Fano 3-folds

Shigeru MUKAI

Abstract: In the beginning of this century, G. Fano initiated the study of 3-dimensional projective varieties $X_{2g-2} \subset \mathbf{P}^{g+1}$ with canonical curve sections in connection with the Lüroth problem.¹ After a quick review of a modern treatment of Fano's approach (§1), we discuss a new approach to Fano 3-folds via vector bundles, which has revealed their relation to certain homogeneous spaces (§§2 and 3) and varieties of sums of powers (§§5 and 6). We also give a new proof of the gunus bound of prime Fano 3-folds (§4). In the maximum genus (g = 12) case, Fano 3-folds $X_{22} \subset \mathbf{P}^{13}$ yield a 4-dimensional family of compactifications of \mathbf{C}^3 (§8).

A compact complex manifold X is Fano if its first Chern class $c_1(X)$ is positive, or equivalently, its anticanonical line bundle $\mathcal{O}_X(-K_X)$ is ample. If $\mathcal{O}_X(-K_X)$ is generated by global sections and $\Phi_{|-K_X|}$ is birational, then its image is called the anticanonical model of X. In the case dim X = 3, every smooth curve section $C = X \cap H_1 \cap H_2 \subset \mathbf{P}^{g-1}$ of the anticanonical model $X \subset \mathbf{P}^{g+1}$ is canonical, that is, embedded by the canonical linear system $|K_C|$. Conversely, every projective 3-fold $X_{2g-2} \subset \mathbf{P}^{g+1}$ with a canonical curve section is obtained in this way. The integer $\frac{1}{2}(-K_X)^3 + 1$ is called the *genus* of a Fano 3-fold X since it is equal to the genus g of a curve section of the anticanonical model.

A projective 3-fold $X_{2g-2} \subset \mathbf{P}^{g+1}$ with a canonical curve section is a complete intersection of hypersurfaces if $g \leq 5$. In particular, the Picard group of X is generated by $\mathcal{O}_X(-K_X)$. We call such a Fano 3-fold *prime*. If a Fano 3-fold X is not prime, then either $-K_X$ is divisible by an integer ≥ 2 or the Picard number ρ of X is greater than one. See [15], [7] and [9] for the classification in the former case and [24] and [25] in the latter case.

§1 Double projection The anticanonical line bundle $\mathcal{O}_X(-K_X)$ is very ample if X is a prime Fano 3-fold of genus ≥ 5 (cf. [15] and [41]). To classify prime Fano 3-folds $X_{2g-2} \subset \mathbf{P}^{g+1}$ of genus $g \geq 6$, Fano investigated the *double projection* from a line² ℓ on X_{2g-2} , that is, the rational map associated to the linear system $|H - 2\ell|$ of hyperplane sections singular along ℓ .

Example 1 Let $X_{16} \subset \mathbf{P}^{10}$ be a prime Fano 3-fold of genus 9. Then the double projection $\pi_{2\ell}$ from a line $\ell \subset X_{16}$ is a birational map onto \mathbf{P}^3 . The union D of conics which intersects ℓ is a divisor of X and contracted to a space curve $C \subset \mathbf{P}^3$ of genus 3 and degree 7. The inverse rational map $\mathbf{P}^3 - \to X_{16} \subset \mathbf{P}^{10}$ is given by the linear system |7H - 2C| of surfaces of degree 7 which are singular along C.

The key for the analysis of $\pi_{2\ell}$ is the notion of flop. Let X^- be the blow-up of X along ℓ . Since other lines intersect ℓ , X^- is not Fano. But X^- is almost Fano in the sense that $|-K_{X^-}|$ is free and gives a birational morphism contracting no divisors. The anticanonical model \bar{X} of X^- is the image of the projection $X^- \to \mathbf{P}^8$ from ℓ . The strict transform $D^- \subset X^-$ of D is relatively negative over \bar{X} . By the theory of flops ([33], [19]), there exists another almost Fano 3-fold X^+ which has the same anticanonical model as X^- and such that the strict transform $D^+ \subset X^+$ of D^- is relatively ample over \bar{X} . X^+ is called the D^- -flop³ of X^- .

¹ A surface dominated by a rational variety is rational by Castelnuovo's criterion. But this does not hold any more for 3-folds. See [5], [44] and [18].

² The existence of a line is proved by Shokurov [42].

³ The smoothness of X^+ follows from [19, 2.4] or from the classification [6, Theorem 15] of the singularity of \overline{X} .

Theorem([23], [17]) Let X, ℓ and D be as in Example 1. Then the D⁻-flop X⁺ of the blow-up X⁻ of X along ℓ is isomorphic to the blow-up of \mathbf{P}^3 along a space curve of genus 3 and degree 7.

