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K3 surfaces of genus sixteen

Shigeru Mukai

Abstract.

The generic polarized K3 surface (S, h) of genus 16, that is, (h2) =
30, is described in a certain compactified moduli space T of twisted cu-
bics in P

3, as a complete intersection with respect to an almost homoge-
neous vector bundle of rank 10. As corollary we prove the unirationality
of the moduli space F16 of such K3 surfaces.

§1. Introduction

Let Fg be the moduli space of quasi-polarized K3 surface (S, h)
of genus g, i.e., (h2) = 2g − 2. Fg is an arithmetic quotient of the
19-dimensional bounded symmetric domain of type IV, and a quasi-
projective variety. It is shown in [3] that Fg is of general type for g ≥ 63
but the birational classification of Fg is still far from being complete. For
g ≤ 10 and g = 12, 13, 18, 20, the generic (S, h) is a complete intersection
in a suitable homogeneous space with respect to a suitable homogeneous
vector bundle. As corollary the unirationality of Fg is proved for those
values of g in [5, 7, 8]. In this article we shall describe the generic
member of F16 using the EPS moduli space T := G(2, 3;C4) of twisted
cubics in P

3.
The EPS moduli space T is constructed by Ellingsrud-Piene-Strømme

[2] as the GIT quotient of the tensor product C
2 ⊗ C

3 ⊗ V , V being a
4-dimensional vector space, by the obvious action of GL(2)×GL(3). T
is a smooth equivariant compactification of the 12-dimensional homoge-
neous space PGL(V )/PGL(2). A point t ∈ T represents an equivalence
class of 2 × 3 matrices whose entries belong to V . Its three minors de-
fine a subscheme Rt of the projective space P(V ). Rt is a cubic curve
mostly and a plane with an embedded point in exceptional cases. By
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construction there exists two natural vector bundles E ,F of rank 3, 2,
respectively, with det E � detF , and the tautological homomorphism

E ⊗ V ∨ −→ F

on T . (Be cautioned that the same letters E and F are used for the dual
vector bundles in [2].) The tautological homomorphism induces linear
maps

(1) (S2V )∨ −→ H0(E) and (S2,1V )∨ −→ H0(F).

(See §2.) Here S2V is the second symmetric tensor product, and

(2) S2,1V = ker[V ⊗ S2V → S3V ]

is the space of linear syzygies among second symmetric tensors. S2,1V
is of dimension 20.

For two subspaces M ⊂ (S2V )∨ and N ⊂ (S2,1V )∨, we consider the
common zero locus

(3)
⋂
s∈M̄

(s)0 ∩
⋂
t∈N̄

(t)0 ⊂ T .

of global sections s ∈ M̄ and t ∈ N̄ , where M̄ and N̄ are the images of M
and N in H0(E) and H0(F), respectively. The case dimM = dimN = 2
is most interesting. We denote the common zero locus (3) by SM,N in
this case.

Theorem 1.1. If M and N are general, then SM,N is a (smooth)
K3 surface, and the restriction of H := c1(E) is a polarization of genus
16.

For general M and N , SM,N is a complete intersection in T with
respect to the vector bundle E⊕2 ⊕ F⊕2 of rank 10. Furthermore the
following converse also holds:

Theorem 1.2. Generic K3 surface of genus 16 is isomorphic to
the complete intersection SM,N .

A twisted cubic

(4) R : rank

(
f11 f12 f13
f21 f22 f23

)
≤ 1, fij ∈ V

in P(V ) = P3 is apolar to M if all minors of the matrix are perpendicular
to M . Similarly R is apolar to N if all linear syzygies among the three
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minors are perpendicular to N . The K3 surface SM,N in Theorem 1.1
parametrizes all R which are apolar to both M and N .

If a 2-dimensional subspace M ⊂ (S2V )∨ is general, then the kernel
SyzM of the multiplication map V ⊗ M⊥ → S3V is of dimension 12,
where M⊥ ⊂ S2V is the space of quadratic forms apolar to M . Hence
the totality of SM,N are parametrized by an open subset of a generic
G(2, 12)-bundle P over the 16-dimensional Grassmannian G(2, (S2V )∨)
which parametrizes M . By Theorem 1.1, we have the rational map

(5) Ψ16 : P · · · → F16, (M, N̄) �→ (SM,N ,H|S),
whose dominance is Theorem 1.2, where N̄ ⊂ (SyzM )∨ is the image of
N by the linear map S2,1V ∨ → (SyzM )∨. Therefore, as bi-product, we
have

Corollary The moduli space F16 of polarized K3 surface of genus
16 is unirational.

