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ABSTRACT. For a general curve C' of genus 11, its embeddings into K3 surfaces are unique
up to isomorphisms. Such embedding a : C — S is constructed as a non-abelian analogue
of the duality between the Picard and Albanese varieties. Let S be the moduli space of
stable rank two vector bundles E of canonical determinant on C with A°(E) > 7. Then S
is a smooth K3 surface and the determinant line bundle kg is a polarization of genus 11.
The K3 surface S which contains C is the unique 2-dimensional component of the moduli
space of stable rank two sheaves of determinant hg.; on S.

In [11], we have begun our study of the Brill-Noether locus
Mc(2, K,n) = {E|h°(E) > n + 2} /isom

in the moduli space M¢c(2, K) of stable rank two vector bundles E of canonical determinant
over a curve, i.e., a compact Riemann surface C. In the workshop at Sanda, we discussed
Mc(2, K, 3) for a curve C of genus seven, for which see the forthcoming article. Here, instead,
we study another interesting case:

Theorem 1. For a general curve C of genus eleven, the Brill-Noether locus Mc(2, K, 5) is
a smooth K3 surface and the restriction hge of the determinant line bundle of Mc(2,K) is
a polarization of genus eleven, i.e., (h?) = 20.

Let (X, k) be a pair of a K3 surface and a line bundle & of degree 20 and M x(2, h,n) be
the moduli space of stable sheaves € on X with r(€) = 2, det £ ~ h and x(€)=2+n. By
[6], Mx (2, h,n) is smooth and of dimension 2(11 - 2n) if it is not empty. Hence My (2, h,n)
is a surface only if n = 5 and, in fact, X := Mx(2, A, 5) is a K3 surface if it is compact.
Moreover, there is a line bundle A of degree 20 on X and (X, k) is isomorphic to (X, h) ([7),
Theorem 1.4).

Let S be M¢(2, K, 5) in the theorem and U the Poincaré bundle on C x S. We normalize
U so that detU ~ K¢ R hge (see §4) and restrict it to fibres in the other direction. Namely
we consider the family of vector bundles 4, := U|,xs on S parametrized by C.

Theorem 2. Let C, S = M¢(2, K, 5), haee and U be as above. Then the vector bundle U,
on 3 is stable with respect to hye and belongs to Mg(2, hget,5) for every p € C. Moreover,
the classification morphism o : C —» Ms(2, haet, 5), p — [Up], is an embedding.

Let M; and Fi; be the moduli spaces of curves and polarized K3 surfaces (X, &) of genus
11, respectively. Let P;; be the P!'-bundle H(X,h)e.?-'u |h| over Fiy and ¢y : Py -+ = My,
the rational map which associates the isomorphism class for every C € |h| (cf. [5]). By
the theorem, the rational map ¢ : My, --- — Pu, [C] » (Ms(2, haet, 5), a(C)), satisfies

é11 09 = id. Since Py, is irreducible and of the same dimension as M, ¢,; is birational
and ¢ is its inverse. Therefore, we have
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gorollary 1. Ms(2, haet,5), with S = Mc(2, K, 5), is the unique K8 surface which contains

Since M, is unirational by [4], we also have
Corollary 2. F; is unirational.

Thus M¢(2, K,5) and the morphism o : C — Mg(2, hget, 5) are similar to the Picard

variety and Albanese map X —s Alb X = (Pic® X)V, respectively. The morphism « is the
K3 hull in the following sense:

Definition An embedding a.: C — A of a curve C into a variety A is a K8 hull if

1) there exist a line bundle L on A and its global sections s, - - - , 8, such that L|c ~ K¢
and C is the complete intersection s; =:-- = s,_; = 0in A,

2) every embedding of C into a K3 surface is isomorphic to the restriction of o to the
common zero locus of a codimension one subspace of < sy, , 8,1 >C H%(4, L), and

3) there is an exact sequence

2
0 — H(Ngja ® Kg') — H'(KGY) — N\ H'(Oc),

where the first map is the coboundary map of the long exact sequence associated to the
natural exact sequence

[0 —)TC —)TAlc—-) NC/A __)0]®K51

|
Kg(n_l)

and the second is the dual of the Wahl map \? H(K¢g) — H°(K2) (see [13)).

