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Abstract: In the beginning of this century, G. Fano initiated the study of 3-dimensional projective varieties
X2g−2 ⊂ Pg+1 with canonical curve sections in connection with the Lüroth problem.1 After a quick review
of a modern treatment of Fano’s approach (§1), we discuss a new approach to Fano 3-folds via vector bundles,
which has revealed their relation to certain homogeneous spaces (§§2 and 3) and varieties of sums of powers
(§§5 and 6). We also give a new proof of the gunus bound of prime Fano 3-folds (§4). In the maximum genus
(g = 12) case, Fano 3-folds X22 ⊂ P13 yield a 4-dimensional family of compactifications of C3 (§8).

A compact complex manifold X is Fano if its first Chern class c1(X) is positive, or
equivalently, its anticanonical line bundle OX(−KX) is ample. If OX(−KX) is generated by
global sections and Φ|−KX | is birational, then its image is called the anticanonical model of
X. In the case dim X = 3, every smooth curve section C = X ∩ H1 ∩ H2 ⊂ Pg−1 of the
anticanonical model X ⊂ Pg+1 is canonical, that is, embedded by the canonical linear system
|KC |. Conversely, every projective 3-fold X2g−2 ⊂ Pg+1 with a canonical curve section is
obtained in this way. The integer 1

2
(−KX)3 + 1 is called the genus of a Fano 3-fold X since

it is equal to the genus g of a curve section of the anticanonical model.
A projective 3-fold X2g−2 ⊂ Pg+1 with a canonical curve section is a complete intersection

of hypersurfaces if g ≤ 5. In particular, the Picard group of X is generated by OX(−KX).
We call such a Fano 3-fold prime. If a Fano 3-fold X is not prime, then either −KX is
divisible by an integer ≥ 2 or the Picard number ρ of X is greater than one. See [15], [7]
and [9] for the classification in the former case and [24] and [25] in the latter case.

§1 Double projection The anticanonical line bundle OX(−KX) is very ample if X is a
prime Fano 3-fold of genus ≥ 5 (cf. [15] and [41]). To classify prime Fano 3-folds X2g−2 ⊂
Pg+1 of genus g ≥ 6, Fano investigated the double projection from a line2 ℓ on X2g−2, that
is, the rational map associated to the linear system |H − 2ℓ| of hyperplane sections singular
along ℓ.

Example 1 Let X16 ⊂ P10 be a prime Fano 3-fold of genus 9. Then the double projection
π2ℓ from a line ℓ ⊂ X16 is a birational map onto P3. The union D of conics which intersects
ℓ is a divisor of X and contracted to a space curve C ⊂ P3 of genus 3 and degree 7. The
inverse rational map P3− → X16 ⊂ P10 is given by the linear system |7H − 2C| of surfaces
of degree 7 which are singular along C.

The key for the analysis of π2ℓ is the notion of flop. Let X− be the blow-up of X along
ℓ. Since other lines intersect ℓ, X− is not Fano. But X− is almost Fano in the sense that
| −KX−| is free and gives a birational morphism contracting no divisors. The anticanonical
model X̄ of X− is the image of the projection X− → P8 from ℓ. The strict transform
D− ⊂ X− of D is relatively negative over X̄. By the theory of flops ([33], [19]), there exists
another almost Fano 3-fold X+ which has the same anticanonical model as X− and such
that the strict transform D+ ⊂ X+ of D− is relatively ample over X̄. X+ is called the
D−-flop3 of X−.

1 A surface dominated by a rational variety is rational by Castelnuovo’s criterion. But this does not hold
any more for 3-folds. See [5], [44] and [18].

2 The existence of a line is proved by Shokurov [42].
3 The smoothness of X+ follows from [19, 2.4] or from the classification [6, Theorem 15] of the singularity

of X̄.
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Theorem([23], [17]) Let X, ℓ and D be as in Example 1. Then the D−-flop X+ of the
blow-up X− of X along ℓ is isomorphic to the blow-up of P3 along a space curve of genus 3
and degree 7.

For the proof, the theory of extremal rays ([22]) is applied to the almost Fano 3-fold X+.
If X is a prime Fano 3-fold of genus 10, then X+ is isomorphic to the blow-up of a smooth
3-dimensional hyperquadric Q3 ⊂ P4 along a curve of genus 2 and degree 7. In the case
genus 12, X+ is the blow-up of a quintic del Pezzo 3-fold4 V5 ⊂ P6 along a quintic normal
rational curve.