For the proof, the theory of extremal rays ([22]) is applied to the almost Fano 3-fold X^+ . If X is a prime Fano 3-fold of genus 10, then X^+ is isomorphic to the blow-up of a smooth 3-dimensional hyperquadric $Q^3 \subset \mathbf{P}^4$ along a curve of genus 2 and degree 7. In the case genus 12, X^+ is the blow-up of a quintic del Pezzo 3-fold⁴ $V_5 \subset \mathbf{P}^6$ along a quintic normal rational curve.

§2 Bundle method A line on $X_{2g-2} \subset \mathbf{P}^{g+1}$ can move in a 1-dimensional family. Hence the double projection method does not give a canonical biregular description of $X_{2g-2} \subset \mathbf{P}^{g+1}$. In the case g = 9, e.g., there are infinitely many different space curves⁵ $C \subset \mathbf{P}^3$ which give the same Fano 3-fold $X_{16} \subset \mathbf{P}^{10}$. By the same reason, the double projection method does not classify $X_{2g-2} \subset \mathbf{P}^{g+1}$ over fields which are not algebraically closed. Even when a Fano 3-fold X is defined over $k \subset \mathbf{C}$, it may not have a line defined over k. Our new classification makes up these defects. It is originated to solve the following:

Problem⁶: Classify all projective varieties $X_{2g-2}^n \subset \mathbf{P}^{g+n-2}$ of dimension $n \geq 3$ with a canonical curve section⁷.

We restrict ourselves to the case that every divisor on X is cut out by a hypersurface. In contrast with the case $g \leq 5$, the dimension n cannot be arbitrarily large in the case $g \geq 6$. In each case $7 \leq g \leq 10$, the maximum dimension n(g) is attained by a homogeneous space Σ_{2g-2} .

g	n(g)	$\sum_{2g-2} \subset \mathbf{P}^{g+n(g)-2}$	r(E)	$\chi(E)$	$c_1(E)c_2(E)$
6	6	Hyperquadric section of the cone	2	5	4
		of the Grassmann variety ⁸			
		$G(2,5) \subset \mathbf{P}^9$			
7	10	10-dimensional spinor variety	5	10	48
		$SO(10, \mathbf{C})/P \subset \mathbf{P}^{15}$			
8	8	Grassmann variety $G(2,6) \subset \mathbf{P}^{14}$	2	6	5
9	6	$Sp(6, \mathbf{C})/P \subset \mathbf{P}^{13}$	3	6	8
10	5	$G_2/P \subset \mathbf{P}^{13}$	5	7	12
12	3	$G(V,3,N) \subset \mathbf{P}^{13}$ (See Theorem 3.)	3	7	10

Table

We claim that every variety $X \subset \mathbf{P}$ with canonical curve section of genus $g \geq 6$ is a linear section of the above $\Sigma_{2g-2} \subset \mathbf{P}^{g+n(g)-2}$. Since each Σ_{2g-2} has a natural morphism to a Grassmann variety, vector bundles play a crucial role in our classification. Instead of a line, we show the existence of a good vector bundle E on X. Instead of the double projection, we embed X into a Grassmann variety by the linear system |E| and describe its image. The vector bundle is first constructed over a general (K3) surface section S of X and then extended to X applying a Lefschetz type theorem (cf. [8]).⁹ The numerical invariants of E

⁴ A smooth projective variety $V_d \subset \mathbf{P}^{d+n-2}$ with a normal elliptic curve section is called *del Pezzo*. The anticanonical class $-K_V$ is llinearly equivalent to (n-1) times hyperplane section. All quintic del Pezzo 3-folds are isomorphic to each other (see [15] and [9]).

⁵ The isomorphism classes of curves C are uniquely determined by the Torelli theorem since the intermediate Jacobian variety of X is isomorphic to the Jacobian variety of C.

⁶ Roth [36] [37] studied this problem by generalizing the double projection method.

⁷ The anticanonical class of X_{2g-2}^n is (n-2)-times hyperplane section. In the case n = 2, X_{2g-2}^2 is a (polarized) K3 surface. The integer g is called the genus of X.

⁸ G(s,n) denotes the Grassmann variety of s-dimensional subspaces of a fixed n-dimensional vector space. ⁹ By our assumption on X and [21], there exists a surface section with Picard number one. Hence every member of $|\mathcal{O}_S(-K_X)|$ is irreducible. We use this property to analyze $\Phi_{|E|}$.

are as in the above table.¹⁰ All higher cohomology groups of E vanish and E is generated by its global sections. The morphism¹¹ $\Phi_{|E|} : X \longrightarrow G(H^0(E), r(E))$ is an embedding if $g \ge 7$. The first Chern class $c_1(E)$ is equal to $2c_1(X)$ if g = 7 and equal to $c_1(X)$ otherwise. E is characterized by the following two properties:

- 1) r(E), $c_1(E)$ and $c_2(E)$ are as above, and
- 2) the restriction¹² of E to a general surface section is stable.

