
C U R V E S A N D K 3 S U R F A C E S O F G E N U S E L E V E N

Shigeru Mukai
Graduate School of Poly mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-01, Japan

Received May 22,1995

Abstract. For a general curve C of genus 11, its embeddings into K3 surfaces are unique
up to isomorphisms. Such embedding a:C —> S is constructed as a non-abelian analogue
of the duality between the Picard and Albanese varieties. Let S be the moduli space of
stable rank two vector bundles E of canonical determinant on C with hP{E) > 7 . Then S
is a smooth K3 surface and the determinant line bundle hdet is a polarization of genus 11.
The K3 surface S which contains C is the unique 2-dimensional component of the moduli
space of stable rank two sheaves of determinant hdet on S.

In [11], we have begun our study of the Brill-Noether locus

Mc(2, Kj n) = {E\h^{E) > n + 2}/isom
in the moduli space Mc(2, K) of stable rank two vector bundles E of canonical determinant
over a curve, i.e., a compact Riemann surface C. In the workshop at Sanda, we discussed
Mc(2, K, 3) for a curve C of genus seven, for which see the forthcoming article. Here, instead,
we study another interesting case:

Theorem 1. For a general curve C of genus eleven, the Brill-Noether locus Mc(2,K,5) is
a smooth K3 surface and the restriction hdet of the determinant line bundle of Mc{2, K) is
a polarization of genus eleven, i.e., (h )̂ = 20.

Let {X, h) be a pair of a K3 surface and a line bundle h of degree 20 and Mx{2, h, n) be
the moduli space of stable sheaves £ on X with r(£) = 2, detf ~ ft and xiB) = 2 +'n. By
6], Mx (2, ft, n) is smooth and of dimension 2(11 - 2n) if it is not empty. Hence Mx (2, ft, n)is a surface only if n = 5 and, in fact, X ;= Mx(2,h,b) is a K3 surface if it is coiripact.

A A

Moreover, there is a line bundle h of degree 20 on X and (X, h) is isomorphic to (X, h) ([7],
Theorem 1.4).

Let S be Mc(2, X, 5) in the theorem and U the Poincare bundle onCxS. We normalize
U so that deiU ~ Kc s hdet (see §4) and restrict it to fibres in the other direction. Namely
we consider the family of vector bundles Up := U\p̂ s on S parametrized by C.
Theorem 2. Let C, S = Mc{2, K,b), hdet and U he as above. Then the vector bundle Up
on S is stable with respect to hdet and belongs to Ms[2,hdet,̂ ) for every peC. Moreover,
the classification morphism a : C —> Ms(2, hdet, h),p [Up], is an embedding.

Let Mil and be the moduli spaces of curves and polarized K3 surfaces (X, h) of genus
11, respectively. Let Vn be the P^Lbundle \h\ over and <Pn : Vn " ■ ̂  Mn
the rational map which associates the isomorphism class for every O E \h\ (cf [5]) By
the theorem, the rational map: Afu-- - ̂  Vn, [C] ̂  iMs{2,hd.„b),a(C)), satisfies
0,1 o 0 = id. Since Vn is irreducible and of the same dimension as Mn, 4>n is birational
and ip is its inverse. Therefore, we have
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Corollary 1. Ms(2, hdeu 5), with S = Mc(2, K, 5), is the unique K3 surface which contains
C .

Since Mw is unirational by [4], we also have

Corollary 2. Tu is unirational.
Thus Mc(2,/C,5) and the morphism a : C —> Ms(2,hdeu^) are similar to the Picard

variety and Albanese map X —> AlbX = (Pic® respectively. The morphism a is the
K3 hull in the following sense:

Definition An embedding a : C —> A of a curve C into a variety A is a, K3 hull if
1) there exist a line bundle L on A and its global sections Si, • • • , s„_i such that L\c — Kc

and C is the complete intersection 5i = • • • = Sn_i = 0 in A,
2) every embedding of C into a K3 surface is isomorphic to the restriction of a to the

common zero locus of a codimension one subspace of < Si, • • • , s„_i >C i/®(A, L), and
3) there is an exact sequence

