CURVES AND K3 SURFACES OF GENUS ELEVEN

Shigeru Mukai
Graduate School of Polymathematics, Nagoya University, Chikusa-ku, Nagoya, 464-01, Japan

Received May 22, 1995

Abstract

For a general curve C of genus 11 , its embeddings into K 3 surfaces are unique up to isomorphisms. Such embedding $\alpha: C \longrightarrow \hat{S}$ is constructed as a non-abelian analogue of the duality between the Picard and Albanese varieties. Let S be the moduli space of stable rank two vector bundles E of canonical determinant on C with $h^{0}(E) \geq 7$. Then S is a smooth K3 surface and the determinant line bundle $h_{\text {det }}$ is a polarization of genus 11. The K3 surface \hat{S} which contains C is the unique 2-dimensional component of the moduli space of stable rank two sheaves of determinant $h_{d e t}$ on S.

In [11], we have begun our study of the Brill-Noether locus

$$
M_{C}(2, K, n)=\left\{E \mid h^{0}(E) \geq n+2\right\} / \text { isom }
$$

in the moduli space $M_{C}(2, K)$ of stable rank two vector bundles E of canonical determinant over a curve, i.e., a compact Riemann surface C. In the workshop at Sanda, we discussed $M_{C}(2, K, 3)$ for a curve C of genus seven, for which see the forthcoming article. Here, instead, we study another interesting case:

Theorem 1. For a general curve C of genus eleven, the Brill-Noether locus $M_{C}(2, K, 5)$ is a smooth K3 surface and the restriction $h_{\text {det }}$ of the determinant line bundle of $M_{C}(2, K)$ is a polarization of genus eleven, i.e., $\left(h^{2}\right)=20$.

Let (X, h) be a pair of a K3 surface and a line bundle h of degree 20 and $M_{X}(2, h, n)$ be the moduli space of stable sheaves \mathcal{E} on X with $r(\mathcal{E})=2, \operatorname{det} \mathcal{E} \simeq h$ and $\chi(\mathcal{E})=2+n$. By [6], $M_{X}(2, h, n)$ is smooth and of dimension $2(11-2 n)$ if it is not empty. Hence $M_{X}(2, h, n)$ is a surface only if $n=5$ and, in fact, $\hat{X}:=M_{X}(2, h, 5)$ is a K3 surface if it is compact. Moreover, there is a line bundle \hat{h} of degree 20 on \hat{X} and $(\hat{\hat{X}}, \hat{\hat{h}})$ is isomorphic to $(X, h)([7]$, Theorem 1.4).

Let S be $M_{C}(2, K, 5)$ in the theorem and \mathcal{U} the Poincaré bundle on $C \times S$. We normalize \mathcal{U} so that $\operatorname{det} \mathcal{U} \simeq K_{C} \boxtimes h_{\text {det }}$ (see §4) and restrict it to fibres in the other direction. Namely we consider the family of vector bundles $\mathcal{U}_{p}:=\left.\mathcal{U}\right|_{p \times S}$ on S parametrized by C.

Theorem 2. Let $C, S=M_{C}(2, K, 5), h_{\text {det }}$ and \mathcal{U} be as above. Then the vector bundle \mathcal{U}_{p} on S is stable with respect to $h_{\text {det }}$ and belongs to $M_{S}\left(2, h_{\text {det }}, 5\right)$ for every $p \in C$. Moreover, the classification morphism $\alpha: C \longrightarrow M_{S}\left(2, h_{d e t}, 5\right), p \mapsto\left[\mathcal{U}_{p}\right]$, is an embedding.

Let \mathcal{M}_{11} and \mathcal{F}_{11} be the moduli spaces of curves and polarized K 3 surfaces (X, h) of genus 11, respectively. Let \mathcal{P}_{11} be the \mathbf{P}^{11}-bundle $\coprod_{(X, h) \in \mathcal{F}_{11}}|h|$ over \mathcal{F}_{11} and $\phi_{11}: \mathcal{P}_{11} \cdots \rightarrow \mathcal{M}_{11}$ the rational map which associates the isomorphism class for every $C \in|h|$ (cf. [5]). By the theorem, the rational map $\psi: \mathcal{M}_{11} \cdots \rightarrow \mathcal{P}_{11},[C] \mapsto\left(M_{S}\left(2, h_{\text {det }}, 5\right), \alpha(C)\right)$, satisfies $\phi_{11} \circ \psi=i d$. Since \mathcal{P}_{11} is irreducible and of the same dimension as $\mathcal{M}_{11}, \phi_{11}$ is birational and ψ is its inverse. Therefore, we have

[^0]Corollary 1. $M_{S}\left(2, h_{\text {det }}, 5\right)$, with $S=M_{C}(2, K, 5)$, is the unique $K 3$ surface which contains C.

