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Polarized K3 surfaces of genus thirteen

Shigeru Mukai

A smooth complete algebraic surface S is of type K3 if S is regular
and the canonical class KS is trivial. A primitively polarized K3 surface
is a pair (S, h) of a K3 surface S and a primitive ample divisor class
h ∈ PicS. The integer g := 1

2 (h2) + 1 ≥ 2 is called the genus of
(S, h). The moduli space of primitively polarized K3 surfaces of genus
g exists as a quasi-projective variety, which we denote by Fg. As is
well known a general polarized K3 surface of genus 2 ≤ g ≤ 5 is a
complete intersection of hypersurfaces in a weighted projective space:
(6) ⊂ P(1112), (4) ⊂ P3, (2) ∩ (3) ⊂ P4 and (2) ∩ (2) ∩ (2) ⊂ P5.

In connection with the classification of Fano threefolds, we have
studied the system of defining equations of the projective model S2g−2 ⊂
Pg and shown that a general polarized K3 surface of genus g is a com-
plete intersection with respect to a homogeneous vector bundle Vg−2 in
a g-dimensional Grassmannian G(n, r), g = r(n − r), in a unique way
for the following six values of g:

g 6 8 9 10
r 2 2 3 5
Vg−2 3OG(1)⊕OG(2) 6OG(1)

∧2 E ⊕ 4OG(1)
∧4 E ⊕ 3OG(1)

12 20
3 4

3
∧2 E ⊕ OG(1) 3

∧2 E
Here E is the universal quotient bundle on G(n, r). See [4] and [5] for
the case g = 6, 8, 9, 10, [6, §5] for g = 20 and §3 for g = 12.

By this description, the moduli space Fg is birationally equivalent
to the orbit space H0(G(n, r),Vg−2)/(PGL(n)×AutG(n,r) Vg−2) and
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hence is unirational for these values of g. The uniqueness of the descrip-
tion modulo the automorphism group is essentially due to the rigidity
of the vector bundle E := E|S . All the cohomology groups Hi(sl(E))
vanish.

A general member (S, h) ∈ Fg is a complete intersection with respect
to the homogeneous vector bundle 8U in the orthogonal Grassmannian
O-G(10, 5) in the case g = 7 ([4]), and with respect to 5U in O-G(9, 3)
in the case 18 ([6]), where U is the homogeneous vector bundle on the
orthogonal Grassmannian such that H0(U) is a half spinor representa-
tion U16. Both descriptions are unique modulo the orthogonal group.
Hence F7 and F18 are birationally equivalent to G(8, U16)/PSO(10) and
G(5, U16)/SO(9), respectively. The unirationality of F11 is proved in [7]
using a non-abelian Brill-Noether locus and the unirationality of M11,
the moduli space of curves of genus 11.

In this article, we shall study the case g = 13 and show the following:

Theorem 1. A general member (S, h) ∈ F13 is isomorphic to a
complete intersection with respect to the homogeneous vector bundle

V =
2∧
E ⊕

2∧
E ⊕

3∧
F

of rank 10 in the 12-dimensional Grassmannian G(7, 3), where F is the
dual of the universal subbundle.

Corollary F13 is unirational.

Remark 1. A general complete intersection (S, h) with respect to
the homogeneous vector bundle

∧4 F⊕S2E in the 10-dimensional Grass-
mannian G(7, 2) is also a primitively polarized K3 surface of genus 13.
But (S, h) is not a general member of F13. In fact, S contains 8 mutually
disjoint rational curves R1, . . . , R7, which are of degree 3 with respect
to h. This will be discussed elsewhere.

Unlike the known cases described above, the vector bundle E = E|S
is not rigid. Hence the theorem does not give a birational equiva-
lence between F13 and an orbit space. But E is semi-rigid, that is,
H0(sl(E)) = 0 and dimH1(sl(E)) = 2. Instead of F13, the theorem
gives a birational equivalence between the universal family over it and
an orbit space.