2

0 ^ H\Ncia ® Kc') -4 H'(Ka') /\ H'(Oc),
where the first map is the coboundary map of the long exact sequence associated to the
natural exact sequence

0 —> Tc —> Ta\C —^ ^c/A —^ 0] ^
II

and the second is the dual of the Wahl map /\̂  Ĥ (Kc) —> Ĥ (Kq) (see [13]).
The K3 hull exists for every general curve of genus p > 7. It is the symmetric space described
in [9] for g = 7,S and 9, and C itself for ̂  = 10 and ̂  > 12 (cf. [3], [8], [5]). This will be
discussed elsewhere.

Let C; be the locus of curves with in the moduli space Mn and C a general member
of Gg. C is embedded into by \Kĉ ~̂ \ and the quadric hull S of its image C P® is a
K3 surface of degree 8, where ̂  is a. gl of C. There exists a family {5x}xe5 of vector bundles

0 —^ Os[C - A) —> ^ 4(A) ^ 0
of Schwarzenberger type on S parametrized by 5, where A is a hyperplane section of 5 C P̂ .
Theorem 3. For a general member C of the Brill-Noether locus Mci2, K,b) is smooth
and isomorphic to S by the correspondence S 3 x ̂  Ex\c ̂  A/c(2, K, 5).

The quadric hull S in the theorem is the unique K3 surface which contains the hexagonal
curve C. In fact, if a K3 surface contains G, then the gl on G extends to a line bundle on it.

Another interesting divisor of Adn is the locus G\. For a general member G of Gg,
S = Mc(2,Ar,5) is still a K3 surface and contains a line D, i.e., degfideilz? = 1, which
parametrizes the extensions 0 —> C —^ FJ —> KcC ̂  ̂  9 with hP(E) = 7, where ̂  isa gl of G. The moduli space Ms(2, hdeu 5) is the unique quartic surface which contains the
image of ^KcC-^ ' ^ ^

We prove the theorem in §3 after some preparations in §§1 and 2, and Theorem 1 and 2
in the final section.

Notations P,K and PV are the two projective spaces associated to a vector space V.
The former parametrizes one-dimensional subspaces and the latter quotient spaces. 5" V is
the n-th symmetric tensor product of a vector space or vector bundle V. For an Gx-module
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S and an Oy-module the tensor product of their pull-backs on the product X x K is
denoted hy

1 . P r e l i m i n a r y

Next two lemmas are useful to analyze and construct vector bundles in Mc{2,K,n).
Lemma 1. Let E he a rank two vector bundle of canonical determinant and ^ a. line bundle
on C. If C is generated by global sections, then we have

dimHom<p̂ (C,£7) > hP{E) — degC-
The proof is an easy exercise of the base-point-free pencil trick (see [10] Proposition 3.1).

Lemma 2. Let ^ be a line bundle and consider non-trivial extensions

0 — — > E — > 7 ] — > 0
of ^ by its Serre adjoint rj.

1) The extensions E with hP{E) = hPî ) + ĥ in) o-re parametrized by the projective space
P^Coker[52ifO(77) ^

2) i4ssu?7ie that the multiplication map S^H^(r}) —> is surjective. Then h^{E) <
h {̂̂ )-\- h {̂rj) — 1 for every non-trivial extension E. Moreover, the non-trivial extensions E
with h^{E) = -h h^(r}) - 1 are parametrized by the quadric hull of the image of :
C —> F*H°{tj). More precisely, for every point x of the quadric hull, there is the unique
extension E such that the image of the linear map H^(E) —> is the codimension one
subspace corresponding to x.