In order to prove the theorems, we study a certain special case in
detail. More explicitly, we consider the space M0 ⊂ (S2V )∨ � S2(V ∨)
spanned by two reducible quadratic forms q1 = XY, q2 = ZT , and study
the common zero locus TM0 := (q1)0∩(q2)0 ofM0 in T . TM0 parametrizes
all twisted cubics whose defining quadratic forms do not contain the
term xy or zt, where (x : y : z : t) is a homogeneous coordinate P

3 and
(X : Y : Z : T ) is the dual coordinate of P3,∗.

If N is general, then SM0,N is a quartic surface in P
3 which contains

two quintic elliptic curves E1 and E2 with (E1.E2) = 3. In particular we
have Theorem 1.1. Moreover, the restriction of E to SM0,N is an exten-
sion of three line bundles OS(E1),OS(E2) and OS(H−E1−E2) ((21) in
§6), and the restriction of F contains OS(E1)

⊕2 as a subsheaf (Propo-
sition 3.1). These give us the following vanishing of higher cohomology
groups which is the key of the proof of Theorem 1.2.

Proposition 1.3. If both M and N are general, then the restric-
tions of E ,F to S := SM,N are simple and satisfy

Exti(E|S ,F|S) = Hi(S, E|S) = Hi(S,F|S) = 0, for all i > 0.

After preparing some basic facts on the EPS moduli space T =
G(2, 3;C4) in §2, we first study the locus TQ of twisted cubics apolar to
one reducible quadric in §3. We next study the locus TB1,B2 of twisted
cubics which have two skew lines as their bisecants in §4 and the above
TM0 in §5. We prove Theorem 1.1 at the end of §6 and Theorem 1.2 in §7
using doubly octagonal K3 surfaces SM0,N . The final §8 is logically un-
necessary but explains how Theorem 1.2 originates from the description
of Fano 3-fold of genus 12 in [6].
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Notations and convention All varieties are considered over the
complex number field C. The projective space P(V ) associated to a
vector space V is that in Grothendieck’s sense. The Grassmann variety
of s-dimensional subspaces of V is denoted by G(s, V ). The isomorphism
class of G(s, V ) is denoted by G(s, n) when dimV = n. The dual vector
space (and more generally the dual vector bundle) is denoted by V ∨.
Twisted cubic is used in the generalized sense of [2]. But the locus
where twisted cubics are not curves is of sufficiently large codimension,
and hence is never crucial in our argument.

§2. Pair of vector bundles whose ranks differ by one

Let (E,F ) be a pair of vector bundles on a scheme S such that

(6) detE � detF, rankE = rankF + 1.

Let r be the rank of F . r homomorphisms f1, . . . , fr ∈ Hom(E,F ) give
rise the homomorphism

f1 ∧ · · · ∧ fr : ∧rE → ∧rF � detF

which can be regarded as a global section of E by our assumption (6).
Since f1 ∧ · · · ∧ fr is symmetric with respect to f1, . . . , fr, we have a
linear map

(7) SrHom(E,F ) → Hom(∧rE,∧rF ) � H0(E).

If g : E → F is a homomorphism, then g(f1∧· · ·∧fr) is a global section
of F . Hence we have another linear map

SrHom(E,F )⊗Hom(E,F ) → H0(F ), ((f1, . . . , fr), g) �→ g(f1∧. . .∧fr).

Since Sr+1Hom(E,F ) lies in the kernel of this linear map, we have

(8) Sr,1Hom(E,F ) → H0(F ).

Let V be a vector space and let G(r, r + 1;V ) be the GIT quotient
of the tensor product C

r ⊗ C
r+1 ⊗ V by GL(r) × GL(r + 1). There

are two natural vector bundles E ,F of rank r + 1, r, respectively, with
det E � detF , and the tautological homomorphism

(9) E ⊗ V ∨ → F

on G(r, r + 1;V ). This has the following universal property.
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(*) If a homomorphism E⊗V ∨ → F satisfies (6) and if the induced
homomorphism SrV ∨⊗OS → E is surjective, then there exists a unique
morphism Φ : S → G(r, r + 1;V ) such that E ⊗ V ∨ → F coincides
with the pull-back of (9). This Φ will be denoted by ΦE,F,V ∨ : S →
G(r, r + 1;V ), or ΦE,F if V ∨ = Hom(E,F ).