In the case g = 9, |E| embeds X into the 9-dimensional Grassmann variety G(V,3), where $V = H^0(X, E)$. Consider the natural map

$$\lambda_2 : \bigwedge^2 H^0(X, E) \longrightarrow H^0(X, \bigwedge^2 E).$$

The kernel is generated by a nondegenerate bivector σ on V. Hence the image of X is contained in the zero locus $G(V, 3, \sigma)$ of the global section of $\bigwedge^2 \mathcal{E}$ corresponding to σ , where \mathcal{E} is the universal quotient bundle on G(V, 3). $G(V, 3, \sigma)$ is a 6-dimensional homogeneous space of $Sp(V, \sigma)$ and a projective variety $\Sigma_{16} \subset \mathbf{P}^{13}$ with a canonical curve section of genus 9. In the case dim X = 3, we have

Theorem 2 A prime Fano 3-fold $X_{16} \subset \mathbf{P}^{10}$ of genus 9 is isomophic to the intersection of Σ_{16} and a linear subspace \mathbf{P}^{10} in \mathbf{P}^{13} .

By the above characterization, E is defined over $k \subset \mathbf{C}$ if X is so. Hence the theorem holds true for every Fano 3-fold $X_{16} \subset \mathbf{P}_k^{10}$ over $k \subset \mathbf{C}$ such that $X \otimes \mathbf{C}$ is prime.

The results are similar for g = 7,8 and 10. In the case g = 7 and 10, the natural mappings $\sigma_2 : S^2 H^0(X, E) \longrightarrow H^0(X, S^2 E)$ and $\lambda_4 : \bigwedge^4 H^0(X, E) \longrightarrow H^0(X, \bigwedge^4 E)$ are considered instead of λ_2 . In the case g = 6, X is a double cover of a linear section of $G(2,5) \subset \mathbf{P}^9$ if the linear subspace P passes through the vertex of the Grassmann cone. Otherwise, X is isomorphic to the complete intersection of a 6-dimensional hyperquadric $Q \subset P$ and $G(2,5) \subset \mathbf{P}^9$.

§3 Fano 3-fold of genus 12 A prime Fano 3-fold¹³ X of genus 12 cannot be an ample divisor of a 4-fold. But the vector bundle E gives a canonical description of X in the 12-dimensional Grassmann variety $G(V,3), V = H^0(X, E)$. Consider the natural map $\lambda_2 :$ $\bigwedge^2 H^0(X, E) \longrightarrow H^0(X, \bigwedge^2 E)$ as in the case g = 9. Its kernel N is of dimension 3. Let $\{\sigma_1, \sigma_2, \sigma_3\}$ be a basis of N.

Theorem 3 A prime Fano 3-fold $X_{22} \subset \mathbf{P}^{12}$ of genus 12 is isomorphic to the common zero locus G(V,3,N) of the three global sections of $\bigwedge^2 \mathcal{E}$ corresponding to σ_1, σ_2 and σ_3 , where \mathcal{E} is the universal quotient bundle on G(V,3).

The third Chern number deg $c_3(E)$ is equal to 2. Hence every general global section of E vanishes at two points. Conversely, since V is of dimension 7, there exists a nonzero global section $s_{x,y}$ vanishing at x and y for every pair of distinct points x and y. If x and y are general, then $s_{x,y}$ is unique up to constant multiplications. The correspondence $(x, y) \mapsto [s_{x,y}]$ gives the birational mappings $\Pi : S^2 X \to \mathbf{P}_*(V) \simeq \mathbf{P}^6$ and $\Pi_x : X \to \mathbf{P}_*(V_x) \simeq \mathbf{P}^3$ for general x, where $V_x \subset V$ is the space of global sections of E which vanish at x. In particular, X is rational. The birational mapping Π_x is the same as the triple projection of $X_{22} \subset \mathbf{P}^{13}$ from x.

The bundle method gives another canonical description of prime Fano 3-folds of genus 12 in the variety of twisted cubics ([29, §3]). This description is useful to analyze the double projection of $X_{22} \subset \mathbf{P}^{13}$ from a line.

¹⁰ The bundle method works for other values of g, e.g., 18 and 20 and gives a description of polarized K3 surfaces (see [30]).

¹¹ For a vector space V, G(V, r) denotes the Grassmann variety of r-dimensional quotient space of V.

¹² The restriction of E is rigid and characterized by its numerical invariants and stability ([27, \S 3]).