Since \mathcal{M}_{11} is unirational by [4], we also have
Corollary 2. \mathcal{F}_{11} is unirational.
Thus $M_{C}(2, K, 5)$ and the morphism $\alpha: C \longrightarrow M_{S}\left(2, h_{d e t}, 5\right)$ are similar to the Picard variety and Albanese map $X \longrightarrow \operatorname{Alb} X=\left(\operatorname{Pic}^{0} X\right)^{\vee}$, respectively. The morphism α is the K3 hull in the following sense:
Definition An embedding $\alpha: C \longrightarrow A$ of a curve C into a variety A is a K3 hull if

1) there exist a line bundle L on A and its global sections s_{1}, \cdots, s_{n-1} such that $\left.L\right|_{C} \simeq K_{C}$ and C is the complete intersection $s_{1}=\cdots=s_{n-1}=0$ in A,
2) every embedding of C into a K3 surface is isomorphic to the restriction of α to the common zero locus of a codimension one subspace of $\left\langle s_{1}, \cdots, s_{n-1}\right\rangle \subset H^{0}(A, L)$, and
3) there is an exact sequence

$$
0 \longrightarrow H^{0}\left(N_{C / A} \otimes K_{C}^{-1}\right) \longrightarrow H^{1}\left(K_{C}^{-2}\right) \longrightarrow \bigwedge^{2} H^{1}\left(\mathcal{O}_{C}\right)
$$

where the first map is the coboundary map of the long exact sequence associated to the natural exact sequence

$$
\left[\left.0 \longrightarrow T_{C} \longrightarrow T_{A}\right|_{C} \longrightarrow \quad \begin{array}{c}
N_{C / A} \\
K_{C}^{\oplus(n-1)}
\end{array} \longrightarrow 0\right] \otimes K_{C}^{-1}
$$

and the second is the dual of the Wahl map $\wedge^{2} H^{0}\left(K_{C}\right) \longrightarrow H^{0}\left(K_{C}^{3}\right)$ (see [13]).
The K3 hull exists for every general curve of genus $g \geq 7$. It is the symmetric space described in [9] for $g=7,8$ and 9 , and C itself for $g=10$ and $g \geq 12$ (cf. [3], [8], [5]). This will be discussed elsewhere.

Let G_{d}^{r} be the locus of curves with g_{d}^{r} in the moduli space \mathcal{M}_{11} and C a general member of G_{6}^{1}. C is embedded into \mathbf{P}^{5} by $\left|K_{C} \xi^{-1}\right|$ and the quadric hull S of its image $C_{14} \subset \mathbf{P}^{5}$ is a K3 surface of degree 8 , where ξ is a g_{6}^{1} of C. There exists a family $\left\{\mathcal{E}_{x}\right\}_{x \in S}$ of vector bundles

$$
0 \longrightarrow \mathcal{O}_{S}(C-A) \longrightarrow \mathcal{E}_{x} \longrightarrow I_{x}(A) \longrightarrow 0
$$

of Schwarzenberger type on S parametrized by S, where A is a hyperplane section of $S \subset \mathbf{P}^{5}$.
Theorem 3. For a general member C of G_{6}^{1}, the Brill-Noether locus $M_{C}(2, K, 5)$ is smooth and isomorphic to S by the correspondence $\left.S \ni x \mapsto \mathcal{E}_{x}\right|_{C} \in M_{C}(2, K, 5)$.

The quadric hull S in the theorem is the unique K3 surface which contains the hexagonal curve C. In fact, if a K3 surface contains C, then the g_{6}^{1} on C extends to a line bundle on it.

Another interesting divisor of \mathcal{M}_{11} is the locus G_{9}^{2}. For a general member C of G_{9}^{2}, $S=M_{C}(2, K, 5)$ is still a K3 surface and contains a line D, i.e., $\left.\operatorname{deg} h_{\text {det }}\right|_{D}=1$, which parametrizes the extensions $0 \longrightarrow \zeta \longrightarrow E \longrightarrow K_{C} \zeta^{-1} \longrightarrow 0$ with $h^{0}(E)=7$, where ζ is a g_{9}^{2} of C. The moduli space $M_{S}\left(2, h_{d e t}, 5\right)$ is the unique quartic surface which contains the image of $\Phi_{K_{C} \zeta^{-1}}: C \longrightarrow \mathbf{P}^{3}$.

We prove the theorem in $\S 3$ after some preparations in $\S \S 1$ and 2 , and Theorem 1 and 2 in the final section.
Notations $\mathbf{P}_{*} V$ and $\mathbf{P}^{*} V$ are the two projective spaces associated to a vector space V. The former parametrizes one-dimensional subspaces and the latter quotient spaces. $S^{n} V$ is the n-th symmetric tensor product of a vector space or vector bundle V. For an \mathcal{O}_{X}-module
\mathcal{E} and an \mathcal{O}_{Y}-module \mathcal{F}, the tensor product of their pull-backs on the product $X \times Y$ is denoted by $\mathcal{E} \boxtimes \mathcal{F}$.

1. Preliminary

Next two lemmas are useful to analyze and construct vector bundles in $M_{C}(2, K, n)$.
Lemma 1. Let E be a rank two vector bundle of canonical determinant and ζ a line bundle on C. If ζ is generated by global sections, then we have

$$
\operatorname{dim} \operatorname{Hom}_{\mathcal{O}_{C}}(\zeta, E) \geq h^{0}(E)-\operatorname{deg} \zeta
$$

The proof is an easy exercise of the base-point-free pencil trick (see [10] Proposition 3.1).
Lemma 2. Let ξ be a line bundle and consider non-trivial extensions

$$
0 \longrightarrow \xi \longrightarrow E \longrightarrow \eta \longrightarrow 0
$$

of ξ by its Serre adjoint η.