The K3 hull exists for every general curve of genus g > 7. It is the symmetric space described
in [9] for g = 7,8 and 9, and C itself for g = 10 and g > 12 (cf. [3], [8], [5]). This will be
discussed elsewhere.

Let G7, be the locus of curves with g} in the moduli space My, and C' a general member
of Gi. C is embedded into P° by |K¢&™'| and the quadric hull S of its image CucPlisa
K3 surface of degree 8, where £ is a g} of C. There exists a family {€;}ses of vector bundles

0— 0s(C-A) — & — I;(A) — 0
of Schwarzenberger type on S parametrized by S, where A is a hyperplane section of S C PS.

Theorem 3. For a general member C of G, the Brill-Noether locus Mc(2, K, 5) is smooth
and isomorphic to S by the correspondence S 3 T — E;lc € Mc(2, K, 5).

The quadric hull S in the theorem is the unique K3 surface which contains the hexagonal
curve C. In fact, if a K3 surface contains C, then the gs on C extends to a line bundle on it.
Another interesting divisor of My, is the locus Gj. For a general member C' of G3,
S = Mc(2,K,5) is still a K3 surface and contains a line D, i.e., deghget|p = 1, which
parametrizes the extensions 0 — ¢( — E — Kc¢™! — 0 with R°(E) = 7, where ( is
a g5 of C. The moduli space Ms(2, hget, 5) is the unique quartic surface which contains the

image of @ c-1 : C — P3.
We prove the theorem in §3 after some preparations in §§1 and 2, and Theorem 1 and 2

in the final section.

Notations P,V and P*V are the two projective spaces associated to a vector space V.
The former parametrizes one-dimensional subspaces and the latter quotient spaces. S™V is
the n-th symmetric tensor product of a vector space or vector bundle V. For an Ox-module
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€ and an Oy-module F, the tensor product of their pull-backs on the product X x Y is
denoted by £ ® F.

1. PRELIMINARY

Next two lemmas are useful to analyze and construct vector bundles in M¢(2, K, n).

Lemma 1. Let E be a rank two vector bundle of canonical determinant and ¢ a line bundle
on C. If ( is generated by global sections, then we have

dim Homg, (¢, E) > h*(E) — deg(.
The proof is an easy exercise of the base-point-free pencil trick (see [10] Proposition 3.1).
Lemma 2. Let ¢ be a line bundle and consider non-trivial extensions

0 —=¢—F—n—0

of £ by its Serre adjoint 7.

1) The extensions E with h°(E) = h%(€) + h%(n) are parametrized by the projective space
P~ Coker[S2H(n) — H°(n?)).

2) Assume that the multiplication map S2H®(n) — H®(n?) is surjective. Then h°(E) <
h°(€) + h°(n) — 1 for every non-trivial extension E. Moreover, the non-trivial eztensions E
with h%(E) = h%(€) + h%(n) — 1 are parametrized by the quadric hull of the image of Dy, :
C — P*H'(n). More precisely, for every point = of the quadric hull, there is the unique
extension E such that the image of the linear map H°(E) — H°(n) is the codimension one
subspace corresponding to .