¹³ Prime Fano 3-folds of genus 12 were omitted in [38, Chap. V, §7] and first constructed by Iskovskih [16].

Remark 4 The third Betti number of a prime Fano 3-fold of of genus $g \ge 7$ is equal 2(n(g)-3). In particular, prime Fano 3-folds of genus 12 have the same homology group as \mathbf{P}^3 .

§4 Genus bound The descriptions given in §§2 and 3 complete the classification of prime Fano 3-folds by virtue of Iskovskih's genus bound:

Theorem 5 The genus g of a prime Fano 3-fold satisfies $g \leq 10$ or g = 12.

This is proved in the course of the classification by the double projection method. Here we sketch a simple proof using a correspondence between the moduli spaces of K3 surfaces and curves. Let \mathcal{F}_g be the moduli space of polarized K3 surfaces (S, h) of degree 2g - 2. A smooth member of |h| is a curve of genus g. Hence we obtain the rational map ϕ_g from the \mathbf{P}^g -bundle $\mathcal{P}_g := \coprod_{(S,h)\in \mathcal{F}_g} |h|$ over \mathcal{F}_g to the moduli space \mathcal{M}_g of stable curves of genus g. The key observation is this.

Proposition 6 If a prime Fano 3-fold of genus g exists, then the rational map $\phi_g : \mathcal{P}_g \to \mathcal{M}_g$ is not generically finite.

By a simple deformation argument, we have that the generic hyperplane section (S, h) of the generic prime Fano 3-fold is generic in \mathcal{F}_g . Take a generic pencil P of hyperplane sections of $X_{2g-2} \subset \mathbf{P}^{g+1}$. The isomorphism classes of the members of P vary since the pencil Pcontains a singular member. But every member of P contains the base locus of P, which is a curve of genus g. This shows the proposition.

Since dim $\mathcal{P}_g = g + 19$ and dim $\mathcal{M}_g = 3g - 3$, dim $\mathcal{P}_g \leq \dim \mathcal{M}_g$ holds if and only if $g \geq 11$. We recall the proof of the generic finiteness of ϕ_{11} in [25]. Let $C \subset \mathbf{P}^5$ be a sextic normal elliptic curve and S a smooth complete intersection of three hyperquadrics containing C. Let H be a general hyperplane section of S and put $\Gamma = H \cup C$. The S is a K3 surface and Γ is a stable curve of genus 11.

Theorem([25, (1.2)]) For every embedding $i : \Gamma \to S'$ of Γ in to a K3 surface S', there exists an isomorphism $I : S \to S'$ whose restriction to Γ coincides with i.

This implies that the point $\xi \in \mathcal{P}_{11}$ corresponding to (S, Γ) is isolated in $\phi_{11}^{-1}(\phi_{11}(\xi))$. Hence ϕ_{11} is generically finite and a prime Fano 3-fold of genus 11 does not exist. The non-existence of prime Fano 3-folds of genus ≥ 13 is proved in a similar way. Note that the elliptic curve C induces an elliptic fibration of S, which we denote by $\pi : S \to \mathbf{P}^1$. We consider the case in which π has two singular fibers of the following types:

i) $E_1 \cup E_2 \cup E_3$ with $(E_2.E_3) = (E_3.E_1) = (E_1.E_2) = 1$, and

ii)
$$E'_2 \cup E_4$$
 with $(E'_2.E_4) = 2$,

where E_{ν} is isomorphis to \mathbf{P}^1 and satisfies $(E_{\nu}, H) = \nu$ for evel $1 \leq \nu \leq 4$. It is easy to construct a stable curve Γ_g of genus ≥ 13 on S from Γ by adding fibres of π . For example, $\Gamma \cup E_3$, $\Gamma \cup E_4$ and $\Gamma \cup E_2 \cup E_3$ are of genus 13, 14 and 15, respectively. Note that to add one general fibre of π increases the genus by 6. Byt the above theorem, it is easy to show that every embedding of Γ_g into a K3 surface S' is extended to an isomorphism from S onto S'. Hence we have

Theorem 7 The rational map $\phi_g : \mathcal{P}_g \to \mathcal{M}_g$ is generically finite if and only if g = 11 or $g \geq 13$.

This completes the proof of Theorem 5.

Remark 8 The map ϕ_g is generically of maximal rank except for g = 10, 12. In the case of g = 10, the image of ϕ_{10} is a divisor of \mathcal{M}_{10} (See [28]).

§5 Theory of polars Prime Fano 3-folds of genus 12 are related to the classical problem on sums of powers, which is a polynomial version of the Warring problem. Let F_d be a homogeneous polynomial of degree d in n variables.