§2 Bundle method A line on X2g−2 ⊂ Pg+1 can move in a 1-dimensional family. Hence
the double projection method does not give a canonical biregular description of X2g−2 ⊂
Pg+1. In the case g = 9, e.g., there are infinitely many different space curves5 C ⊂ P3 which
give the same Fano 3-fold X16 ⊂ P10. By the same reason, the double projection method
does not classify X2g−2 ⊂ Pg+1 over fields which are not algebraically closed. Even when
a Fano 3-fold X is defined over k ⊂ C, it may not have a line defined over k. Our new
classification makes up these defects. It is originated to solve the following:

Problem6 : Classify all projective varieties Xn
2g−2 ⊂ Pg+n−2 of dimension n ≥ 3 with a

canonical curve section7 .

We restrict ourselves to the case that every divisor on X is cut out by a hypersurface. In
contrast with the case g ≤ 5, the dimension n cannot be arbitrarily large in the case g ≥ 6.
In each case 7 ≤ g ≤ 10, the maximum dimension n(g) is attained by a homogeneous space
Σ2g−2.

Table
g n(g) Σ2g−2 ⊂ Pg+n(g)−2 r(E) χ(E) c1(E)c2(E)
6 6 Hyperquadric section of the cone 2 5 4

of the Grassmann variety8

G(2, 5) ⊂ P9

7 10 10-dimensional spinor variety 5 10 48
SO(10,C)/P ⊂ P15

8 8 Grassmann variety G(2, 6) ⊂ P14 2 6 5
9 6 Sp(6,C)/P ⊂ P13 3 6 8
10 5 G2/P ⊂ P13 5 7 12
12 3 G(V, 3, N) ⊂ P13 (See Theorem 3.) 3 7 10

We claim that every variety X ⊂ P with canonical curve section of genus g ≥ 6 is a
linear section of the above Σ2g−2 ⊂ Pg+n(g)−2. Since each Σ2g−2 has a natural morphism to a
Grassmann variety, vector bundles play a crucial role in our classification. Instead of a line,
we show the existence of a good vector bundle E on X. Instead of the double projection,
we embed X into a Grassmann variety by the linear system |E| and describe its image.
The vector bundle is first constructed over a general (K3) surface section S of X and then
extended to X applying a Lefschetz type theorem (cf. [8]).9 The numerical invariants of E

4 A smooth projective variety Vd ⊂ Pd+n−2 with a normal elliptic curve section is called del Pezzo. The
anticanonical class −KV is llinearly equivalent to (n − 1) times hyperplane section. All quintic del Pezzo
3-folds are isomorphic to each other (see [15] and [9]).

5 The isomorphism classes of curves C are uniquely determined by the Torelli theorem since the interme-
diate Jacobian variety of X is isomorphic to the Jacobian variety of C.

6 Roth [36] [37] studied this problem by generalizing the double projection method.
7 The anticanonical class of Xn

2g−2 is (n − 2)-times hyperplane section. In the case n = 2, X2
2g−2 is a

(polarized) K3 surface. The integer g is called the genus of X.
8 G(s, n) denotes the Grassmann variety of s-dimensional subspaces of a fixed n-dimensional vector space.
9 By our assumption on X and [21], there exists a surface section with Picard number one. Hence every

member of |OS(−KX)| is irreducible. We use this property to analyze Φ|E|.
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are as in the above table.10 All higher cohomology groups of E vanish and E is generated
by its global sections. The morphism11 Φ|E| : X −→ G(H0(E), r(E)) is an embedding if
g ≥ 7. The first Chern class c1(E) is equal to 2c1(X) if g = 7 and equal to c1(X) otherwise.
E is characterized by the following two properties:

1) r(E), c1(E) and c2(E) are as above, and
2) the restriction12 of E to a general surface section is stable.
In the case g = 9, |E| embeds X into the 9-dimensional Grassmann variety G(V, 3),

where V = H0(X,E). Consider the natural map

λ2 :
2∧

H0(X,E) −→ H0(X,
2∧

E).