Proof. Let e € Ext'(n,£) be the extension class and 4, : H%(n) — H'(£) the coboundary
map. The condition that h°(E) = h°(£) + h%(n) is equivalent to 8, = 0, that is, e lies in the
kernel of the linear map

A:Ext'(n,€) — H(n)' ®@ H'(€), er 6.
By the Serre duality, the linear map A is the dual of the multiplication map H°(n) ®
H°(n) — H(n?). Hence Ker A is the dual of Coker[S2H(n) — H(n?)], which shows (1).
The first assertion of (2) is a direct consequence of (1). The condition that h%(E) = h%(¢) +
h°(n) — 1 is equivalent to rank §, = 1 by our assumption. There exists a nonzero linear map
a: H°(n) — C such that , is the composite of & and its dual o : C — H(n)" ~ H 1(€).
Let = be the point of P*H®(7) corresponding to o. Then I, = Ker[S2H"(n) —» H(1?)], the
degree 2 part of the homogeneous ideal of ®,(C), vanishes at z, since 52 is the composite of
S?H(n) — H(n?) and the linear map H%(7?) — C corresponding to e by construction.
Thus E with h°(E) = h%(£) + h%(n) — 1 determines a point in the quadric hull. Conversely, a

point in the quadric hull determines e with rank . = 1. Such e is unique sincc A is injective
by our assumption. O

See [11] §4 for the following criterion of smoothness:

Proposition 1. Let E be a member of Mc(2, K) with h°(E) = n + 2 and put o = 39(C) -
3—(n+2)(n+3)/2. Then we have

1) dimig) Mc(2, K, n) > o, and

2) M:(2, K, n) 18 smooth and of dimension o at [E] if and only if the maultiplication map
S?H°(E) — H°(S?E) is injective.
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2. HEXAGONAL CURVE OF GENUS 11

Let S C P® be a smooth complete intersection of three quadrics. S is a K3 surface by
the adjunction formula and the Lefschetz theorem. Throughout this and next sections we
assume that S contains a normal elliptic curve B of degree 6 but no bisecant lines of B.
Such a surface exists by the following:

Lemma 3. Let B C P® be a normal elliptic curve of degree 6. Then the intersection of
three general quadrics passing through B is a smooth surface and does not contain a bisecant
line of B C P°.

Proof. The first assertion follows from Bertini’s theorem, since B C P® is an intersection
of quadrics. All S’s which contain B are parametrized by a non-empty open subset of the

Grassmannian G(3, H%(I3(2))), which is of dimension 3(9—3) = 18. Let £ be a bisecant line.
All S’s which contain both B and £ are parametrized by an open subset of the Grassmannian

G(3, H%(Ipue(2))), which is of dimension 15. Since the bisecant lines are parametrized by a
surface, we have the second assertion. O

Let C C S be a smooth member of the complete linear system |A + B|, where A is a
hyperplane section of S C P°. Such C exists since |[A + B| is free from base points. Since

(A%) =8,(A.B) =6,(B%) =0and (A + B)? = 20,

C is of genus 11. We denote the restriction of Og(B) and Og(A) to C by £ and 7, respectively.
By the adjunction formula, the canonical line bundle K¢ of C is the tensor product of £ and

n. By the exact sequences
and
0 — Ogs(—B) — Os(A) — n — 0,

and by the lemma below, the restriction maps H(Os(B)) — H°(£) and H°(Os(A4)) —
H°(n) are isomorphisms. In particular, |£| is a g§ and its Serre adjoint 7 is a g7,. The
embedding C < S — P?® is given by the complete linear system |7|.

Lemma 4. H{(Os(A — B)) = H(Os(B — A)) =0 for every i.

Proof. Since (B — A.A) < 0, we have H°(Og(B — A)) = 0 and hence H*(Os(A— B)) =0
by the Serre duality. Since (4 — B)? = —4, we have x(Os(B — A)) = 0. Hence it suffices to
show H(Og(A — B)) = 0. Assume the contrary and let D be a member of |A — B|. Since
(D?) = —4 and (D.A) = 2, D is a union of two disjoint lines. Since (D.B) = 6, one of them
meets B at at least three points. This is a contradiction. O

Tensoring Os(A) with the exact sequence
00— 05(—B) — 0?2 A OS(B) — 0,
we have
Lemma 5. The multiplication map
H°(0Os(B)) ® H°(0Os(A)) — H°(Os(A + B))

is an isomorphism.
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The multiplication map SZH®(O3(A)) — H(Os(2A)) is surjective and its kernel is of
dimension 3. Since S is smooth, every quadric passing through S is smooth at z € S.
Therefore, we have

Lemma 6. The multiplication map S2H°(I;(A)) — H°(Os(2A)) is injective for every
t € S, where I, is the mazimal ideal of Og at x.