- 1) Are there N linear forms f_1, \dots, f_N such that $F_d = \sum_{1}^{N} f_i^d$?
- 2) If so, then how many?

In the following cases, every general F_d is a sum of d-th powers of N linear forms and the expression is unique:

(1) n = 2 and d = 2N (Sylvester[43]),

- (2) n = 4, d = 3 and N = 5 (Sylvester's pentahedral theorem [34] [39]), and
- (3) n = 3, d = 5 and N = 7(Hilbert [14, p. 153], Richmond [34] and Palatini [32]).

We consider the case n = 3. Let C and Γ be the plane curves defined by F_d and $\prod_1^N f_i$, respectively. Γ is called a *polar N-side* of C if $F_d = \sum_1^N f_i^d$. The name comes from the following:

Example 9 Let C be a smooth conic and ℓ_1 , ℓ_2 and ℓ_3 three distinct lines. Then the following are equivalent:

(1) $\triangle = \ell_1 + \ell_2 + \ell_3$ is a polar 3-side of C in the above sense, and

(2) the triangle \triangle is self polar with respect to C, that is, each side is the polar of its opposite vertex.

§6 Variety of sums of powers We regard the set of polar N-sides of $C : F_d(x, y, z) = 0$ as a subvariety of the projective space of plane curves of degree N. We denote its closure¹⁴ by VSP(C, N) or $VSP(F_d, N)$. The homogeneous forms of degree N form a vector space of dimension $\frac{1}{2}(d+1)(d+2)$. The N-ples of linear forms form a vector space of dimension 3N. Hence the dimension of VSP(C, N) is expected to be $3N - \frac{1}{2}(d+1)(d+2)$ for general C. In the case (d, N) = (2, 3), this is true.

Proposition 10 If C is a smooth conic, then VSP(C,3) is a smooth quintic del Pezzo 3-fold.

Let V_2 be the vector space of quadratic forms. If $\triangle : f_1 f_2 f_3 = 0$ is a polar 3-side of C, then the defining equation F_2 of C is contained in the subspace $\langle f_1^2, f_2^2, f_3^2 \rangle$ of V_2 . Therefore, \triangle determines a 2-dimensional subspace W of $V^* := V_2/\mathbb{C}F_2$. Hence we have the morphism from VSP(C,3) to the 6-dimensional Grassmann variety $G(2, V^*) \subset \mathbb{P}^9$. Let $q : V_2 \longrightarrow \mathbb{C}$ be the linear map associated to the dual conic of C. For a pair of quadratic forms f and g, consider the three minors $J_i(f,g)$, i = 1, 2, 3, of the Jacobian matrix

$$\left(\begin{array}{ccc} f_x & f_y & f_z \\ g_x & g_y & g_z \end{array}\right)$$

and put $\sigma_i(f,g) = q(J_i(f,g))$. Then σ_i are skew-symmetric forms on V_2 and F_2 is their common radical. Therefore, each σ_i , i = 1, 2, 3, determine three hyperplanes H_i of $\mathbf{P}^9 = \mathbf{P}_*(\bigwedge^2 V^*)$. VSP(C,3) is isomorphic to the quintic del Pezzo 3-fold $G(2, V^*) \cap H_1 \cap H_2 \cap H_3$.

Now we consider plane quartic curves $C: F_4(x, y, z) = 0$. The dimension count

$$3N - 15 \stackrel{?}{=} \dim VSP(C, N)$$

does not hold for N = 5:

Let $\{\partial_1 = \partial^2 / \partial x^2, \dots, \partial_6 = \partial^2 / \partial z^2\}$ be a basis of the space of homogeneous second order partial differential operators.

¹⁴ The closure is taken in the symmetric product $Sym^{N}\mathbf{P}^{2}$. But this is a temporary definition. In practice, we choose a suitable model of $Sym^{N}\mathbf{P}^{2}$ to define VSP(C, N).

Theorem (Clebsch [4]) If a plane quartic curve $C : F_4(x, y, z) = 0$ has a polar 5-side, then

$$\Omega(F) := \det(\partial_i \partial_j F)_{1 \le i,j \le 6} = 0.$$

In particular, general plane quartic curves have no polar 5-sides.

In other words, polar 5-sides are not equally distributed to quartic curves. Once a quartic curve has a polar 5-side, it has a 1-dimensional family of polar 5-sides. (The same happens for polar 2-sides of conics.)

Polar 6-sides of plane quartics was studied by Rosanes [35] and Scorza [40]. The dimension count is correct for N = 6 and we obtain 3-folds.

Theorem 11 (1) If a quartic curve C has no polar 5-sides or no complete quadrangles as its polar 6-sides, then the variety VSP(C, 6) of polar 6-sides of C is a prime Fano 3-fold of genus 12.