Remark 2.1. If E,F are vector bundles of rank r+1, r, respectively.
Then, putting L = (detE)−1 ⊗ detF , we have

Hom(E,F ) � Hom(E ⊗ L,F ⊗ L) and det(E ⊗ L) � det(F ⊗ L).

Hence, the assumption (6) is not restrictive.

In the sequel we apply the case r = 2,dimV = 4 to K3 surfaces
of genus 16. G(2, 3;V ) is regarded as a subvariety of the Grassmannian
G(3, S2V ) by R �→ H0(P3,OP(2− R)), where H0(P3,OP(2− R)) is the
3-dimensional space of quadratic forms vanishing on R. G(2, 3;V ) is also
a subvariety of another Grassmannian G(2, S2,1V ) by R �→ SyzR, where
SyzR is the 2-dimensional space of linear syzygies among H0(P3,OP(2−
R)).

Let SM,N ⊂ T = G(2, 3;V ) be as in the introduction for general
2-dimensional subspaces M and N .

Proposition 2.2. 1) SM,N is the disjoint union of K3 surfaces and
abelian surfaces.

2) The degree of SM,N with respect to H := c1(E) is equal to 30.
3) The second Chern number of the restrictions of E and F to SM,N

are equal to 13 and 9, respectively.

Proof. 1) The vector bundles E and F are generated by the global
sections coming from S2V ∨ and S2,1V ∨, respectively. Hence by the
Bertini type theorem (see Remark 2.4 below), the general complete in-
tersection SM,N is smooth of expected dimension, which is equal to
dim T − 2 · rank E − 2 · rankF = 2. The canonical bundle of SM,N is
trivial by the adjunction formula [7, (1.5)] since c1(T ) = 4H.

2) The degree of SM,N is equal to

(H2.ctop(E⊕2 ⊕F⊕2)) = (H2.c3(E)2.c2(F)2),

which is equal to (c21c
2
3d

2
2) = 30 by [1, Table 1].

3) The Chern numbers are equal to

c2(E|S) = (c2c
2
3d

2
2) = 13 and c2(F|S) = (c23d

3
2) = 9,

respectively, again by [1, Table 1]. Q.E.D.
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Remark 2.3. A computation using the description of the tangent
bundle of T in [1, (4.4)] shows that the Euler number of SM,N is equal
to 24. This shows that a K3 surface appears in SM,N and it is unique.

Remark 2.4. The Bertini type theorem proved in [7, Theorem 1.10]
holds in the following more general form: if a subspace W ⊂ H0(G)
generates a vector bundle G of rank r and if a global section s ∈ W is
general, then the scheme of zeroes of s is smooth of codimension r.

§3. Twisted cubics apolar to a reducible quadric

We fix a line l in P(V ) = P3 and consider the subvariety

TB := {R | length(R ∩ l) ≥ 2} ⊂ T

consisting of twisted cubics which have l as a bisecant line. Here “B”
stands for bisecant. TB is a 10-dimensional variety. Assigning the inter-
section l ∩R to l, we obtain the rational map

(10) fB : TB · · · → P
2 = Sym2l.

Let D be the subvariety of T consisting of reducible twisted cubics.
D is a divisor. Let DB be the intersection D ∩TB . DB decomposes into
the union of two irreducible components DB,1 and DB,2 according as
the intersection of the conical part of R and l. Every general member R
of DB,2 is the union of a line and a conic which meets l at two points.
Oppositely every general member R of DB,1 is the union of a line and a
conic both of which meet l.

The restriction of the syzygy bundle F to TB is described using this
former divisor DB,2.

Proposition 3.1. The restriction F|TB contains the rank 2 vector
bundles f∗

BOP(1)
⊕2 as a subsheaf, and the quotient (F|TB )/(f

∗
BOP(1)

⊕2)
is a line bundle on the divisor DB,2.

Proof. We take a homogeneous coordinate (x : y : z : t) of P3 and
assume that the line l is defined, say, by x = y = 0. We describe the
syzygy space SyzR of a twisted cubic R in TB using the two quadrics
containing the union R ∪ l.