Let S ⊂ G(7, 3) be a general complete intersection with respect to
V . Then S is the common zero locus of the two global sections of

∧2 E
corresponding to general bivectors σ1, σ2 ∈

∧2 C7 and one global section
of

∧3 F corresponding to a general τ ∈ ∧3 C7,∨. The 2-dimensional
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subspace P = 〈σ1, σ2〉 ⊂
∧2 C7 is uniquely determined by S. Let P ∧ P

be the subspace of
∧3 C7,∨ corresponding to P ∧ P ⊂ ∧4 C7. Then

Cτ modulo P ∧ P is also uniquely determined by S. It is known that
the natural action of PGL(7) on G(2,

∧2 C7) has an open dense orbit
(Sato-Kimura[9, p. 94]). Hence we obtain the natural birational map

(1) ψ : P∗(
4∧

C7/(P ∧ P ))/G · · · → F13,

which is dominant by the theorem, where G is the (10-dimensional)
stabilizer group of the action at P ∈ G(2,

∧2 C7).

Theorem 2. For every general member p = (S, h) ∈ F13, the fiber
of ψ at p is birationally equivalent to the moduli K3 surface MS(3, h, 4)
of semi-rigid rank three vector bundles with c1 = h and χ = 3 + 4.

As is shown in [8], Ŝ := MS(3, h, 4) carries a natural ample divi-
sor class ĥ of the same genus (=13) and (S, h) �→ (Ŝ, ĥ) induces an
isomorphism of F13. (In fact, this is an involution.) Hence we have

Corollary The orbit space P∗(
∧4 C7/(P ∧ P ))/G is birationally

equivalent to the universal family over F13, or the coarse moduli space
of one pointed polarized K3 surfaces (S, h, p) of genus 13.

Remark 2. Kondō[3] proves that the Kodaira dimension of Fg is
non-negative for the following 17 values:

g = 41, 42, 50, 52, 54, 56, 58, 60, 65, 66, 68, 73, 82, 84, 104, 118, 132.

The Kodaira dimension of Fm2(g−1)+1 is non-negative for these values
of g and for every m ≥ 2 since it is a finite covering of Fg.

Notations and convention. Algebraic varieties and vector bun-
dles are considered over the complex number field C. The dual of a vec-
tor bundle (or a vector space) E is denoted by E∨. Its Euler-Poincarè
characteristic

∑
i(−)ihi(E) is denoted by χ(E). The vector bundles of

traceless endomorphisms of E is denoted by sl(E). For a vector space
V , G(V, r) is the Grassmannian of r-dimensional quotient spaces of V
and G(r, V ) that of r-dimensional subspaces. The isomorphism class of
G(V, r) with dim V = n is denoted by G(n, r). G(V, 1) and G(1, V ) is
denoted by P∗(V ) and P∗(V ), respectively. OG(1) is the pull-back of the
tautological line bundle by the Plücker embedding G(V, r) ↪→ P∗(

∧r
V ).

§1. Vanishing

We prepare the vanishing of cohomology groups of homogeneous
vector bundles on the Grassmannian G(n, r), which is the quotient
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of SL(n) by a parabolic subgroup P . The reductive part Pred of P
is the intersection of GL(r) × GL(n − r) and SL(n) in GL(n). We
take {(a1, · · · , ar; ar+1, . . . , an) | ∑n

1 ai = 0} ⊂ Zn as root lattice and
Zn/Z(1, 1, . . . , 1) as the common weight lattice of SL(n) and Pred. We
take {ei − ei+1 | 1 ≤ i ≤ n − 1} as standard root basis. The half of the
sum of all positive roots is equal to

δ = (n− 1, n− 3, n− 5, . . . ,−n+ 3,−n+ 1)/2.

Let ρ be an irreducible representation of Pred and
w ∈ Zn/Z(1, 1, . . . , 1) its weight. We denote the homogeneous vector
bundle on G(n, r) induced from ρ by Ew. w is singular if a number
appears more than once in w + δ. If w is not singular and w + δ =
(a1, a2, . . . , an), then there is a unique (Grassmann) permutation α = αw

such that aα(1) > aα(2) > · · · > aα(n). We denote the length of αw, that
is, the cardinality of the set {(i, j) | 1 ≤ i < j ≤ n, ai < aj}, by l(w).