(2) Conversely every prime Fano 3-fold X of genus 12 is obtained in this way. The isomorphism class of C is uniquely determined by that of X.

By virtue of Theorem 3, it suffice to show that G(V,3,N) is isomorphic to VSP(C,6). Let V_3 be the vector space of cubic forms. If $\Gamma : f_1 f_2 \cdots f_6 = 0$ is a polar 6-side of C, then the partial derivatives F_x, F_y and F_z of the defining equation F_4 are contained in $\langle f_1^3, f_2^3, \cdots, f_6^3 \rangle$. Hence Γ determines a 3-dimensional subspace of $V^* := V_3 / \langle F_x, F_y, F_z \rangle$ and we obtain a morphism ϕ from VSP(C, 6) to $G(3, V^*)$. Three skew-symmetric forms σ_1, σ_2 and σ_3 on V^* are defined as in the case of $VSP(F_2, 3)$ and the image of ϕ is contained in $G(3, V^*, \sigma_1, \sigma_2, \sigma_3)$.

Conversely, let V and $N \subset \bigwedge^2 V$ be as in Theorem 3. The multiplication in the exterior algebra $\bigwedge^{\bullet} V$ induces the map $\sigma_3 : S^3N \longrightarrow \bigwedge^6 V$. This is surjective and its kernel is of dimension 3.

Lemma 12 There exists a quartic polynomial $F(x, y, z) \in S^4N$ whose partial derivatives F_X, F_Y and F_Z form a basis of the kernel of σ_3 , where $\{x, y, z\}$ is a basis of N and $\{X, Y, Z\}$ is its dual.

The conics on (the anticanonical model of) G(V,3,N) is parametrized by the projective plane¹⁵ $\mathbf{P}_*(N)$ For every point x of G(V,3,N), there exist exactly six conics $\{Z_{\lambda_i}\}_{1 \leq i \leq 6}$, $\lambda_i \in \mathbf{P}_*(N)$, passing through x, counted with their multiplicities. Let Λ_i , $1 \leq i \leq 6$, be the lines on $\mathbf{P}(N)$ with coordinates λ_i . Then $\Gamma = \sum_{1}^{6} \Lambda_i$ is a polar 6-side of the plane curve Con $\mathbf{P}(N)$ defined by the quartic form F(x, y, z) in the lemma. This correspondence $x \mapsto \Gamma$ gives the inverse of the above morphism ϕ .

Remark 13 (1) Assume that a plane quartic C' has a polar 5-side and that the 5lines are in general position.

When C in Theorem 11 deforms to C', the variety VSP(C, 6) deforms to a Fano 3-fold X' with an ordinary double point. X' is isomorphic to the anti canonical model of $\mathbf{P}(E)$, where E is a stable vector bundle on \mathbf{P}^2 with $c_1 = 0$ and $c_2 = 4$ (cf. [2]).

(2) If C is a general plane septic curve, then the variety VSP(C, 10) is a polarized K3 surface of genus 20.

¹⁵ For a vector space V, $\mathbf{P}_*(V)$ is the projective space of 1-dimensional subspaces of V. $\mathbf{P}(V)$, or $\mathbf{P}^*(V)$, is its dual.

§7 Almost homogeneous Fano 3-fold Varieties of sums of powers give two examples of almost homogeneous spaces of $SO(3, \mathbb{C})$ and their compactifications. Apply Theorem 11 to a double conic, say $2C_0 : (XZ + Y^2)^2 = 0$.

The variety $VSP(2C_0, 6)$ is a Fano 3-fold and has an action of $SO(3, \mathbb{C})$. It is easy to check

$$30(XZ + Y^2)^2 = 25Y^4 + \sum_{i=0}^4 (\zeta^i X + Y + \zeta^{-i} Z)^4,$$

where ζ is a fifth root of unity. The polar 6-side

$$\Gamma: Y \prod_{i=0}^{4} (\zeta^i X + Y + \zeta^{-i} Z) = 0$$

intersects the 2-sphere C_0 at the 12 vertices of a regular icosahedron. The stabilizer group at Γ of $SO(3, \mathbb{C})$ is the icosahedral group $\simeq A_5$. Hence we have

Theorem 14 The variety $VSP(2C_0, 6)$ is a smooth equivariant compactification of $SO(3, \mathbb{C})/Icosa$.

Similarly the quintic del Pezzo 3-fold $VSP(C_0, 3)$ is a smooth equivariant compactification of the quotient of $SO(3, \mathbb{C})$ by an octahedral group $\simeq S_4$ by Proposition 10. These two compactifications are described in [31, §§3 and 6] by another method. We remark that Q^3 and \mathbb{P}^3 are also almost homogeneous spaces of $SO(3, \mathbb{C})$. The stabilizer groups are tetrahedral group $\simeq A_4$ and a dihedral group of order $6 \simeq S_3$, respectively.