1) The extensions E with $h^{0}(E)=h^{0}(\xi)+h^{0}(\eta)$ are parametrized by the projective space $\mathbf{P}^{*} \operatorname{Coker}\left[S^{2} H^{0}(\eta) \longrightarrow H^{0}\left(\eta^{2}\right)\right]$.
2) Assume that the multiplication map $S^{2} H^{0}(\eta) \longrightarrow H^{0}\left(\eta^{2}\right)$ is surjective. Then $h^{0}(E) \leq$ $h^{0}(\xi)+h^{0}(\eta)-1$ for every non-trivial extension E. Moreover, the non-trivial extensions E with $h^{0}(E)=h^{0}(\xi)+h^{0}(\eta)-1$ are parametrized by the quadric hull of the image of $\Phi_{|\eta|}$: $C \longrightarrow \mathbf{P}^{*} H^{0}(\eta)$. More precisely, for every point x of the quadric hull, there is the unique extension E such that the image of the linear map $H^{0}(E) \longrightarrow H^{0}(\eta)$ is the codimension one subspace corresponding to x.

Proof. Let $e \in \operatorname{Ext}^{1}(\eta, \xi)$ be the extension class and $\delta_{e}: H^{0}(\eta) \longrightarrow H^{1}(\xi)$ the coboundary map. The condition that $h^{0}(E)=h^{0}(\xi)+h^{0}(\eta)$ is equivalent to $\delta_{e}=0$, that is, e lies in the kernel of the linear map

$$
\Delta: \operatorname{Ext}^{1}(\eta, \xi) \longrightarrow H^{0}(\eta)^{\vee} \otimes H^{1}(\xi), \quad e \mapsto \delta_{e}
$$

By the Serre duality, the linear map Δ is the dual of the multiplication map $H^{0}(\eta) \otimes$ $H^{0}(\eta) \longrightarrow H^{0}\left(\eta^{2}\right)$. Hence Ker Δ is the dual of $\operatorname{Coker}\left[S^{2} H^{0}(\eta) \longrightarrow H^{0}\left(\eta^{2}\right)\right]$, which shows (1). The first assertion of (2) is a direct consequence of (1). The condition that $h^{0}(E)=h^{0}(\xi)+$ $h^{0}(\eta)-1$ is equivalent to rank $\delta_{e}=1$ by our assumption. There exists a nonzero linear map $\alpha: H^{0}(\eta) \longrightarrow \mathbf{C}$ such that δ_{e} is the composite of α and its dual $\alpha^{\vee}: \mathbf{C} \longrightarrow H^{0}(\eta)^{\vee} \simeq H^{1}(\xi)$. Let x be the point of $\mathrm{P}^{*} H^{0}(\eta)$ corresponding to α. Then $I_{2}=\operatorname{Ker}\left[S^{2} H^{0}(\eta) \longrightarrow H^{0}\left(\eta^{2}\right)\right]$, the degree 2 part of the homogeneous ideal of $\Phi_{\eta}(C)$, vanishes at x, since $S^{2} \alpha$ is the composite of $S^{2} H^{0}(\eta) \longrightarrow H^{0}\left(\eta^{2}\right)$ and the linear map $H^{0}\left(\eta^{2}\right) \longrightarrow \mathbf{C}$ corresponding to e by construction. Thus E with $h^{0}(E)=h^{0}(\xi)+h^{0}(\eta)-1$ determines a point in the quadric hull. Conversely, a point in the quadric hull determines e with rank $\delta_{c}=1$. Such e is unique sincc Δ is injective by our assumption.

See [11] §4 for the following criterion of smoothness:
Proposition 1. Let E be a member of $M_{C}(2, K)$ with $h^{0}(E)=n+2$ and put $\sigma=3 g(C)-$ $3-(n+2)(n+3) / 2$. Then we have

1) $\operatorname{dim}_{[E]} M_{C}(2, K, n) \geq \sigma$, and
2) $M_{C}(2, K, n)$ is smooth and of dimension σ at $[E]$ if and only if the multiplication map $S^{2} H^{0}(E) \longrightarrow H^{0}\left(S^{2} E^{\prime}\right)$ is injective.

2. Hexagonal curve of genus 11

Let $S \subset \mathrm{P}^{5}$ be a smooth complete intersection of three quadrics. S is a K3 surface by the adjunction formula and the Lefschetz theorem. Throughout this and next sections we assume that S contains a normal elliptic curve B of degree 6 but no bisecant lines of B. Such a surface exists by the following:

Lemma 3. Let $B \subset \mathbf{P}^{5}$ be a normal elliptic curve of degree 6. Then the intersection of three general quadrics passing through B is a smooth surface and does not contain a bisecant line of $B \subset \mathbf{P}^{5}$.