The non-existence of bisecant lines in S implies the following:

Lemma 7. For an effective divisor D, we have
1) h%(£(D)) = 2 if D is of degree < 3, and
2) h%(£(D)) + h°(n(—D)) < maz {8 — d,d + 2}, where d is the degree of D.

Proof. 1f deg D < 2, then A%(n(—D)) = h%(n) — deg D, since |n| is very ample. Since
én = K¢, we have h%(¢(D)) = h%(€) = 2 by the Riemann-Roch theorem. Assume that
deg D = 3 and h°(£(D)) > 2. Then D is contained in a trisecant line £ of C C P®. This is a
contradiction since £ is contained in S and (£.B) = (£.C — A) = 2. So we have proved (1).
By the Riemann-Roch theorem, we have

h*(&(D)) + h°(n(=D)) = 2h°(£(D)) + 4 — d.

Hence (2) immediately follows from (1) if d = 2 or 3. If d > 4, then h%(£(D)) < d -1 by
(1). Hence we have (2). O

Now we are ready to prove the following:

Proposition 2. Let E be a semi-stable rank two vector bundle of canonical determinant on
C. Then we have

1) h%(E) < 7, and

2) if h°(E) =7, then E is stable and contains a line subbundle isomorphic to € or £(p)
for a point p € C.

Proof. If h%(E) < 7, then there is nothing to prove. Hence we may assume that h°(E) > 7.
By Lemma 1, E contains a subsheaf isomorphic to £ and we have an exact sequence

0 —¢&D) — F —n(-D) —0

for an effective divisor D of degree < 4. Hence we have h*(E) < h%(¢(D)) +ho(n(—D))) < 7
and deg D = 0 or 1 by Lemma 7, which shows (1) and the second assertion of (2). Assume
that E is not stable and let 0 — @ — E — 8 —3 0 be an exact sequence with
dega = deg 8 = 10. Then either o or 8 is isomorphic to £(D) for an effective divisor D

of degree 4. Hence we have h%(E) < h°(£(D)) + h%(n(—D)) < 6 by Lemma 7. This is a
contradiction and E is stable. O

3. PROOF OF THEOREM 3

Let A,B and C C S C P? be as in the previous section. (S,0s(A + B)) is a polarized

K3 surface of genus 11. We study Ms(2, A + B, 5) and their restrictions to C, using vector
bundles of Schwarzenberger type. Let

HI(S,Ext b, (I.(A), Os(B))) = Extiti(I,(4), Os(B)),
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be the local-global spectral sequence of extension i i i
groups, where I, is the ideal of a point
of S. By Lemma 4, the natural map ’ ’ :

(1) Extb, (Iz(A), Os(B)) — HO(S, Ext b (I.(4), Os(B))) = C
is an isomorphism. Let
(2) 0 — Os(B) — & —» L,(A) — 0.

be the unique non-trivial extension of I;(A) by Og(B). Since H(Os(B)) = 0, we have the
exact sequence

0 — H%(Os(B)) — H°(&;) — H(I(4)) — 0.
The following is obvious:

Lemma 8. 1) dim H%(&;) =7 and &, is generated by global sections.
2) H'(&;) =0 fori=1,2.

Since the three linear maps
i) S2H(Os(B)) — H°(0s(2B)),
ii) H°(Os(B)) ® H(I;(A)) — H°(I,(A+ B)) and
iii) SZHO(I,(A)) — HO(I2(24)).
are injective by Lemma 5 and 6, we have

Lemma 9. The natural linear map S H°(E,) — H(S%E.) is injective.