Theorem 3 (Borel-Hirzebruch[2]). (a) If w is singular, then
all the cohomology groups Hi(G(n, r), Ew) vanish.

(b) If w is not, then all the cohomology groups Hi(G(n, r), Ew) van-
ish except for i = l(w). Moreover, H l(w)(G(n, r), Eρ) is an ir-
reducible representation of SL(n) with highest weight

(aα(1), aα(2), . . . , aα(n))− δ.
The dimension of this unique nonzero cohomology group is equal
to

∏
1≤i<j≤n |ai − aj |/(j − i).

l(w) is called the index of the homogeneous vector bundle Ew.

Example. In the following table, − means that the weight w is
singular.
weight w homogeneous bundle Ew l(w) H l(w)

(1, 0, 0, . . . , 0, 0; 0, . . . , 0, 0) E , universal quotient 0 Cn

bundle
(0, 0, 0, . . . ,−1, 0; 0, . . . , 0, 0) E∨ -
(1, 1, 0, . . . , 0, 0; 0, . . . , 0, 0)

∧2 E 0
∧2 Cn

(1, 1, 1, . . . , 1, 0; 0, . . . , 0, 0) OG(1) = det E = detF 0
∧r Cn

(0, 0, 0, . . . , 0, 0;−1, . . . ,−1)
(0, 0, 0, . . . , 0, 0; 1, . . . , 0, 0) F∨, universal subbundle -
(0, 0, 0, . . . , 0, 0; 0, . . . , 0,−1) F 0 Cn,∨

(1, 0, 0, . . . , 0, 0; 0, . . . , 0,−1) TG(n,r), tangent bundle 0 sl(Cn)
(0, 0, 0, . . . ,−1; 1, 0, . . . , 0, 0) ΩG(n,r), cotangent bundle 1 C
(−s,−s, . . . ,−s; r, r, . . . , r) OG(−n), canonical bundle dim C

We apply the theorem to the 12-dimensional Grassmannian G(7, 3).



K3 surfaces of genus thirteen 319

Lemma 4. (a) All cohomology groups of the homogeneous vec-
tor bundle

∧p(2E(−1)) ⊗∧q(F(−1)) on G(7, 3) vanish except
for the following:

i) p = q = 0, h0(OG) = 1, and
ii) p = 6, q = 4, h12(OG(−7)) = 1.

(b) All cohomology groups of OG(1) ⊗ ∧p(2E(−1)) ⊗ ∧q(F(−1))
vanish except for the following:

i) p = q = 0, h0(OG(1)) = 35,
ii) p = 1, q = 0, h0(2E) = 2 · 7 = 14, and
iii) p = 0, q = 1, h0(F) = 7.

(c) All cohomology groups of E ⊗∧p(2E(−1))⊗∧q(F(−1)) vanish
except for h0(E) = 7 with p = q = 0.

(d) All cohomology groups of F ⊗∧p(2E(−1))⊗∧q(F(−1)) vanish
except for h0(F) = 7 with p = q = 0.

(e) All cohomology groups of
∧2 E⊗∧p(2E(−1))⊗∧q(F(−1)) van-

ish except for the following:
i) p = q = 0, h0(

∧2 E) = 21, and
ii) p = 1, q = 0, h0(

∧2 E ⊗ (2E(−1))) = 2.
(f) All cohomology groups of

∧3 F⊗∧p(2E(−1))⊗∧q(F(−1)) van-
ish except for the following:

i) p = q = 0, h0(
∧3 F) = 35,

ii) p = 0, q = 1, h0(
∧3 F ⊗ F(−1)) = 1, and

iii) p = 2, q = 0, h1(
∧3 F ⊗∧2(2E(−1))) = 3h1(

∧3 F ⊗∧2 E∨) = 3.
(g) All cohomology groups of sl(E)⊗∧p(2E(−1))⊗∧q(F(−1)) van-

ish except for h6 = 2 with p = 3, q = 2.

Proof. The following table describes the decomposition of∧p(2E(−1)) into indecomposable homogeneous vector bundles.