Proof. The first assertion follows from Bertini's theorem, since $B \subset \mathbf{P}^{5}$ is an intersection of quadrics. All S 's which contain B are parametrized by a non-empty open subset of the Grassmannian $G\left(3, H^{0}\left(I_{B}(2)\right)\right)$, which is of dimension $3(9-3)=18$. Let ℓ be a bisecant line. All S 's which contain both B and ℓ are parametrized by an open subset of the Grassmannian $G\left(3, H^{0}\left(I_{B \cup \ell}(2)\right)\right)$, which is of dimension 15 . Since the bisecant lines are parametrized by a surface, we have the second assertion.

Let $C \subset S$ be a smooth member of the complete linear system $|A+B|$, where A is a hyperplane section of $S \subset \mathbf{P}^{5}$. Such C exists since $|A+B|$ is free from base points. Since

$$
\left(A^{2}\right)=8,(A \cdot B)=6,\left(B^{2}\right)=0 \text { and }(A+B)^{2}=20
$$

C is of genus 11. We denote the restriction of $\mathcal{O}_{S}(B)$ and $\mathcal{O}_{S}(A)$ to C by ξ and η, respectively. By the adjunction formula, the canonical line bundle K_{C} of C is the tensor product of ξ and η. By the exact sequences

$$
0 \longrightarrow \mathcal{O}_{S}(-A) \longrightarrow \mathcal{O}_{S}(B) \longrightarrow \xi \longrightarrow 0
$$

and

$$
0 \longrightarrow \mathcal{O}_{S}(-B) \longrightarrow \mathcal{O}_{S}(A) \longrightarrow \eta \longrightarrow 0
$$

and by the lemma below, the restriction maps $H^{0}\left(\mathcal{O}_{S}(B)\right) \longrightarrow H^{0}(\xi)$ and $H^{0}\left(\mathcal{O}_{S}(A)\right) \longrightarrow$ $H^{0}(\eta)$ are isomorphisms. In particular, $|\xi|$ is a g_{6}^{1} and its Serre adjoint η is a g_{14}^{5}. The embedding $C \hookrightarrow S \hookrightarrow \mathbf{P}^{5}$ is given by the complete linear system $|\eta|$.
Lemma 4. $H^{i}\left(\mathcal{O}_{S}(A-B)\right)=H^{i}\left(\mathcal{O}_{S}(B-A)\right)=0$ for every i.
Proof. Since $(B-A . A)<0$, we have $H^{0}\left(\mathcal{O}_{S}(B-A)\right)=0$ and hence $H^{2}\left(\mathcal{O}_{S}(A-B)\right)=0$ by the Serre duality. Since $(A-B)^{2}=-4$, we have $\chi\left(O_{S}(B-A)\right)=0$. Hence it suffices to show $H^{0}\left(\mathcal{O}_{S}(A-B)\right)=0$. Assume the contrary and let D be a member of $|A-B|$. Since $\left(D^{2}\right)=-4$ and $(D . A)=2, D$ is a union of two disjoint lines. Since $(D . B)=6$, one of them meets B at at least three points. This is a contradiction.

Tensoring $\mathcal{O}_{S}(A)$ with the exact sequence

$$
0 \longrightarrow \mathcal{O}_{S}(-B) \longrightarrow \mathcal{O}_{S}^{\oplus 2} \longrightarrow \mathcal{O}_{S}(B) \longrightarrow 0
$$

we have
Lemma 5. The multiplication map

$$
H^{0}\left(\mathcal{O}_{S}(B)\right) \otimes H^{0}\left(\mathcal{O}_{S}(A)\right) \longrightarrow H^{0}\left(\mathcal{O}_{S}(A+B)\right)
$$

is an isomorphism.

The multiplication map $S^{2} H^{0}\left(\mathcal{O}_{S}(A)\right) \longrightarrow H^{0}\left(\mathcal{O}_{S}(2 A)\right)$ is surjective and its kernel is of dimension 3. Since S is smooth, every quadric passing through S is smooth at $x \in S$. Therefore, we have

Lemma 6. The multiplication map $S^{2} H^{0}\left(I_{x}(A)\right) \longrightarrow H^{0}\left(\mathcal{O}_{S}(2 A)\right)$ is injective for every $x \in S$, where I_{x} is the maximal ideal of \mathcal{O}_{S} at x.

The non-existence of bisecant lines in S implies the following:
Lemma 7. For an effective divisor D, we have

1) $h^{0}(\xi(D))=2$ if D is of degree ≤ 3, and
2) $h^{0}(\xi(D))+h^{0}(\eta(-D)) \leq \max \{8-d, d+2\}$, where d is the degree of D.

Proof. If $\operatorname{deg} D \leq 2$, then $h^{0}(\eta(-D))=h^{0}(\eta)-\operatorname{deg} D$, since $|\eta|$ is very ample. Since $\xi \eta=K_{C}$, we have $h^{0}(\xi(D))=h^{0}(\xi)=2$ by the Riemann-Roch theorem. Assume that $\operatorname{deg} D=3$ and $h^{0}(\xi(D))>2$. Then D is contained in a trisecant line ℓ of $C \subset \mathbf{P}^{5}$. This is a contradiction since ℓ is contained in S and $(\ell . B)=(\ell . C-A)=2$. So we have proved (1). By the Riemann-Roch theorem, we have

$$
h^{0}(\xi(D))+h^{0}(\eta(-D))=2 h^{0}(\xi(D))+4-d
$$

Hence (2) immediately follows from (1) if $d=2$ or 3 . If $d \geq 4$, then $h^{0}(\xi(D)) \leq d-1$ by (1). Hence we have (2).