Let E, be the restriction of the vector bundle &, to the curve C. Since det &; ~ Og(C),
we have the exact sequence

0— & — & — E; — 0.
By Lemma 8 and the Serre duality, we have
Lemma 10. The restriction map H°(E;) — H®(E;) is an isomorphism.

In particular, dim H%(E;) = 7 and E; is generated by global sections. Restricting the
above (2) to the curve C, we have the exact sequence

(3) 0—¢— E,—n—0
and
(4) 0 — H°(¢) — H%(E,) — H°(I,(A)) —0

if ¢ C. If z € C, then I(A) ® Oc contains the sky-scraper sheaf k(z) as a subsheaf and
the torsion-free quotient is isomorphic to 7(—z). Hence we have the exact sequence

(5) 0 — &(z) — E; — n(—2z) — 0.
Proposition 3. E; is stable for every z € S.

Proof. Assume that z ¢ C. Since h%(E;) < h°(€) + h°(n) by (4), the exact sequence (3)
does not split. Let ¢ be a line subbundle of E.. If the composite ( — E, — 0 is zero,
then deg ¢ = deg& < 10. Otherwise ¢ is isomorphic to n(—D) for a nonzero effective divisor
D. If degD =1 and D = (p) for a point p € C, then the extension class e of (3) lies in
the kernel of Extg, (1,€) — Extg,, (1(—p),€(p))- Hence the point corresponding to e in the
way of Lemma 2 is p. This is a contradiction. Hence we have deg D > 2. Since h°(F) =7,
we have deg D > 5 by Lemma 7. Therefore E; is stable.

Claim: The exact sequence (5) does not split.
Assume the contrary and let s : E; — &(z) be a splitting. Let F be the kernel of

the composite & — E, — £(z). H°(F) is a 5-dimensional subspace of H°(&;) and
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mapped onto H°(I,(A)). Since ¢;(F) = 0, the image of the evaluation homomorphism
H°(F) ® Og — F C £ is of rank one. Hence the image is isomorphic to I(A), which is a
contradiction.

Assume that z € C and let ¢ be a line subbundle of E,. We may assume that ( ~

n(—z — D) for an effective divisor D. D is nonzero by the claim and E; is stable by Lemma
7.0

By the proposition, £, is also stable (with respect to Os(C)) and every endomorphism is
a constant multiplication. Hence, by the exact sequence
0— sl & — S%6, — S’E, — 0,
the restriction map H°(S?¢;) — H°(S?E;) is injective. By Lemma 9 and 10, we have
Lemma 11. The natural linear map S2H°(E,) — H(S%E;) is injective.

Now we prove Theorem 3. Let T be a copy of S and A be the diagonal of S x T. By the
Leray spectral sequence, we have an isomorphism

Ext é,s(IA(o*A), Osxr(0*B))) — n€at, . (Ia(0*A), Osxr(0*B))) ~ Or(B — A)

whose fibres are (1), where o and 7 are the projections of S x T onto S and T, respectively.
Hence we have the universal extension

(6) 0 — Osxr(0*B) — F — In(6*A+7°(B — A)) — 0,

whose restriction to S x z is (2) for every £ € T. The restriction of F to C x T is a
Poincaré bundle of the family {E;};c7. By Lemma 8, 10 and Proposition 3, we obtain the
classification morphism B¢ : S — Mc(2, K,5). Bg is injective by the following:

Lemma 12. dimHom(¢, E;) = 1 for everyz € S.