Proof. Let e e Ext^ be the extension class and Se : H^(r)) —> coboundary
map. The condition that h (̂E) = h (̂̂ )-\- hP{r}) is equivalent to Jg = 0, that is, e lies in the
kernel of the linear map

By the Serre duality, the linear map A is the dual of the multiplication map <S>
H (̂r)) —)> Hence Ker A is the dual of Co\ier[S'̂ H {̂r]) —y which shows (1).
The first assertion of (2) is a direct consequence of (1). The condition that ĥ (E) = hP(̂ ) +
ĥ (ri) — 1 is equivalent to rank̂ g = 1 by our assumption. There exists a nonzero linear map
a: ̂  C such that Jg is the composite of a and its dual : C —> H {̂r}Y ̂  H\̂ ).
Let x be the point o{F*H {̂r)) corresponding to a. Then h = KeT[S'̂ H {̂r]) —> the
degree 2 part of the homogeneous ideal of %{C), vanishes at x, since Ŝ a is the composite of
S'̂ H (̂r}) —^ and the linear map H\rf) —y C corresponding to e by construction.Thus E with ĥ {E) = ĥ (C)-\-ĥ {r}) — 1 determines a point in the quadric hull. Conversely, a
point in the quadric hull determines e with rank = L Such e i.s unique since A is injective
by our assumption. □

See [11] §4 for the following criterion of smoothness:
Proposition 1. Let E be a member of Mc(2, K) with h (̂E) = n-y-2 and put a = SofC) -
3 — (n-b 2)(n-}-3)/2. Then we have

1) dun[E]Mc{2, K,n) > a, and
2) Mc(2, K, n) is smooth and of dimension o at E if and only if the. m.ultiplication map

S H^(E) —y H^[S'^E) is injective.
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2 . H e x a g o n a l c u r v e o f g e n u s 11

Let 5 C P® be a smooth complete intersection of three quadrics. 5 is a K3 surface by
the adjunction formula and the Lefschetz theorem. Throughout this and next sections we
assume that S contains a normal elliptic curve B of degree 6 but no bisecant lines of B.
Such a surface exists by the following:

Lemma 3. Let B C be a normal elliptic curve of degree 6. Then the intersection of
three general quadrics passing through B is a smooth surface and does not contain a bisecant
line of B CP^.

Proof. The first assertion follows from Bertini's theorem, since H C is an intersection
of quadrics. All 5's which contain B are parametrized by a non-empty open subset of the
Grassmannian G(3, H^{Ib(2))), which is of dimension 3(9-3) = 18. Let ̂  be a bisecant line.
All S"s which contain both B and i are parametrized by an open subset of the Grassmannian

which is of dimension 15. Since the bisecant lines are parametrized by a
surface, we have the second assertion. □

Let C C 5 be a smooth member of the complete linear system |A + B|, where A is a
hyperplane section of 5 C P®. Such C exists since \A-\- B\ is free from base points. Since

(A2) = 8, {A.B) = 6, = 0 and (A -h Bf = 20,
C is of genus 11. We denote the restriction of Os[B) and Os(A) to C by ̂  and r;, respectively.
By the adjunction formula, the canonical line bundle Kc of C is the tensor product of ^ and
Tj. By the exact sequences

0 ^ O s { - A ) O s { B ) ^ ^ 0

a n d
0 —> Os{-B) Os{A)

and by the lemma below, the restriction maps H^{Os(B)) —> B[^(^s(^)) —>
H^(rj) are isomorphisms. In particular, |̂ | is a g^ and its Serre adjoint r? is a ̂ ^4. The
embedding G 5 ̂  P® is given by the complete linear system \r].
Lemma 4. W{Os{A - B)) = W{Os(B - A)) = 0 for every i.

Proof. Since {B - A.A) < 0, we have H {̂Os{B - A)) = and hence H'̂ (Os(A -B)) =0
by the Serre duality. Since (A - Bf = -4, we have x(Os(B - A)) = 0. Hence it suffices to
show H (̂Os(A — B)) = 0. Assume the contrary and let D be a member of \A — B\. Since
(D )̂ = -4 and (D.A) = 2, D is a union of two disjoint lines. Since {D.B) = 6, one of them
meets B at at least three points. This is a contradiction. □

Tensoring Os{A) with the exact sequence

0 ^ Os{-B) —> Of —> Os{B) 0,
w e h a v e

L e m m a 5 . T h e m u l t i p l i c a t i o n m a p

WiOsiB)) ® iT'iOsiA)) —> H\Os(A + B))
is an isomorphism.
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The multiplication map S'̂ H (̂Os{A)) —>• H''(0s{2A)) is surjective and its kernel is of
dimension 3. Since S is smooth, every quadric passing through S is smooth at x G 5.
Therefore, we have

Lemma 6. The multiplication map S^H^(Ix(A)) —H^{Os(2A)) is injective for every
X e S, where Ix is the maximal ideal ofOs at x.