Now we are ready to prove the following:
Proposition 2. Let E be a semi-stable rank two vector bundle of canonical determinant on C. Then we have

1) $h^{0}(E) \leq 7$, and
2) if $h^{0}(E)=7$, then E is stable and contains a line subbundle isomorphic to ξ or $\xi(p)$ for a point $p \in C$.

Proof. If $h^{0}(E)<7$, then there is nothing to prove. Hence we may assume that $h^{0}(E) \geq 7$. By Lemma 1, E contains a subsheaf isomorphic to ξ and we have an exact sequence

$$
0 \longrightarrow \xi(D) \longrightarrow E \longrightarrow \eta(-D) \longrightarrow 0
$$

for an effective divisor D of degree ≤ 4. Hence we have $\left.h^{0}(E) \leq h^{0}(\xi(D))+h^{0}(\eta(-D))\right) \leq 7$ and $\operatorname{deg} D=0$ or 1 by Lemma 7 , which shows (1) and the second assertion of (2). Assume that E is not stable and let $0 \longrightarrow \alpha \longrightarrow E \longrightarrow \beta \longrightarrow 0$ be an exact sequence with $\operatorname{deg} \alpha=\operatorname{deg} \beta=10$. Then either α or β is isomorphic to $\xi(D)$ for an effective divisor D of degree 4. Hence we have $h^{0}(E) \leq h^{0}(\xi(D))+h^{0}(\eta(-D)) \leq 6$ by Lemma 7. This is a contradiction and E is stable.

3. Proof of Theorem 3

Let A, B and $C \subset S \subset \mathbf{P}^{5}$ be as in the previous section. $\left(S, \mathcal{O}_{S}(A+B)\right)$ is a polarized K3 surface of genus 11. We study $M_{S}(2, A+B, 5)$ and their restrictions to C, using vector bundles of Schwarzenberger type. Let

$$
H^{j}\left(S, \mathcal{E}^{x} t_{\mathcal{O}_{s}}^{i}\left(I_{x}(A), \mathcal{O}_{S}(B)\right)\right) \Longrightarrow \operatorname{Ext}_{\mathcal{O}_{s}}^{i+j}\left(I_{x}(A), \mathcal{O}_{s}(B)\right)
$$

be the local-global spectral sequence of extension groups, where I_{x} is the ideal of a point x of S. By Lemma 4, the natural map

$$
\begin{equation*}
\operatorname{Ext}_{\mathcal{O}_{s}}^{1}\left(I_{x}(A), \mathcal{O}_{S}(B)\right) \longrightarrow H^{0}\left(S, \mathcal{E} x t_{\mathcal{O}_{S}}^{1}\left(I_{x}(A), \mathcal{O}_{S}(B)\right)\right) \simeq \mathbf{C} \tag{1}
\end{equation*}
$$

is an isomorphism. Let

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{S}(B) \longrightarrow \mathcal{E}_{x} \longrightarrow I_{x}(A) \longrightarrow 0 \tag{2}
\end{equation*}
$$

be the unique non-trivial extension of $I_{x}(A)$ by $\mathcal{O}_{S}(B)$. Since $H^{1}\left(\mathcal{O}_{S}(B)\right)=0$, we have the exact sequence

$$
0 \longrightarrow H^{0}\left(\mathcal{O}_{S}(B)\right) \longrightarrow H^{0}\left(\mathcal{E}_{x}\right) \longrightarrow H^{0}\left(I_{x}(A)\right) \longrightarrow 0
$$

The following is obvious:
Lemma 8. 1) $\operatorname{dim} H^{0}\left(\mathcal{E}_{x}\right)=7$ and \mathcal{E}_{x} is generated by global sections.
2) $H^{i}\left(\mathcal{E}_{x}\right)=0$ for $i=1,2$.

Since the three linear maps
i) $S^{2} H^{0}\left(\mathcal{O}_{S}(B)\right) \longrightarrow H^{0}\left(\mathcal{O}_{S}(2 B)\right)$,
ii) $H^{0}\left(\mathcal{O}_{S}(B)\right) \otimes H^{0}\left(I_{x}(A)\right) \longrightarrow H^{0}\left(I_{x}(A+B)\right)$ and
iii) $S^{2} H^{0}\left(I_{x}(A)\right) \longrightarrow H^{0}\left(I_{x}^{2}(2 A)\right)$.
are injective by Lemma 5 and 6, we have
Lemma 9. The natural linear map $S^{2} H^{0}\left(\mathcal{E}_{x}\right) \longrightarrow H^{0}\left(S^{2} \mathcal{E}_{x}\right)$ is injective.
Let E_{x} be the restriction of the vector bundle \mathcal{E}_{x} to the curve C. Since $\operatorname{det} \mathcal{E}_{x} \simeq \mathcal{O}_{S}(C)$, we have the exact sequence

$$
0 \longrightarrow \mathcal{E}_{x}^{\vee} \longrightarrow \mathcal{E}_{x} \longrightarrow E_{x} \longrightarrow 0
$$

