V,3,N), there exist exactly six conics {Z), }1<i<s,
Ai € P,(N), passing through z, counted with their multiplicities. . Let A;, 1 < i < 6, be the
lines on P(N) with coordinates )\;. Then I' = 329 A; is a polar 6-side of the plane curve C
on P(N) defined by the quartic form F(z,y, z) in the lemma. This correspondence x — I'
gives the inverse of the above morphism ¢.

Remark 13 (1) Assume that a plane quartic C" has a polar 5-side and that the 5Slines are
i general position.

When C' in Theorem 11 deforms to C', the variety V.SP(C,6) deforms to a Fano 3-fold
X" with an ordinary double point. X' is isomorphic to the anti canonical model of P(E),
where E is a stable vector bundle on P? with ¢; =0 and ¢ = 4 (cf. [2]).

(2) If C' is a general plane septic curve, then the variety VSP(C,10) is a polarized K3
surface of genus 20.

15 For a vector space V, P, (V) is the projective space of 1-dimensional subspaces of V. P(V), or P*(V),
is its dual.
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87 Almost homogeneous Fano 3-fold Varieties of sums of powers give two examples of
almost homogeneous spaces of SO(3, C) and their compactifications. Apply Theorem 11 to
a double conic, say 2Cy : (XZ +Y?)? =0.

The variety VSP(2Cy,6) is a Fano 3-fold and has an action of SO(3,C). It is easy to
check \

30(XZ+Y?)? =25V +> (X +Y +('2)",
i=0

where ( is a fifth root of unity. The polar 6-side

4
YJ[CX+Y+(72)=0

=0

intersects the 2-sphere Cj at the 12 vertices of a regular icosahedron. The stabilizer group
at I of SO(3,C) is the icosahedral group ~ As. Hence we have

Theorem 14 The variety V. SP(2Cy,6) is a smooth equivariant compactification of
SO(3,C)/Icosa.

Similarly the quintic del Pezzo 3-fold V.SP(Cy, 3) is a smooth equivariant compactification
of the quotient of SO(3,C) by an octahedral group ~ S, by Proposition 10. These two
compactifications are described in [31, §83 and 6] by another method. We remark that
@Q* and P3 are also almost homogeneous spaces of SO(3,C). The stabilizer groups are
tetrahedral group ~ A, and a dihedral group of order 6 ~ S5 , respectively.

§8 Compactification of C*> There are four types of Fano 3-folds with the same homology
growps as P3: P3 itself, Q* c P*, V5 C P® and the 6-dimensional family of prime Fano 3-
folds X9y C P! of genus 12 (see Remark 4). These Fano 3-folds are related to not only
SO(3,C) but also C3?, the affine 3-space. It is well-known that P? and @ are smooth
compactifications of C? with irreducible boundary divisors. The quintic del Pezzo 3-fold
Vs C PY is a compactifications of C? in two ways (see [10] and [13]).

Furushima has found that the almost homogeneous Fano 3-fold Uy, := V.SP(2C), 6) also
is a Compactification of C®. This fact is proved in three ways using

i) the defining equation ([31] p.506) of Uy C P2 (see [11]),

ii) the double projection of Usy C P? from a line (see [12]), and

iii) the action of a torus C* C SO(3,C) on Us, (see [1] and [20]).
In the last case, Uy is decomposed into a disjoint union of affine spaces by virtue of [3]. The
four compactifications by P3, Q3 and Vj are rigid but that by Us; is not. In fact, by a careful
analysis of the double projection of V.SP(C,6) C P from a line, we have

Theorem 15 The variety V.SP(C,6) in Theorem 11 is a compactification of C* if C has a
non-ordinary singular point.

The variety V.SP(C,6) has a line ¢ (on its anticanonical model) with normal bundle O(1) &
O(—2) corresponding to a non-ordinary singular point of C'. Let D be the union of conics
which intersect ¢ as in Example 1. Then the complement of D is isomorphic to C3.
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