The non-existence of bisecant lines in S implies the following:

Lemma 7. For an effective divisor D, we have
1) h°(^(D)) = 2 if D is of degree < 3, and
2) h°{^{D)) + h°(r](—D)) < max {8 - d,d+ 2}, where d is the degree of D.
Proof If degL> < 2, then h^{7]{-D)) = h°(rj) - degT), since l?;! is very ample. Since

^7? = Kc, we have hP{^{D)) = = 2 by the Riemann-Roch theorem. Assume that
degD = 3 and /i°(f(D)) > 2. Then D is contained in a trisecant line ̂  of C C P .̂ This is a
contradiction since ^ is contained in S and (LB) = (tC - A) = 2. So we have proved (1).
By the Riemann-Roch theorem, we have

h'^i^iD)) -hh'{v(-D)) = 2h'iaD)) ^4-d.
Hence (2) immediately follows from (1) if d = 2 or 3. If d > 4, then h^(^(D)) < d - 1 by
(1). Hence we have (2). □

Now we are ready to prove the following:

Proposition 2. Let E be a semi-stable rank two vector bundle of canonical determinant on
C. Then we have

1) h^{E) < 1, and
2) if hP{E) = 7, then E is stable and contains a line subbundle isomorphic to f or ̂ {p)

for a point p G C.

Proof. If hP(E) < 7, then there is nothing to prove. Hence we may assume that ĥ (E) > 7.
By Lemma 1, E contains a subsheaf isomorphic to ̂  and we have an exact sequence

0 ^ ^ ( D ) - ^ E - ^ n i - D ) 0
for an effective divisor D of degree < 4. Hence we have h%E) < ĥ {̂ {D)) + ĥ (Tj(-D))) < 1
and degT> = 0 or 1 by Lemma 7, which shows (1) and the second assertion of (2). Assume
that E is not stable and let 0 —)■ a —)■ E —> P —>> 0 be an exact sequence with
dego deg/? 10. Then either o or is isomorphic to ̂ (7)) for an effective divisor D
of degree 4. Hence we have h\E) < ĥ î D)) + h'{7](-D)) < 6 by Lemma 7. This is a
contradiction and E is stable. □

3 . P r o o f o f T h e o r e m 3

Let B and C C 5 C P® be as in the previous section. (5, Os{A -h B)) is a polarized
K3 surface of genus 11. We study Ms{2, A H- B, 5) and their restrictions to C, using vector
bundles of Schwarzenberger type. Let

H'{S,SxVo,{Ix(A),Os(B))) => Ex4+/(7,(.4),Os(B)),
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be the local-global spectral sequence of extension groups, where Ix is the ideal of a point x
of 5. By Lemma 4, the natural map
( 1 ) E x t \ , ^ m A ) , O s { B ) ) ~ C
is an isomorphism. Let

( 2 ) 0 O s { B ) U A ) 0 .
be the unique non-trivial extension of Ix{A) by Os{B). Since H^{Os{B)) = 0, we have the
exact sequence

0 ^ H\Os[B)) H\Ex) —> H\lx{A)) 0.
The following is obvious:

Lemma 8. 1) dim H {̂Sx) = 7 and Ex is generated by global sections.
2) W{Ex) = 0 fori = 1,2.
Since the three linear maps
i ) S ' ' H ^ ( O s { B ) ) — > H ^ ( 0 s ( 2 B ) ) , ^
ii) H'(Os(B)) ® H\Ix(A)) H%Ix{A + B)) and
hi) S''H^(IxiA)) H\ll{2A)).