(2)

p decomposition weightw′ w′ + δ′

0 OG (0, 0, 0) (3, 2, 1)
1 2E(−1) 2(0,−1,−1) (3, 1, 0)
2 3(

∧2 E)(−2) 3(−1,−1,−2) (2, 1,−1),
⊕S2E(−2) ⊕(0,−2,−2) (3, 0,−1)

3 4OG(−2) 4(−2,−2,−2) (1, 0,−1),
⊕2sl(E)(−2) ⊕2(−1,−2,−3) (2, 0,−2)

4 3E(−3) 3(−2,−3,−3) (1,−1,−2),
⊕(S2

∧2 E)(−4) ⊕(−2,−2,−4) (1, 0,−3)
5 2(

∧2 E)(−4) 2(−3,−3,−4) (0,−1,−3)
6 OG(−4) (−4,−4,−4) (−1,−2,−3)
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Here δ′ = (3, 2, 1) is the head of δ = (3, 2, 1; 0,−1,−2,−3).∧q(F(−1)) is indecomposable. The following lists their weights w′′

and w′′ + δ′′, where δ′′ = (0,−1,−2,−3) is the tail of δ.

(3)

q bundle weightw′′ w′′ + δ′′

0 OG (0, 0, 0, 0) (0,−1,−2,−3)
1 F(−1) (1, 1, 1, 0) (1, 0,−1,−3)
2 (

∧2 F)(−2) (2, 2, 1, 1) (2, 1,−1,−2)
3 (

∧3 F)(−3) (3, 2, 2, 2) (3, 1, 0,−1)
4 OG(−3) (3, 3, 3, 3) (3, 2, 1, 0)

We prove (a), (f) and (g) applying Theorem 3. The other cases are
similar.

(a) Take w′ and w′′ from the tables (2) and (3), respectively, and
combine into w = (w′;w′′). Then w is singular except for the two cases

w + δ = (3, 2, 1; 0,−1,−2,−3) with p = q = 0

and

w + δ = (−1,−2,−3; 3, 2, 1, 0) with p = 6, q = 4.

The indices l(w) are equal to 0 and 12, respectively.

(f) The homogeneous vector bundle
∧3 F ⊗∧q(F(−1)) decomposes

in the following way:

(4)

q weightw′′ w′′ + δ′′

0 (0,−1,−1,−1) (0,−2,−3,−4)
1 (1, 0, 0,−1)⊕ (0, 0, 0, 0) (1,−1,−2,−4), (0,−1,−2,−3)
2 (2, 1, 0, 0)⊕ (1, 1, 1, 0) (2, 0,−2,−3), (1, 0,−1,−3)
3 (3, 1, 1, 1)⊕ (2, 2, 1, 1) (3, 0,−1,−2), (2, 1,−1,−2)
4 (3, 2, 2, 2) (3, 1, 0,−1)

Take w′ and w′′ from the table (2) and this table, respectively, and
consider w = (w′;w′′). Then w is singular except for the following three
cases.

i) p = q = 0, w + δ = (3, 2, 1; 0,−2,−3,−4), l(w) = 0,
ii) p = 0, q = 1, w + δ = (3, 2, 1; 0,−1,−2,−3), l(w) = 0, and
iii) p = 2, q = 0, w + δ = (2, 1,−1; 0,−2,−3,−4), l(w) = 1.
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(g) The following table shows the indecomposable components of
sl(E)⊗∧p(2E(−1)) which do not appear in that of

∧p(2E(−1)).

(5)

p weightw′ other than Table (2) w′ + δ′

0 (1, 0,−1) (4, 2, 0)
1 2(1,−1,−2)⊕ 2(0, 0,−2) (4, 1,−1), (3, 2,−1)
2 4(0,−1,−3)⊕ (1,−2,−3) (3, 1,−2), (4, 0,−2)
3 2(0,−2,−4)⊕ 2(−1,−1,−4) (3, 0,−3), (2, 1,−3)
⊕2(0,−3,−3) (3,−1,−2)

4 (−1,−2,−5)⊕ 4(−1,−3,−4) (2, 0,−4), (2,−1,−3)
5 2(−2,−3,−5)⊕ 2(−2,−4,−4) (1,−1,−4), (1,−2,−3)
6 (−3,−4,−5) (0,−2,−4)

Take w′ and w′′ from the table (2) and this table, respectively, and
consider w = (w′;w′′). Then w is singular except for the case w + δ =
(3, 0,−3; 2, 1,−1,−2) with p = 3 and q = 2. The index is equal to
6. Q.E.D.