First we construct a homomorphism f∗
BOP(1)

⊕2 → F|TB . Since l is
a bisecant of R, the union R ∪ l is contained in two different quadrics,
say, cx − ay = 0 and dx − by = 0 with a, b, c, d ∈ V = 〈x, y, z, t〉C. The
third quadric containing R is defined by ad− bc = 0. Hence R is defined

by the three minors of the matrix

(
x a b
y c d

)
. Therefore, the syzygy
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space SyzR of R is spanned by

(11) x⊗ (ad− bc)− a⊗ (dx− by) + b⊗ (cx− ay)

and

(12) y ⊗ (ad− bc)− c⊗ (dx− by) + d⊗ (cx− ay).

When R runs over TB, these syzygies generate a subspace Syz1 ⊂ S2,1V
of codimension 2. More precisely, S2,1V has 20 tensors of the form
(monomial)⊗ (monomial)− (monomial)⊗ (monomial) as its basis, and
Syz1 is generated by all except z⊗zt−t⊗z2, t⊗zt−z⊗t2. The syzygies

a⊗ by − b⊗ ay, c⊗ dx− d⊗ cx, a, b, c, d ∈ V

are contained in the vector space Syz1, and generate a subspace Syz2
isomorphic to (

∧2
V )⊕2. The quotient Syz1/Syz2 is canonically isomor-

phic to 〈x, y〉C ⊗ S2(V/〈x, y〉C). Since the quadric ad − bc = 0 cut the
two points fB(R) from l, we have a homomorphism f∗

BOP(1)
⊕2 → F|TB

on TB .
If R does not belong to the divisor DB,2, then the union R∪ l is the

intersection of two quadrics cx − ay = 0 and dx − by = 0. Moreover,
the residual classes of (11) and (12) are x ⊗ ad− bc and y ⊗ ad− bc,
respectively. Hence f∗

BOP(1)
⊕2 → F|TB is an isomorphism outside DB,2.

On the contrary assume that [R] ∈ DB,2. Then the intersection of
two quadrics containing R ∪ l is the union of a plane containing l, say
x = 0, and a line. R is defined by the three minors of the matrix of the

form

(
x a b
0 c d

)
, and SyzR is spanned by

(13) x⊗ (ad− bc)− a⊗ dx+ b⊗ cx,

which is a specialization of (11), and −c ⊗ dx + d ⊗ cx ∈ Syz2, a spe-
cialization of (12). Since (13) is not contained in the subspace Syz2, the
cokernel of f∗

BOP(1)
⊕2 ↪→ F|TB is a line bundle on DB,2. Q.E.D.

Now we study the locus TQ of twisted cubics which are apolar to a
quadric Q : q = 0 ⊂ P

3,∗ when q ∈ (S2V )∨ � S2(V ∨) is of rank 2. The
quadric Q is the union of two distinct planes P1 and P2. Let l be the line
joining the two points [P1] and [P2] ∈ P

3 = (P3,∗)∗. q is the pull-back of
a quadratic form q̄ on l∗ � P1 by the projection P3,∗ · · · → l∗. A twisted
cubic R is apolar to q if and only if the restriction of H0(P3,OP(2−R))
to l is apolar to q̄.

Proposition 3.2. The following are equivalent to each other.
1) A twisted cubic R ⊂ P3 is apolar to q.
2) l is a bisecant line of R and the intersection R ∩ l is apolar to q̄.
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Proof. 2) =⇒ 1) If l is a bisecant of R, then the union R ∪ l is
contained in two distinct quadrics. Hence the restriction map

(14) H0(P3,OP(2−R)) → H0(l,Ol(2))

is of rank ≤ 1. Hence, if furthermore R ∩ l is apolar to q|l, then R is
apolar to q.

1) =⇒ 2) Let W ⊂ H0(l,Ol(2)) be the space of quadratic forms
apolar to q̄. If R is apolar to q, then the image of the restriction map
(14) is contained in W . Since dimW = 2, the linear map (14) is not
injective, that is, the union R ∪ l is contained in a quadric. Hence R ∩ l
is non-empty. Since the quadratic forms in W has no common zero, the
rank of (14) is at most one, which shows (2). Q.E.D.

By the proposition, TQ is contained in TB . More precisely, it coin-
cides with the pull-back of a line by the rational map (10). In particular,
we have the rational map

(15) fQ : TQ · · · → P
1 ⊂ P

2 = Sym2l, R �→ R ∩ l.