The kernel is generated by a nondegenerate bivector σ on V . Hence the image of X is
contained in the zero locus G(V, 3, σ) of the global section of

∧2 E corresponding to σ, where
E is the universal quotient bundle on G(V, 3). G(V, 3, σ) is a 6-dimensional homogeneous
space of Sp(V, σ) and a projective variety Σ16 ⊂ P13 with a canonical curve section of genus
9. In the case dim X = 3, we have

Theorem 2 A prime Fano 3-fold X16 ⊂ P10 of genus 9 is isomophic to the intersection of
Σ16 and a linear subspace P10 in P13.

By the above characterization, E is defined over k ⊂ C if X is so. Hence the theorem holds
true for every Fano 3-fold X16 ⊂ P10

k over k ⊂ C such that X ⊗ C is prime.
The results are similar for g = 7, 8 and 10. In the case g = 7 and 10, the natural

mappings σ2 : S2H0(X,E) −→ H0(X,S2E) and λ4 :
∧4 H0(X,E) −→ H0(X,

∧4 E) are
considered instead of λ2. In the case g = 6, X is a double cover of a linear section of
G(2, 5) ⊂ P9 if the linear subspace P passes through the vertex of the Grassmann cone.
Otherwise, X is isomorphic to the complete intersection of a 6-dimensional hyperquadric
Q ⊂ P and G(2, 5) ⊂ P9.

§3 Fano 3-fold of genus 12 A prime Fano 3-fold13 X of genus 12 cannot be an ample
divisor of a 4-fold. But the vector bundle E gives a canonical description of X in the
12-dimensional Grassmann variety G(V, 3), V = H0(X,E). Consider the natural map λ2 :∧2 H0(X,E) −→ H0(X,

∧2 E) as in the case g = 9. Its kernel N is of dimension 3. Let
{σ1, σ2, σ3} be a basis of N .

Theorem 3 A prime Fano 3-fold X22 ⊂ P12 of genus 12 is isomorphic to the common zero
locus G(V, 3, N) of the three global sections of

∧2 E corresponding to σ1, σ2 and σ3, where E
is the universal quotient bundle on G(V, 3).

The third Chern number deg c3(E) is equal to 2. Hence every general global section of E
vanishes at two points. Conversely, since V is of dimension 7, there exists a nonzero global
section sx,y vanishing at x and y for every pair of distinct points x and y. If x and y are
general, then sx,y is unique up to constant multiplications. The correspondence (x, y) 7→ [sx,y]
gives the birational mappings Π : S2X− → P∗(V ) ≅ P6 and Πx : X− → P∗(Vx) ≅ P3 for
general x, where Vx ⊂ V is the space of global sections of E which vanish at x. In particular,
X is rational. The birational mapping Πx is the same as the triple projection of X22 ⊂ P13

from x.
The bundle method gives another canonical description of prime Fano 3-folds of genus

12 in the variety of twisted cubics ([29, §3]). This description is useful to analyze the double
projection of X22 ⊂ P13 from a line.

10 The bundle method works for other values of g, e.g., 18 and 20 and gives a description of polarized K3
surfaces (see [30]).

11 For a vector space V , G(V, r) denotes the Grassmann variety of r-dimensional quotient space of V .
12 The restriction of E is rigid and characterized by its numerical invariants and stability ([27, §3]).
13 Prime Fano 3-folds of genus 12 were omitted in [38, Chap. V, §7] and first constructed by Iskovskih [16].
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Remark 4 The third Betti number of a prime Fano 3-fold of of genus g ≥ 7 is equal 2(n(g)−
3). In particular, prime Fano 3-folds of genus 12 have the same homology group as P3.

§4 Genus bound The descriptions given in §§2 and 3 complete the classification of prime
Fano 3-folds by virtue of Iskovskih’s genus bound:

Theorem 5 The genus g of a prime Fano 3-fold satisfies g ≤ 10 or g = 12.

This is proved in the course of the classification by the double projection method. Here
we sketch a simple proof using a correspondence between the moduli spaces of K3 surfaces
and curves. Let Fg be the moduli space of polarized K3 surfaces (S, h) of degree 2g − 2. A
smooth member of |h| is a curve of genus g. Hence we obtain the rational map φg from the
Pg-bundle Pg :=

∐
(S,h)∈Fg

|h| over Fg to the moduli space Mg of stable curves of genus g.
The key observation is this.