By Lemma 8 and the Serre duality, we have
Lemma 10. The restriction map $H^{0}\left(\mathcal{E}_{x}\right) \longrightarrow H^{0}\left(E_{x}\right)$ is an isomorphism.
In particular, $\operatorname{dim} H^{0}\left(E_{x}\right)=7$ and E_{x} is generated by global sections. Restricting the above (2) to the curve C, we have the exact sequence

$$
\begin{equation*}
0 \longrightarrow \xi \longrightarrow E_{x} \longrightarrow \eta \longrightarrow 0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \longrightarrow H^{0}(\xi) \longrightarrow H^{0}\left(E_{x}\right) \longrightarrow H^{0}\left(I_{x}(A)\right) \longrightarrow 0 \tag{4}
\end{equation*}
$$

if $x \notin C$. If $x \in C$, then $I_{x}(A) \otimes \mathcal{O}_{C}$ contains the sky-scraper sheaf $k(x)$ as a subsheaf and the torsion-free quotient is isomorphic to $\eta(-x)$. Hence we have the exact sequence

$$
\begin{equation*}
0 \longrightarrow \xi(x) \longrightarrow E_{x} \longrightarrow \eta(-x) \longrightarrow 0 \tag{5}
\end{equation*}
$$

Proposition 3. E_{x} is stable for every $x \in S$.
Proof. Assume that $x \notin C$. Since $h^{0}\left(E_{x}\right)<h^{0}(\xi)+h^{0}(\eta)$ by (4), the exact sequence (3) does not split. Let ζ be a line subbundle of E_{x}. If the composite $\zeta \longrightarrow E_{x} \longrightarrow \eta$ is zero, then $\operatorname{deg} \zeta=\operatorname{deg} \xi<10$. Otherwise ζ is isomorphic to $\eta(-D)$ for a nonzero effective divisor D. If $\operatorname{deg} D=1$ and $D=(p)$ for a point $p \in C$, then the extension class e of (3) lies in the kernel of $\operatorname{Ext}_{\mathcal{O}_{C}}^{1}(\eta, \xi) \longrightarrow \operatorname{Ext}_{\mathcal{O}_{C}}^{1}(\eta(-p), \xi(p))$. Hence the point corresponding to e in the way of Lemma 2 is p. This is a contradiction. Hence we have $\operatorname{deg} D \geq 2$. Since $h^{0}(E)=7$, we have $\operatorname{deg} D \geq 5$ by Lemma 7. Therefore E_{x} is stable.

Claim: The exact sequence (5) does not split.
Assume the contrary and let $s: E_{x} \longrightarrow \xi(x)$ be a splitting. Let \mathcal{F} be the kernel of the composite $\mathcal{E}_{x} \longrightarrow E_{x} \longrightarrow \xi(x) . \quad H^{0}(\mathcal{F})$ is a 5-dimensional subspace of $H^{0}\left(\mathcal{E}_{x}\right)$ and
mapped onto $H^{0}\left(I_{x}(A)\right)$. Since $c_{1}(\mathcal{F})=0$, the image of the evaluation homomorphism $H^{0}(\mathcal{F}) \otimes \mathcal{O}_{S} \longrightarrow \mathcal{F} \subset \mathcal{E}$ is of rank one. Hence the image is isomorphic to $I_{x}(A)$, which is a contradiction.

Assume that $x \in C$ and let ζ be a line subbundle of E_{x}. We may assume that $\zeta \simeq$ $\eta(-x-D)$ for an effective divisor D. D is nonzero by the claim and E_{x} is stable by Lemma 7.

By the proposition, \mathcal{E}_{x} is also stable (with respect to $\mathcal{O}_{S}(C)$) and every endomorphism is a constant multiplication. Hence, by the exact sequence

$$
0 \longrightarrow s l \mathcal{E}_{x} \longrightarrow S^{2} \mathcal{E}_{x} \longrightarrow S^{2} E_{x} \longrightarrow 0
$$

the restriction map $H^{0}\left(S^{2} \mathcal{E}_{x}\right) \longrightarrow H^{0}\left(S^{2} E_{x}\right)$ is injective. By Lemma 9 and 10 , we have
Lemma 11. The natural linear map $S^{2} H^{0}\left(E_{x}\right) \longrightarrow H^{0}\left(S^{2} E_{x}\right)$ is injective.
Now we prove Theorem 3 . Let T be a copy of S and Δ be the diagonal of $S \times T$. By the Leray spectral sequence, we have an isomorphism
whose fibres are (1), where σ and τ are the projections of $S \times T$ onto S and T, respectively. Hence we have the universal extension