Proof. Assume the contrary. Then E, contains two distinct subsheaves isomorphic to &.
Let L be the subsheaf generated by them. If L is of rank one, then L is isomorphic to £(D)
for an effective divisor D and h®(L) > 3, which contradicts Lemma 7. If L is of rank two,
then L is isomorphic to & & £, which contradicts Lemma 11. O

Let E be a member of M¢(2, K,5). By Proposition 2, there is an exact sequence
0 —=¢(—E—n—0
or
0 —&(p) — E—n(—p) — 0

for a point p € C. In the latter case, E is isomorphic to E, by (1) of Lemma 2 and the claim
in the proof of Proposition 3. In the former case, there exists a point z € S such that the
image of H*(E) — H'(n) is H%(I.(A)) by (2) of Lemma 2. By the stability of E, z does
not belong to C. Hence E is isomorphic to E;. Therefore, B¢ is surjective. Mc¢(2,K,5) is
smooth and of dimension 2 by Proposition 1 and Lemma 11.

4. PROOF OF THEOREM 1 AND 2

Let C be a general curve of genus 11. C does not have a g3,. Hence we have h°(E) < 6 for
every strictly semi-stable rank two vector bundle E of canonical determinant on C. Since

Mc(2, K, 5)’s form a proper family when C varies, they are smooth K3 surfaces by Theorem
3.
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Proposition 4. There ezists a vector bundle U on C x Mc(2, K,5) such that U|cx(g ~ E
for every E € Mc(2,K,5) and detU ~ K¢ ® hge;. Such U, called the normalized Poincaré
bundle, is unique up to isomorphism.

Proof. The modulispace M¢(2, K) is the quotient of an open subset R of a Quot scheme by
an action of PGL(v). Let R’ be the inverse image of M¢(2, K, 5) by the quotient morphism
R — M¢(2,K) and U the restriction of the universal quotient bundle. By Proposition 2,
h(E) = 17 for every E € M¢(2, K,5). Hence the direct image 7g, U is a vector bundle of
rank 7. The direct image 7z, (U ®o, K¢) is of rank 40. Following [12], we consider the
vector bundle

L? ® W;g; ((det 7['13!,..12)17 ® det(wR/.(Z:{ ®c)o Kc))—a).
The action of a central element t € G,, C GL(v) on the three factors are ¢, and
Hence this tensor product has an action of PGL(v) and descends to a Poincaré bundle I{ on
C x Mc(2, K, 5)

Since M¢(2, K, 5) is regular, there exists a line bundle L on M¢(2, K, 5) such that detf ~
Kc® L. Since UY Qo K ~U Qp,, L™}, we have

(R'mpd)Y ~ mpre(UY ® K) ~ (mprld) @ L7
by the (relative) Serre duality. Hence we have
(7) haet = (det R'mpr ) @ (det mpld) ' > LT @ N72,
where we put N = det mp, 4. Therefore, the universal bundle U ®p,, (L* @ N!) satisfies

our requirement (cf. [1] p. 582). The normalized Poincaré bundle is unique since universal
bundles differ only by Pic M (2, K, 5) and the Picard group has no 2-torsion. O

t7-17 t—40-3

The determinant line bundle hg; is ample by [2]. We compute its degree. In the hexagonal
case, F|cxr is a universal family. Since det(F|cxr) =~ Kc®O(B — A) by the exact sequence
(6), we have hgey =~ Or(7(B — A)) ® (det 7 (Flexr)) ™2 by (7). By Lemma 10 and (6), we
have the exact sequence

0 — HYOs(B)) ® Or — 1.(Flexr) — H(Os(4)) ® Or(B - A) — Or(B) — 0

and det(7,.F|cxr) ~ Or(5B — 6A). Hence hge is isomorphic to Or(5A4 — 3B), which is a
line bundle of degree 20. So we have proved Theorem 1.
For a hexagonal curve C, U = (F|cxr) ® Or(34 —2B) is the normalized Poincaré bundle.

The restriction U, is stable for every p € C by Proposition 3 and « is an embedding by
Theorem 3. Since the properties to be shown are stable by small deformations, we have

Theorem 2.
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