Proposition 6 If a prime Fano 3-fold of genus g exists, then the rational map φg : Pg− →
Mg is not generically finite.

By a simple deformation argument, we have that the generic hyperplane section (S, h) of
the generic prime Fano 3-fold is generic in Fg. Take a generic pencil P of hyperplane sections
of X2g−2 ⊂ Pg+1. The isomorphism classes of the members of P vary since the pencil P
contains a singular member. But every member of P contains the base locus of P , which is
a curve of genus g. This shows the proposition.

Since dimPg = g + 19 and dimMg = 3g − 3, dimPg ≤ dimMg holds if and only if
g ≥ 11. We recall the proof of the generic finiteness of φ11 in [25]. Let C ⊂ P5 be a sextic
normal elliptic curve and S a smooth complete intersection of three hyperquadrics containing
C. Let H be a general hyperplane section of S and put Γ = H ∪ C. The S is a K3 surface
and Γ is a stable curve of genus 11.

Theorem([25, (1.2)]) For every embedding i : Γ → S ′ of Γ in to a K3 surface S ′, there exists
an isomorphism I : S → S ′ whose restriction to Γ coincides with i.

This implies that the point ξ ∈ P11 corresponding to (S, Γ) is isolated in φ−1
11 (φ11(ξ)).

Hence φ11 is generically finite and a prime Fano 3-fold of genus 11 does not exist. The
non-existence of prime Fano 3-folds of genus ≥ 13 is proved in a similar way. Note that
the elliptic curve C induces an elliptic fibration of S, which we denote by π : S → P1. We
consider the case in which π has two singular fibers of the following types:

i) E1 ∪ E2 ∪ E3 with (E2.E3) = (E3.E1) = (E1.E2) = 1, and
ii) E ′

2 ∪ E4 with (E ′
2.E4) = 2,

where Eν is isomorphis to P1 and satisfies (Eν .H) = ν for evey 1 ≤ ν ≤ 4. It is easy to
construct a stable curve Γg of genus ≥ 13 on S from Γ by adding fibres of π. For example,
Γ ∪ E3, Γ ∪ E4 and Γ ∪ E2 ∪ E3 are of genus 13, 14 and 15, respectively. Note that to add
one general fibre of π increases the genus by 6. Byt the above theorem, it is easy to show
that every embedding of Γg into a K3 surface S ′ is extended to an isomorphism from S onto
S ′. Hence we have

Theorem 7 The rational map φg : Pg− → Mg is generically finite if and only if g = 11 or
g ≥ 13.

This completes the proof of Theorem 5.

Remark 8 The map φg is generically of maximal rank except for g = 10, 12. In the case of
g = 10, the image of φ10 is is a divisor of M10 (See [28]).



MUKAI: Fano 3-folds 259

§5 Theory of polars Prime Fano 3-folds of genus 12 are related to the classical problem
on sums of powers, which is a polynomial version of the Warring problem. Let Fd be a
homogeneous polynomial of degree d in n variables.

1) Are there N linear forms f1, · · · , fN such that Fd =
∑N

1 fd
i ?

2) If so, then how many?

In the following cases, every general Fd is a sum of d-th powers of N linear forms and the
expression is unique:

(1) n = 2 and d = 2N (Sylvester[43]),
(2) n = 4, d = 3 and N = 5(Sylvester’s pentahedral theorem [34] [39]), and
(3) n = 3, d = 5 and N = 7(Hilbert [14, p. 153], Richmond [34] and Palatini [32]).

We consider the case n = 3. Let C and Γ be the plane curves defined by Fd and
∏N

1 fi,
respectively. Γ is called a polar N -side of C if Fd =

∑N
1 fd

i . The name comes from the
following:

Example 9 Let C be a smooth conic and ℓ1, ℓ2 and ℓ3 three distinct lines. Then the following
are equivalent:

(1) △ = ℓ1 + ℓ2 + ℓ3 is a polar 3-side of C in the above sense, and
(2) the triangle △ is self polar with respect to C, that is, each side is the polar of its

opposite vertex.

§6 Variety of sums of powers We regard the set of polar N -sides of C : Fd(x, y, z) = 0 as
a subvariety of the projective space of plane curves of degree N . We denote its closure14 by
V SP (C,N) or V SP (Fd, N). The homogeneous forms of degree N form a vector space of
dimension 1

2
(d + 1)(d + 2). The N -ples of linear forms form a vector space of dimension 3N .