§8 Compactification of \mathbb{C}^3 There are four types of Fano 3-folds with the same homology growps as \mathbb{P}^3 : \mathbb{P}^3 itself, $Q^3 \subset \mathbb{P}^4$, $V_5 \subset \mathbb{P}^6$ and the 6-dimensional family of prime Fano 3folds $X_{22} \subset \mathbb{P}^{13}$ of genus 12 (see Remark 4). These Fano 3-folds are related to not only $SO(3, \mathbb{C})$ but also \mathbb{C}^3 , the affine 3-space. It is well-known that \mathbb{P}^3 and Q^3 are smooth compactifications of \mathbb{C}^3 with irreducible boundary divisors. The quintic del Pezzo 3-fold $V_5 \subset \mathbb{P}^6$ is a compactifications of \mathbb{C}^3 in two ways (see [10] and [13]).

Furushima has found that the almost homogeneous Fano 3-fold $U_{22} := VSP(2C_0, 6)$ also is a Compactification of \mathbb{C}^3 . This fact is proved in three ways using

i) the defining equation ([31] p.506) of $U_{22} \subset \mathbf{P}^{12}$ (see [11]),

ii) the double projection of $U_{22} \subset \mathbf{P}^{13}$ from a line (see [12]), and

iii) the action of a torus $\mathbf{C}^* \subset SO(3, \mathbf{C})$ on U_{22} (see [1] and [20]).

In the last case, U_{22} is decomposed into a disjoint union of affine spaces by virtue of [3]. The four compactifications by \mathbf{P}^3, Q^3 and V_5 are rigid but that by U_{22} is not. In fact, by a careful analysis of the double projection of $VSP(C, 6) \subset \mathbf{P}^{13}$ from a line, we have

Theorem 15 The variety VSP(C, 6) in Theorem 11 is a compactification of \mathbb{C}^3 if C has a non-ordinary singular point.

The variety VSP(C, 6) has a line ℓ (on its anticanonical model) with normal bundle $\mathcal{O}(1) \oplus \mathcal{O}(-2)$ corresponding to a non-ordinary singular point of C. Let D be the union of conics which intersect ℓ as in Example 1. Then the complement of D is isomorphic to \mathbb{C}^3 .

References

- Akyildiz, E. and J.B. Carrel: A generalization of the Kostant-Macdonald identity, Proc. Natl. Acad. Sci. USA, 86 (1989), 3934–3937.
- [2] Barth, W.: Moduli of vector bundles on the projective palne, Inv. Mat. **42** (1977), 63–91.
- Bialynicki-Birula, A.: Some theorems on actions of algebraic groups, Ann. of Math., 98(1973), 480–497.
- [4] Clebsch, A.: Uber Curven vierter Ordnung, J. für Math. **59** (1861), 125-145.
- [5] Clemens C.H. and P.A. Griffiths: The intermediate Jacobian of the cubic threefold, Ann. of Math., 95 (1972), 281–356.
- [6] Cutkosky, S.D.: On Fano 3-folds, Manuscripta Math. 64 (1989), 189-204.
- [7] Fujita, T.: On the structure of polarized manifolds with total deficiency one, I, J. Math. Soc. Japan 32 (1980), 709-725.
- [8] Fujita, T.: Vector bundles on ample divisors, J. Math. Soc. Japan 33 (1981), 405-414.
- [9] Fujita, T.: On the structure of polarized manifolds with total deficiency one, II, J. Math. Soc. Japan 33 (1980), 415-434.
- [10] Furushima, M.: Singular del Pezzo surfaces and analytic compactifications of 3dimensional complex analytic space C³, Nagoya Math. J. 104 (1986), 1-28.
- [11] Furushima, M.: Complex analytic compactification of \mathbb{C}^3 , to appear in Compositio Math.
- [12] Furushima, M.: A note on an example of compactification of C³, 'Algebraic geometry and Hodge theory', Hokkaido Univ. Tech. Rep. Ser. in Math., 16 (1990), 103–115.
- [13] Furushima, M. and N. Nakayama: A new construction of a compactification of C³, Tôhoku Math. J. 41 (1989), 543-560.
- [14] Hilbert, D.: Letter adressée à M. Hermite, Gesam. Abh. vol. II, pp.148-153.
- [15] Iskovskih, V.A.: Fano 3-folds I, Math. USSR Izv. 11 (1977), 485-527.
- [16] Iskovskih, V.A.: Fano 3-folds II, Math. USSR Izv. 12 (1978), 469-506.
- [17] Iskovskih, V.A.: Lectures on 3-dimensional algebraic manifolds : Fano manifolds (in Russian), Moscow University, 1988.
- [18] Iskovskih, V.A. and Ju. I. Manin: Three-dimensional quartics and counterexamples to the Lüroth problem, Math. USSR Sbornik 15 (1971), 141–166.
- [19] Kollár, J.: Flops, Nagoya Math. J. **113** (1989), 15-36.
- [20] Konarski, Some examples of cohomological projective spaces via C⁺ actions, 'Group actions and invariant theory (Montreal, PQ, 1988)', 73–84, CMS Conf. Proc. 10, Amer. Math. Soc., Providence, RI, 1989.
- [21] Moishezon, B.G.: Algebraic homology classes on algebraic varieties, Math. USSR Izv., 1(1967), 209–251.
- [22] Mori, S.: Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 110 (1979), 593-606.
- [23] Mori, S.: Lectures on 3-dimensional algebraic varieties, Nagoya University, Fall, 1987.
- [24] Mori, S. and S. Mukai: Classification of Fano 3-folds with $B_2 \ge 2$, Manuscripta Math. **36** (1982), 147-162.
- [25] Mori, S. and S. Mukai: Uniruledness of the moduli space of curves of genus 11, Algebraic Geometry (Proceedings, Tokyo/Kyoto 1982), Lecture Notes in Math. nº1016, Springer Verlag, 1983.
- [26] Mori, S. and S. Mukai: On Fano threefolds with $B_2 \ge 2$, Adv. Stud. Pure Math. 1 (1983), 101-129, Kinokuniya and North-Holland.
- [27] Mukai, S.: On the moduli space of bundles on K3 surfaces: I, 'Vector Bundles on Algebraic Varieties (Proceeding of the Bombay Conference 1984) ', Tata Institute of Fundamental Research Studies 11, pp. 341-413, Oxford University Press, 1987.