are injective by Lemma 5 and 6, we have

Lemma 9. The natural linear map S'̂ H {̂Ex) —> H (̂S'̂ Ex) is injective.
Let Ex be the restriction of the vector bundle Ex to the curve C. Since det^x ~ Os{C),

we have the exact sequence

O - ^ E ^ - ^ E x ^ E x ^ O .
By Lemma 8 and the Serre duality, we have

Lemma 10. The restriction map —> H^(Ex) is an isomorphism.
In particular, dim (Ex) = 7 and Ex is generated by global sections. Restricting the

above (2) to the curve C, we have the exact sequence
( 3 ) 0 — — > E x — > r } — > 0
a n d ^

( 4 ) 0 H \ ( ) H \ E x ) H ' ( I x { A ) ) — f 0
if X ̂  C. If X 6 C, then /x(i4) (g) Oc contains the sky-scraper sheaf k{x) as a subsheaf and
the torsion-free quotient is isomorphic to rji-x). Hence we have the exact sequence
( 5 ) 0 ^ ( x ) — ^ E x ^ v i - ^ ) 0 -
Proposition 3. Ex is stable for every x e S.

Proof. Assume that x̂ C. Since ĥ Ê ) < + h''{r]) by (4), the exact sequence (3)
does not split. Let C be a line subbundle of E .̂ If the composite C^ n is zero,
then degC = degf < 10. Otherwise C is isomorphic to ri(-D) for a nonzero effective divisor
D If deg D = 1 and D = (p) for a point p € C, then the extension class e of (3) lies in
the kernel of ExtJ,̂ (p,?) —+ ExtJ,̂ (p(-p),C(p)). Hence the point corresponding to e in the
way of Lemma 2 is p. This is a contradiction. Hence we have degZ) > 2. Since h (E) - 7,
we have deg L> > 5 by Lemma 7. Therefore Ex is stable.

Claim: The exact sequence (5) does not split. , , .
Assume the contrary and let s : Ex —> ̂ (2:) be a splitting. Let T be the kernel 01

the composite Ex ̂  Ex i(x). H (̂E) is a 5-dimensional subspace of H (̂Ex) and
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mapped onto H^{Ix(A)). Since ci{!F) = 0, the image of the evaluation homomorphism
0 Os —> ^ C is of rank one. Hence the image is isomorphic to Ix{A), which is a

contradiction.
Assume that x £ C and let C he a line subbundle of Ex- We may assume that ^ ~

rj(-x - D) for an effective divisor D. D is nonzero by the claim and Ex is stable by Lemma
7 . □

By the proposition, Sx is also stable (with respect to Os{C)) and every endomorphism is
a constant multiplication. Hence, by the exact sequence

0 —> si Ex—^ S% S^Ex —^ 0,
the restriction map H (̂S^Ex) —> H (̂S^Ex) is injective. By Lemma 9 and 10, we have
Lemma 11. The natural linear map S^H^(Ex) —> H^{S^Ex) is injective.

Now we prove Theorem 3. Let T be a copy of S and A be the diagonal of 5 x T. By the
Leray spectral sequence, we have an isomorphism

e x t ' o ^ i U i a ' A l O s M ^ ' B ) ) ) O t ( B - A )
whose fibres are (1), where a and r are the projections of 5 x T onto S and T, respectively.
Hence we have the universal extension

( 6 ) 0 ^ U { a * A - I - t * { B - A ) ) 0 ,
whose restriction to 5 x a; is (2) for every x e T. The restriction of .F to C x T is a
Poincare bundle of the family {Exjx^T- By Lemma 8, 10 and Proposition 3, we obtain the
classification morphism Be : S —> Mc(2, K, 5). Be is injective by the following:
Lemma 12. dimHom(^, = 1 for every x e S.