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{S \times T}\left(\sigma^{*} B\right) \longrightarrow \mathcal{F} \longrightarrow I_{\Delta}\left(\sigma^{*} A+\tau^{*}(B-A)\right) \longrightarrow 0 \tag{6}
\end{equation*}
$$

whose restriction to $S \times x$ is (2) for every $x \in T$. The restriction of \mathcal{F} to $C \times T$ is a Poincaré bundle of the family $\left\{E_{x}\right\}_{x \in T}$. By Lemma 8,10 and Proposition 3 , we obtain the classification morphism $B_{C}: S \longrightarrow M_{C}(2, K, 5) . B_{C}$ is injective by the following:
Lemma 12. $\operatorname{dim} \operatorname{Hom}\left(\xi, E_{x}\right)=1$ for every $x \in S$.
Proof. Assume the contrary. Then E_{x} contains two distinct subsheaves isomorphic to ξ. Let L be the subsheaf generated by them. If L is of rank one, then L is isomorphic to $\xi(D)$ for an effective divisor D and $h^{0}(L) \geq 3$, which contradicts Lemma 7. If L is of rank two, then L is isomorphic to $\xi \oplus \xi$, which contradicts Lemma 11.

Let E be a member of $M_{C}(2, K, 5)$. By Proposition 2, there is an exact sequence

$$
0 \longrightarrow \xi \longrightarrow E \longrightarrow \eta \longrightarrow 0
$$

or

$$
0 \longrightarrow \xi(p) \longrightarrow E \longrightarrow \eta(-p) \longrightarrow 0
$$

for a point $p \in C$. In the latter case, E is isomorphic to E_{p} by (1) of Lemma 2 and the claim in the proof of Proposition 3. In the former case, there exists a point $x \in S$ such that the image of $H^{0}(E) \longrightarrow H^{0}(\eta)$ is $H^{0}\left(I_{x}(A)\right)$ by (2) of Lemma 2. By the stability of E, x does not belong to C. Hence E is isomorphic to E_{x}. Therefore, B_{C} is surjective. $M_{C}(2, K, 5)$ is smooth and of dimension 2 by Proposition 1 and Lemma 11.

4. Proof of Theorem 1 and 2

Let C be a general curve of genus 11. C does not have a g_{10}^{3}. Hence we have $h^{0}(E) \leq 6$ for every strictly semi-stable rank two vector bundle E of canonical determinant on C. Since $M_{C}(2, K, 5)$'s form a proper family when C varies, they are smooth K3 surfaces by Theorem 3.

Proposition 4. There exists a vector bundle \mathcal{U} on $C \times M_{C}(2, K, 5)$ such that $\left.\mathcal{U}\right|_{C \times[E]} \simeq E$ for every $E \in M_{C}(2, K, 5)$ and $\operatorname{det} \mathcal{U} \simeq K_{C} \boxtimes h_{\text {det }}$. Such \mathcal{U}, called the normalized Poincaré bundle, is unique up to isomorphism.

Proof. The moduli space $M_{C}(2, K)$ is the quotient of an open subset R of a Quot scheme by an action of $P G L(\nu)$. Let R^{\prime} be the inverse image of $M_{C}(2, K, 5)$ by the quotient morphism $R \longrightarrow M_{C}(2, K)$ and $\tilde{\mathcal{U}}$ the restriction of the universal quotient bundle. By Proposition 2, $h^{0}(E)=7$ for every $E \in M_{C}(2, K, 5)$. Hence the direct image $\pi_{R^{\prime} *} \tilde{\mathcal{U}}$ is a vector bundle of rank 7. The direct image $\pi_{R^{\prime} *}\left(\tilde{\mathcal{U}} \otimes_{\mathcal{O}_{C}} K_{C}\right)$ is of rank 40. Following [12], we consider the vector bundle

$$
\tilde{\mathcal{U}} \otimes \pi_{R^{\prime}}^{*}\left(\left(\operatorname{det} \pi_{R^{\prime} *} \tilde{\mathcal{U}}\right)^{17} \otimes \operatorname{det}\left(\pi_{R^{\prime} *}\left(\tilde{\mathcal{U}} \otimes_{\mathcal{O}_{C}} K_{C}\right)\right)^{-3}\right)
$$

The action of a central element $t \in \mathbf{G}_{m} \subset G L(\nu)$ on the three factors are $t, t^{7.17}$ and $t^{-40 \cdot 3}$. Hence this tensor product has an action of $\operatorname{PGL}(\nu)$ and descends to a Poincaré bundle \mathcal{U} on $C \times M_{C}(2, K, 5)$.