- [28] Mukai, S.: Curves, K3 surfaces and Fano 3-folds of genus $\leq 10,$ in 'Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata', pp. 357–377, 1988, Kinokuniya, Tokyo.
- [29] Mukai, S.: Biregular classification of Fano threefolds and Fano manifolds of coindex 3, Proc. Natl. Acad. Sci. USA 86 (1989), 3000-3002.
- [30] Mukai, S.: Polarized K3 surfaces of genus 18 and 20, to appear in 'Vector bundles and Speial Projective Embeddings (Proceedings, Bergen 1989)'.
- [31] Mukai, S. and H. Umemura: Minimal rational 3-folds, in "Algebraic Geometry (Proceedings, Tokyo/Kyoto 1982)", Lecture Notes in Math. nº1016, Springer, 1983, pp. 490-518.
- [32] Palatini, F.:Sulla rappresentazione delle forme ternarie mediante la somma di potenze di forme lineari, Rom. Acc. L. Rend. (5) 12 (1903), 378-384.
- [33] Reid, M.: Minimal models of canonical 3-folds, Adv. Stud. Pure Math. 1 (1983), 131-180, Kinokuniya and North-Holland.
- [34] Richmond, H.W.: On canonical forms, Quart. J. Math. 33 (1902), 331-340.
- [35] Rosanes, J.: Über ein Prinzip der Zuordnung algebraischer Formen, J. für r. u. angew. Math. 76 (1873), 312-330.
- [36] Roth, L.: Algebraic varieties with canonical curve sections, Ann. di mat. (4) **29** (1949), 91-97.
- [37] Roth, L.: On fourfolds with canonical curve sections, Proc. Cambridge Phil. Soc. 46 (1950), 419-428.
- [38] Roth, L.: Algebraic threefold with special regard to problems of rationality, Springer Verlag, 1955.
- [39] Segre, B.: The non-singular cubic surfaces, Oxford Clarendon Press, 1942.
- [40] Scorza, G.: Sopra la teoria delle figure polari delle curve piane del 4. ordine, Ann. di mat (3) 2 (1899), 155-202.
- [41] Shokurov, V.V.: Smoothness of the general anticanonical divisor of a Fano 3-fold, Math. USSR Izv. 14 (1980), 395-405.
- [42] Shokurov, V.V.: The existence of lines on Fano 3-folds, Math. USSR Izv. 15 (1980), 173-209.
- [43] Sylvester, J.J.: An essay on canonical forms, supplement to a sketch of a memoir on elimination, transformation and canonical forms, Collected Works Vol. I, pp. 203-216, Cambridge University Press, 1904.
- [44] Tyurin, A.N.: Five lectures on three-dimensional varieties, Russ. Math. Survey, 27 (1972), 1–53.

Department of Mathematics School of Sciences Nagoya University 464 Furō-chō, Chikusa-ku Nagoya, Japan