Let S ⊂ G(7, 3) be a complete intersection with respect to V =
2

∧2 E ⊕∧3 F . The Koszul complex

K : OG ←− V∨ ←−
2∧
V∨ ←− · · · ←−

9∧
V∨ ←−

10∧
V∨ ←− 0

gives a resolution of the structure sheaf OS .
∧n V∨ is isomorphic to⊕

p+q=n

∧p(2E(−1))⊗∧q(F(−1)).

Proposition 5. (a) H0(S,OS) = C, H1(S,OS) = 0.
(b) The restriction map H0(G(7, 3),OG(1)) −→ H0(S,OS(1))is

surjective, H0(S,OS(1))is of dimension 14 and H1(S,OS(1))
= H2(S,OS(1)) = 0.

(c) The restriction map H0(G(7, 3), E) −→ H0(S,E) is an isomor-
phism and H1(S,E) = H2(S,E) = 0.

(d) H0(G(7, 3),F) −→ H0(S, F ) is an isomorphism.
(e) H0(G(7, 3),

∧2 E) −→ H0(S,
∧2E) is surjective and the kernel

is of dimension 2.
(f) H0(G(7, 3),

∧3 F) −→ H0(S,
∧3

F ) is surjective and the kernel
is of dimension 4.

(g) E is simple and semi-rigid, that is, H0(sl(E)) = 0 and
h1(sl(E)) = 2.

Proof. We prove (a) and (f) as sample. Other cases are similar.
(a) The restriction mapH0(G(7, 3),OG) −→ H0(S,OS) is surjective

by the vanishing H1(V∨) = H2(
∧2 V∨) = · · · = H10(

∧10 V∨) = 0 and
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the exact sequence 0←− OS ←− K. H1(S,OS) vanishes since H1(OG)
= H2(V∨) = · · · = H11(

∧10 V∨) = 0.

(f) The restriction map is surjective by the vanishing Hn(
∧3 F ⊗∧n V∨) for n = 1, . . . , 10 and the exact sequence

0←−
3∧
F ←−

3∧
F ⊗K.

The dimension of the kernel is equal to

h0(
3∧
F ⊗ V∨) + h1(

3∧
F ⊗

2∧
V∨) = 1 + 3 = 4

since Hn+1(
∧3 F ⊗∧n V∨) = 0 for n = 3, . . . , 10. Q.E.D.

§2. Proof of Theorems 1 and 2

Let S be a zero locus (s)0 of a general global section s of the ho-
mogeneous vector bundle V =

∧2 E ⊕ ∧2 E ⊕ ∧3 F in the Grassman-
nian G(7, 3). Since V is generated by global sections, S is smooth by
[6, Theorem 1.10], the Bertini type theorem for vector bundles. Since
r(V) = 3 + 3 + 4 = dimG(7, 3)− 2 and

detV � OG(2)⊗OG(2)⊗OG(3) � detTG(7,3),

S is of dimension two and the canonical line bundle is trivial. By (a)
of Proposition 5, S is connected and regular. Hence S is a K3 sur-
face. We denote the class of hyperplane section by h. Then, by (b) of
Proposition 5, we have χ(OS(h)) = 14, which implies (h2) = 24 by the
Riemann-Roch theorem. Hence we obtain the rational map

Ψ : P∗H0(G(7, 3),V) · · · → F ′
13 s �→ ((s)0, h)

to the moduli space F ′
13 of polarized K3 surfaces which are not neces-

sarily primitive.
By (g) of Proposition 5, the vector bundle E = E|S is simple. Let

(S′, h′) be a small deformation of (S, h). Then there is a vector bun-
dle E′ on S′ which is a deformation of E by Proposition 4.1 of [6].
E′ enjoys many properties satisfied by E: E′ is simple, generated by
global sections, h0(E′) = 7,

∧3H0(E′) −→ H0(
∧3E′) is surjective, etc.