Since $M_{C}(2, K, 5)$ is regular, there exists a line bundle L on $M_{C}(2, K, 5)$ such that $\operatorname{det} \mathcal{U} \simeq$ $K_{C} \otimes L$. Since $\mathcal{U}^{\vee} \otimes_{\mathcal{O}_{C}} K_{C} \simeq \mathcal{U} \otimes_{\mathcal{O}_{M}} L^{-1}$, we have

$$
\left(R^{1} \pi_{M *} \mathcal{U}\right)^{\vee} \simeq \pi_{M *}\left(\mathcal{U}^{\vee} \otimes K_{C}\right) \simeq\left(\pi_{M *} \mathcal{U}\right) \otimes L^{-1}
$$

by the (relative) Serre duality. Hence we have

$$
\begin{equation*}
h_{d e t}=\left(\operatorname{det} R^{1} \pi_{M *} \mathcal{U}\right) \otimes\left(\operatorname{det} \pi_{M *} \mathcal{U}\right)^{-1} \simeq L^{7} \otimes N^{-2}, \tag{7}
\end{equation*}
$$

where we put $N=\operatorname{det} \pi_{M *} \mathcal{U}$. Therefore, the universal bundle $\mathcal{U} \otimes_{\mathcal{O}_{M}}\left(L^{3} \otimes N^{-1}\right)$ satisfies our requirement (cf. [1] p. 582). The normalized Poincaré bundle is unique since universal bundles differ only by Pic $M(2, K, 5)$ and the Picard group has no 2-torsion.

The determinant line bundle $h_{\text {det }}$ is ample by [2]. We compute its degree. In the hexagonal case, $\left.\mathcal{F}\right|_{C \times T}$ is a universal family. Since $\operatorname{det}\left(\left.\mathcal{F}\right|_{C \times T}\right) \simeq K_{C} \boxtimes \mathcal{O}(B-A)$ by the exact sequence (6), we have $h_{d e t} \simeq \mathcal{O}_{T}(7(B-A)) \otimes\left(\operatorname{det} \tau_{*}\left(\left.\mathcal{F}\right|_{C \times T}\right)\right)^{-2}$ by (7). By Lemma 10 and (6), we have the exact sequence

$$
0 \longrightarrow H^{0}\left(\mathcal{O}_{S}(B)\right) \otimes \mathcal{O}_{T} \longrightarrow \tau_{*}\left(\left.\mathcal{F}\right|_{C \times T}\right) \longrightarrow H^{0}\left(\mathcal{O}_{S}(A)\right) \otimes \mathcal{O}_{T}(B-A) \longrightarrow \mathcal{O}_{T}(B) \longrightarrow 0
$$

and $\operatorname{det}\left(\left.\tau_{*} \mathcal{F}\right|_{C \times T}\right) \simeq \mathcal{O}_{T}(5 B-6 A)$. Hence $h_{\text {det }}$ is isomorphic to $\mathcal{O}_{T}(5 A-3 B)$, which is a line bundle of degree 20 . So we have proved Theorem 1 .

For a hexagonal curve $C, \mathcal{U}=\left(\left.\mathcal{F}\right|_{C \times T}\right) \otimes \mathcal{O}_{T}(3 A-2 B)$ is the normalized Poincaré bundle. The restriction \mathcal{U}_{p} is stable for every $p \in C$ by Proposition 3 and α is an embedding by Theorem 3. Since the properties to be shown are stable by small deformations, we have Theorem 2.

References

[1] Atiyah, M.F. and Bott, R.: The Yang-Mills equations over Riemann surfaces, Phil. Trans. Royal Soc. London, A 308(1982), 523-615.
[2] Beauville, A.: Fibrés de rang 2 sur une courbe, fibré determinant et fonctions thêta, Bull. Soc. math. France 116(1988), 431-448.
[3] - and Mérindol, J.-Y.: Sections hyperplanes des surfaces K-3, Duke Math. J., 55 (1987), 873-878.
[4] Chang, M.-C. and Ran, Z.: The unirationality of the moduli spaces of curves of genus 11, 13 (and 12), Invent. math. 76(1984), 41-54.
[5] Mori, S. and Mukai, S.: The uniruledness of the moduli space of curves of genus 11, in Algebraic Geometry, proceedings, Tokyo/Kyoto, 1982, M. Raynaud and T. Shioda (eds.), Lecture Notes in Math. 1016, Springer-Verlag, 1983, pp. 334-353.
[6] Mukai, S. : Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. math. 77(1984), 101-116.
[7] - : On the moduli space of bundles on K3 surfaces I, in Vector Bundles on Algebraic Varieties, Oxford University Press, 1987, pp. 341-413.
[8] -: Curves, K3 surfaces and Fano 3-folds of genus ≤ 10, in Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, Kinokuniya, Tokyo, 1987, pp. 357-377.
[9] -: Curves and symmetric spaces, Proc. Japan Acad. 68(1992), 7-10.
[10] - : Curves and Grassmannians, in Algebraic Geometry and related topics, proceedings, Inchon, Korea, 1992, J-H. Yang, Y. Namikawa and K. Ueno (eds.), International Press, Boston-Hong Kong, 1993, pp.19-40.
[11] —: Vector bundles and Brill-Noether theory, in Algebraic Geometry Special Year 1992-1993, Math. Sci. Res. Inst. Publ. 28, Cambridge University Press, 1995, in press.
[12] Mumford, D. and Newstead, P.E.: Periods of a moduli space of bundles on curves, Amer. J. Math. 90(1968), 1200-1208.
[13] Wahl, J.: Introduction to Gaussian maps on algebraic curves, in Complex Projective Geometry, London Math. Soc. Lect. Note Ser. 179, Cambridge University Press, 1992, pp. 304-323.

[^0]: Unité mixte de l'institute Henri Poincaré, CNRS Université Pierre et Marrie Currie, Paris.