Proof. Assume the contrary. Then Ex contains two distinct subsheaves isomorphic to
Let L be the subsheaf generated by them. If L is of rank one, then L is isomorphic to ̂ (D)
for an effective divisor D and ĥ {L) > 3, which contradicts Lemma 7. If L is of rank two,
then L is isomorphic to ^ 0 f, which contradicts Lemma 11. □

Let E he a, member of Mc(2, K, 5). By Proposition 2, there is an exact sequence
0 ——> E —>7] —>0

o r

0 —> ̂ (p) —> E —> T]{-p) —> 0
for a point p£C. In the latter case, E is isomorphic to Ep by (1) of Lemma 2 and the claim
in the proof of Proposition 3. In the former case, there exists a point x e S such that the
image of H îE) is H^mA)) by (2) of Lemma 2. By the stability of E, x does
not belong to C. Hence E is isomorphic to Ex. Therefore, Be is surjective. Mc(2,K,5) is
smooth and of dimension 2 by Proposition 1 and Lemma 11.

4 . P r o o f o f T h e o r e m 1 a n d 2

Let C be a general curve of genus 11. C does not have a pJq. Hence we have ĥ {E) < 6 for
every strictly semi-stable rank two vector bundle E of canonical determinant on C. Since
Mc(2, K, 5)'s form a proper family when C varies, they are smooth K3 surfaces by Theorem
3 .
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Proposition 4. There exists a vector bundle U on C X Mc(2, K, 5) such that l{\cx[E] — E
for every E G Mc(2,K,b) and detU ~ Kc 0 hdet- Such U, called the normalized Poincare
bundle, is unique up to isomorphism.

Proof. The moduli space Mc(2, K) is the quotient of an open subset of a Quot scheme by
an action of PGL{v). Let B! be the inverse image of Mc{2, K, 5) by the quotient morphism
R —^ Mc(2,K) and U the restriction of the universal quotient bundle. By Proposition 2,
h [̂E) = 7 for every E G Mc(2,K,b). Hence the direct image ttr'M is a vector bundle of
rank 7. The direct image 7rRf^{U ^c) is of rank 40. Following [12], we consider the
vector bundle

ii ®T̂ %{{deiT̂ R>jAŶ ®dei{'KRî {U^Oc Ec))~̂ )-
The action of a central element t G C GL(u) on the three factors are t, and
Hence this tensor product has an action of PGL{i/) and descends to a Poincare bundle U on
CxMc(2 ,K , ^ ) .

Since Mc(2, K, 5) is regular, there exists a line bundle L on Mc(2, K, 5) such that detU ~
Kc S L. Since <^Oc E^c — bi ®Om ̂  ̂

[R'-emMY ^ 0 Kc) (ttmM) 0 L-'
by the (relative) Serre duality. Hence we have
( 7 ) h d e t = ( d e t R ^ t t m M ) 0 ( d e t ® N ~ ^ ,
where we put N = detT^MM- Therefore, the universal bundle U ®Om ® K~ )̂ satisfies
our requirement (cf. [1] p. 582). The normalized Poincare bundle is unique since universal
bundles differ only by Pic M(2, K, 5) and the Picard group has no 2-torsion. □

The determinant line bundle hdet is ample by [2]. We compute its degree. In the hexagonal
case, T\cxt is a universal family. Since det{!F\cxT) — Kc^O{B -A) by the exact sequence
(6), we have hdet - Ot{7(B - A)) 0) (detn(/'|cxT))~^ by (7). By Lemma 10 and (6), we
have the exact sequence

0 ^ H^(Os(B)) 0Ot-^ r^iJ'lcxT) -4 H^(Os(A)) 0 Ot{B - A)-A Ot(B) 0
and det(r»J"|cxr) - Ot(^B - 6A). Hence hdet is isomorphic to Ot[^A - 3B), which is a
line bundle of degree 20. So we have proved Theorem 1.

For a hexagonal curve C,U = (T\cxt)^0t['̂ A — 2B) is the normalized Poincare bundle.
The restriction Up is stable for every p G C by Proposition 3 and a is an embedding by
Theorem 3. Since the properties to be shown are stable by small deformations, we have
Theorem 2.
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