Hence the dimension of V SP (C,N) is expected to be 3N − 1
2
(d + 1)(d + 2) for general C.

In the case (d,N) = (2, 3), this is true.

Proposition 10 If C is a smooth conic, then V SP (C, 3) is a smooth quintic del Pezzo
3-fold.

Let V2 be the vector space of quadratic forms. If △ : f1f2f3 = 0 is a polar 3-side of C, then
the defining equation F2 of C is contained in the subspace < f 2

1 , f 2
2 , f 2

3 > of V2. Therefore,
△ determines a 2-dimensional subspace W of V ∗ := V2/CF2. Hence we have the morphism
from V SP (C, 3) to the 6-dimensional Grassmann variety G(2, V ∗) ⊂ P9. Let q : V2 −→ C
be the linear map associated to the dual conic of C. For a pair of quadratic forms f and g,
consider the three minors Ji(f, g), i = 1, 2, 3, of the Jacobian matrix(

fx fy fz

gx gy gz

)

and put σi(f, g) = q(Ji(f, g)). Then σi are skew-symmetric forms on V2 and F2 is their
common radical. Therefore, each σi, i = 1, 2, 3, determine three hyperplanes Hi of P9 =
P∗(

∧2 V ∗). V SP (C, 3) is isomorphic to the quintic del Pezzo 3-fold G(2, V ∗)∩H1∩H2∩H3.
Now we consider plane quartic curves C : F4(x, y, z) = 0. The dimension count

3N − 15
?
= dim V SP (C,N)

does not hold for N = 5:
Let {∂1 = ∂2/∂x2, · · · , ∂6 = ∂2/∂z2} be a basis of the space of homogeneous second order

partial differential operators.

14 The closure is taken in the symmetric product SymNP2. But this is a temporary definition. In practice,
we choose a suitable model of SymNP2 to define V SP (C,N).
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Theorem (Clebsch [4]) If a plane quartic curve C : F4(x, y, z) = 0 has a polar 5-side, then

Ω(F ) := det(∂i∂jF )1≤i,j≤6 = 0.

In particular, general plane quartic curves have no polar 5-sides.

In other words, polar 5-sides are not equally distributed to quartic curves. Once a quartic
curve has a polar 5-side, it has a 1-dimensional family of polar 5-sides. (The same happens
for polar 2-sides of conics.)

Polar 6-sides of plane quartics was studied by Rosanes [35] and Scorza [40]. The dimension
count is correct for N = 6 and we obtain 3-folds.

Theorem 11 (1) If a quartic curve C has no polar 5-sides or no complete quadrangles as
its polar 6-sides, then the variety V SP (C, 6) of polar 6-sides of C is a prime Fano 3-fold of
genus 12.

(2) Conversely every prime Fano 3-fold X of genus 12 is obtained in this way. The
isomorphism class of C is uniquely determined by that of X.

By virtue of Theorem 3, it suffice to show that G(V, 3, N) is isomorphic to V SP (C, 6).
Let V3 be the vector space of cubic forms. If Γ : f1f2 · · · f6 = 0 is a polar 6-side of C,
then the partial derivatives Fx, Fy and Fz of the defining equation F4 are contained in <
f3

1 , f3
2 , · · · , f 3

6 >. Hence Γ determines a 3-dimensional subspace of V ∗ := V3/ < Fx, Fy, Fz >
and we obtain a morphism φ from V SP (C, 6) to G(3, V ∗). Three skew-symmetric forms
σ1, σ2 and σ3 on V ∗ are defined as in the case of V SP (F2, 3) and the image of φ is contained
in G(3, V ∗, σ1, σ2, σ3).

Conversely, let V and N ⊂ ∧2 V be as in Theorem 3. The multiplication in the exterior
algebra

∧• V induces the map σ3 : S3N −→ ∧6 V . This is surjective and its kernel is of
dimension 3.

Lemma 12 There exists a quartic polynomial F (x, y, z) ∈ S4N whose partial derivatives
FX , FY and FZ form a basis of the kernel of σ3, where {x, y, z} is a basis of N and {X,Y, Z}
is its dual.