Therefore, E′ embeds S′ into G(7, 3) and S′ is also a complete intersec-
tion with respect to V . Hence the rational map Ψ is dominant onto an
irreducible component of F ′

13 and Theorem 1 follows from the following:
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Proposition 6. The polarization h of (S, h), a complete intersec-
tion with respect to V in G(7, 3), is primitive.

In the local deformation space of (S, h), the deformations (S′, h′)’s
with Picard number one form a dense subset. More precisely, it is the
complement of an infinite but countable union of divisors. Hence we
have

Lemma 7. There exists a smooth complete intersection S with re-
spect to V whose Picard number is equal to one.

Proof of Proposition 6. Since the assertion is topological it suffices
to show it for one such (S, h). We take (S, h) as in this lemma. Assume
that h is not primitive. Since (h2) = 24, h is linearly equivalent to 2l
for a divisor class l with (l2) = 6. The Picard group PicS is generated
by l. By the Riemann-Roch theorem and the (Kodaira) vanishing, we
have h0(OS(nl)) = 3n2 + 2 for n ≥ 1.

Claim 1. h0(E(−l)) = 0.
Assume the contrary. Then E contains a subsheaf isomorphic to

OS(nl) with n ≥ 1. Since h0(OS(nl)) ≤ h0(E) = 7, we have n = 1 and
the quotient sheaf Q = E/OS(l) is torsion free. Since 5 = h0(OS(l)) <
h0(E) = 7, we have H0(Q) �= 0. Since Q is of rank two and detQ �
OS(l), we have Hom(Q,OS(l)) �= 0, which contradicts (g) of Proposi-
tion 5.

Now we consider the vector bundle M = (
∧2E)(−l). By the

claim and the Serre duality, we have h2(M) = dim Hom(M,OS) =
h0(E(−l)) = 0. Hence we have h0(M) ≥ χ(M) = 4. Take 4 linearly
independent global sections of M and we consider the homomorphism
ϕ : 4OS −→M .

Claim 2. ϕ is surjective outside a finite set of points on S.
Let r be the rank of the image of ϕ. Since Hom(OS(l),M) =

H0(
∧2

E)(−h)) = H0(E∨) = H2(E)∨ = 0 by (c) of Proposition 5,
we have r ≥ 2. Since Hom(M,OS) = 0, r = 2 is impossible. Hence
we have r = 3. Since the image and M have the same determinant line
bundle (� OS(l)), the cokernel of ϕ is supported by a finite set of points.

The kernel of ϕ is a line bundle by the claim. It is isomorphic to
OS(−l). Hence we have the exact sequence

0 −→ OS(−l) −→ 4OS
ϕ−→M.

Since χ(Cokerϕ) = 3 < χ(M), ϕ is not surjective. In fact, the cokernel
is a skyscraper sheaf supported at a point. Tensoring OS(l), we have



324 S. Mukai

the exact sequence

0 −→ OS −→ 4OS(l)
ϕ(l)−→

2∧
E −→ C(p) −→ 0.

H0(ϕ(l)) is surjective since h0(4OS(l)) = 20 and h0(
∧2

E) = 19. But
this contradicts (e) of Proposition 5. Q.E.D.

Proof of Theorem 2. Let P = 〈σ1, σ2〉 be a general 2-dimensional
subspace of

∧2 C7 and X6 ⊂ G(7, 3) the common zero locus of the
two global sections of

∧2 E corresponding to σ1 and σ2. A point q of
P∗(

∧3 C7,∨/P ∧ P ) determines a global section of
∧3 F|X . We denote

the zero locus by Sq ⊂ X6.

Sq ⊂ X6 ⊂ G(7, 3)
∩ ∩ ∩

P13 ⊂ P20 ⊂ P34

The restriction of E to Sq is semi-rigid by (g) of Proposition 5. Let
Ξ31 ⊂ P∗(

∧3 C7,∨/P ∧ P ) be the open subset consisting of points q such
that Sq is a K3 surface and the restriction E|Sq is stable with respect to
h.