The conics on (the anticanonical model of) G(V, 3, N) is parametrized by the projective
plane15 P∗(N) For every point x of G(V, 3, N), there exist exactly six conics {Zλi

}1≤i≤6,
λi ∈ P∗(N), passing through x, counted with their multiplicities. . Let Λi, 1 ≤ i ≤ 6, be the
lines on P(N) with coordinates λi. Then Γ =

∑6
1 Λi is a polar 6-side of the plane curve C

on P(N) defined by the quartic form F (x, y, z) in the lemma. This correspondence x 7→ Γ
gives the inverse of the above morphism φ.

Remark 13 (1) Assume that a plane quartic C ′ has a polar 5-side and that the 5lines are
in general position.

When C in Theorem 11 deforms to C ′, the variety V SP (C, 6) deforms to a Fano 3-fold
X ′ with an ordinary double point. X ′ is isomorphic to the anti canonical model of P(E),
where E is a stable vector bundle on P2 with c1 = 0 and c2 = 4 (cf. [2]).

(2) If C is a general plane septic curve, then the variety V SP (C, 10) is a polarized K3
surface of genus 20.

15 For a vector space V , P∗(V ) is the projective space of 1-dimensional subspaces of V . P(V ), or P∗(V ),
is its dual.
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§7 Almost homogeneous Fano 3-fold Varieties of sums of powers give two examples of
almost homogeneous spaces of SO(3,C) and their compactifications. Apply Theorem 11 to
a double conic, say 2C0 : (XZ + Y 2)2 = 0.

The variety V SP (2C0, 6) is a Fano 3-fold and has an action of SO(3,C). It is easy to
check

30(XZ + Y 2)2 = 25Y 4 +
4∑

i=0

(ζ iX + Y + ζ−iZ)4,

where ζ is a fifth root of unity. The polar 6-side

Γ : Y
4∏

i=0

(ζ iX + Y + ζ−iZ) = 0

intersects the 2-sphere C0 at the 12 vertices of a regular icosahedron. The stabilizer group
at Γ of SO(3,C) is the icosahedral group ≅ A5. Hence we have

Theorem 14 The variety V SP (2C0, 6) is a smooth equivariant compactification of
SO(3,C)/Icosa.

Similarly the quintic del Pezzo 3-fold V SP (C0, 3) is a smooth equivariant compactification
of the quotient of SO(3,C) by an octahedral group ≅ S4 by Proposition 10. These two
compactifications are described in [31, §§3 and 6] by another method. We remark that
Q3 and P3 are also almost homogeneous spaces of SO(3,C). The stabilizer groups are
tetrahedral group ≅ A4 and a dihedral group of order 6 ≅ S3 , respectively.

§8 Compactification of C3 There are four types of Fano 3-folds with the same homology
growps as P3: P3 itself, Q3 ⊂ P4, V5 ⊂ P6 and the 6-dimensional family of prime Fano 3-
folds X22 ⊂ P13 of genus 12 (see Remark 4). These Fano 3-folds are related to not only
SO(3,C) but also C3, the affine 3-space. It is well-known that P3 and Q3 are smooth
compactifications of C3 with irreducible boundary divisors. The quintic del Pezzo 3-fold
V5 ⊂ P6 is a compactifications of C3 in two ways (see [10] and [13]).

Furushima has found that the almost homogeneous Fano 3-fold U22 := V SP (2C0, 6) also
is a Compactification of C3. This fact is proved in three ways using

i) the defining equation ([31] p.506) of U22 ⊂ P12 (see [11]),
ii) the double projection of U22 ⊂ P13 from a line (see [12]), and
iii) the action of a torus C∗ ⊂ SO(3,C) on U22 (see [1] and [20]).

In the last case, U22 is decomposed into a disjoint union of affine spaces by virtue of [3]. The
four compactifications by P3, Q3 and V5 are rigid but that by U22 is not. In fact, by a careful
analysis of the double projection of V SP (C, 6) ⊂ P13 from a line, we have

Theorem 15 The variety V SP (C, 6) in Theorem 11 is a compactification of C3 if C has a
non-ordinary singular point.

The variety V SP (C, 6) has a line ℓ (on its anticanonical model) with normal bundle O(1)⊕
O(−2) corresponding to a non-ordinary singular point of C. Let D be the union of conics
which intersect ℓ as in Example 1. Then the complement of D is isomorphic to C3.
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