Lemma 8. Ξ31 is not empty.

Proof. Let (S, h) be as in Lemma 7 and put E = E|S . Then, by
Proposition 7, PicS is generated by h. Since h0(OS(h)) = 14 > h0(E) =
7, we have Hom(OS(nh), E) = 0 for every integer n ≥ 1/3. Since
c1(E) = h and since Hom(E,OS(nh)) = 0 for every integer n ≤ 1/3, E
is stable. Q.E.D.

The correspondence q �→ E|Sq induces a morphism from a general
fiber of Ξ31/G · · · → F13 at [Sq] to the moduli space MS(3, h, 4) of semi-
rigid bundles. Conversely there exists a morphism from a non-empty
open subset of MS(3, h, 4) to the fiber since a small deformation E′ of
E|Sq gives an embedding of Sq into G(7, 3) such that the image is a
complete intersection with respect to V .

Remark 3. By (f) of Proposition vanishing, H0(X6,
∧3 F|X) is

isomorphic to
∧3 C7,∨/P ∧ P . Hence the rational map ψ in (1) coincides

with P∗(H0(X6,
∧3 F|X))/G · · · → F13 induced by s �→ (s)0.

§3. K3 surface of genus seven and twelve

We describe two cases g = 7 and 12 closely related with Theorems 1
and 2. The proofs are quite similar to the case g = 18, 13, respectively,
and we omit them.
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First a polarized K3 surface of genus 7 has the following description
other than that in the orthogonal Grassmannian O-G(5, 10):

Theorem 9. A general polarized K3 surface (S, h) of genus 7 is a
complete intersection with respect to the rank four homogeneous vector
bundle 2OG(1)⊕ E(1) in the 6-dimensional Grassmannian G(5, 2).

S is the common zero locus of two hyperplane sections H1 and H2 of
G(5, 2) ⊂ P9 corresponding to σ1, σ2 ∈

∧2 C5 and one global section s

of E(1). The 2-dimensional subspace P = 〈σ1, σ2〉 ⊂
∧2 C5 is uniquely

determined by S and X4 = G(5, 2) ∩ H1 ∩ H2 is a quintic del Pezzo
fourfold. Let Q be the image of C5 ⊗ P by the natural linear map
C7 ⊗ ∧2 C7 −→ H0(E(1)). Then Q is of dimension 10 and we obtain
the natural rational map

(6) P∗(H0(E(1))/Q)/G8 = P∗(H0(E(1)|X))/G8 · · · → F7

as in the case g = 13, where G8 is the general stabilizer group of the
action PGL(5) � G(2,

∧2 C5). H0(E(1)) is a 40-dimensional irreducible
representation of GL(5) by Theorem 3. The fiber of the map (6) at
general (S, h) is a surface and birationally equivalent to the moduli K3
surface MS(2, h, 3) of semi-rigid rank two vector bundles with c1 = h
and χ = 2 + 3.

Secondly, in the 12-dimensional Grassmannian G(7, 3), there is an-
other type of K3 complete intersection other than Theorem 1.

Theorem 10. A general member (S, h) ∈ F12 is a complete inter-
section with respect to V10 = 3

∧2 E ⊕ OG(1) in G(7, 3).

S is the common zero locus of the three global sections of
∧2 E cor-

responding to general bivectors σ1, σ2, σ3 ∈
∧2 C7. The 3-dimensional

subspace N = 〈σ1, σ2, σ3〉 ⊂
∧2 C7 is uniquely determined by S. The

common zero locus XN of the global sections of
∧2 E corresponding to N

is a Fano threefold and is embedded into P13 anti-canonically. XN ’s are
parameterized by an open set Ξ6 of the orbit spaceG(3,

∧2 C7)/PGL(7).
See [5] for other descriptions of XN ’s and their moduli spaces. The mod-
uli space F12 is birationally equivalent to a P13-bundle over this Ξ6.
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