§4. Twisted cubics with two fixed bisecant lines

We fix a pair of skew lines l1 and l2 in P(V ) = P3 and consider the
(8-dimensional) subvariety

TB1,B2 := {R | length(R ∩ l1) ≥ 2, length(R ∩ l2) ≥ 2} ⊂ T

consisting of twisted cubics which have both l1 and l2 as bisecant lines.
Restricting (10) we have two rational maps

(16) fBi : TB1,B2 · · · → P
2 = Sym2li, i = 1, 2.

Now we consider the correspondence

(17) Y = {(R,Q) |R ⊂ Q} ⊂ TB1,B2 × Λ

between TB1,B2 and the linear web Λ := |OP(2− l1 − l2)| of quadrics Q
containing l1 and l2. Assume that a twisted cubic R belongs to TB1,B2 .
As we saw in the proof of Poposition 3.2, the restriction maps

H0(P3,OP(2−R)) → H0(li,Ol(2)), i = 1, 2

are of rank at most one. Hence there exists a quadric which contains
R∪ l1∪ l2. Therefore, the first projection π : Y → TB1,B2 is surjective. π
is not an isomorphism at [R] if and only if dim |OP(2− l1 − l2 −R)| > 0.
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Proposition 4.1. The following are equivalent for a twisted cubic
[R] in TB1,B2 .

1) dim |OP(2− l1 − l2 −R)| > 0.
2) R ⊃ l1 or R ⊃ l2.

Proof. 1) ⇒ 2) There exist two distinct quadrics Q1 and Q2 which
contains C = l1∪l2∪R. If degC ≤ 4 then 2) follows. Otherwise, we have
degC > degQ1 · degQ2, and Q1 and Q2 have a common component.
Therefore, the intersection Q1 ∩ Q2 is the union of plane and a line.
Hence 2) holds.

2) ⇒ 1) If R contains both l1 and l2, then 1) is obvious. If R ⊃ l1 and
R �⊃ l2, then R∪ l2 is contained in two distinct quadrics. Hence 1) holds
true. Similarly 1) holds in the case where R ⊃ l2 and R �⊃ l1. Q.E.D.

More explicitly we have the following whose proof is straightforward.

Proposition 4.2. If a twisted cubic [R] ∈ TB1,B2 satisfies the equiv-
alent conditions of the preceding proposition, then it satisfies one of the
following:

(a) R is the union of l1 and a conic which have l2 as a bisecant line,
or vice versa, or

(b) R is the union m1 ∪m2 ∪ li of three lines, with i = 1 or 2, such
that both m1 and m2 intersect l1 and l2, or

(c) R is the union l1 ∪ l2 ∪m of three lines such that m intersects
both l1 and l2.

The twisted cubics satisfying (a) are parametrized by open subsets
of two P

4-bundles A1 and A2 over P
1. More precisely, A1 is a P

4-
bundle over |OP(1 − l1)| � P1, the pencil of planes P containing l1,
and its fiber over [P ] parametrizes the conics in P passing through the
intersection point P ∩ l2. In particular, both A1 and A2 are of dimension
5. The twisted cubics satisfying (c) are parametrized by the intersection
A1∩A2, which is isomorphic to l1× l2. The twisted cubics satisfying (b)
are parametrized by two copies of Sym2 (P1×P

1). In particular they are
4-dimensional families. Therefore, the first projection π : Y → TB1,B2

of (17) is birational and we have the rational map

TB1,B2 · · · → Λ � P
3, R �→ Q

assigning the unique quadric Q ∈ |OP(2 − R − l1 − l2)| to R. The
correspondence Y in (17) is nothing but the graph of this rational map.

Proposition 4.3. Y is an 8-dimensional irreducible variety, and a
generic P5-bundle over Λ = |OP(2− l1 − l2)|.
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Proof. We denote the second projection Y → |OP(2 − l1 − l2)| by
g, and the locus of singular members of |OP(2 − l1 − l2)| by Λ0. Every
member of Λ0 is the union of two distinct planes. If Q �∈ Λ0, the fiber of
g over Q is |OP×P(1, 2)| � P

5. The fiber over Q ∈ Λ0 is reducible. But
it is easily checked that it is also of dimension 5. Q.E.D.

Assume that a smooth member Q ∈ |OP(2 − l1 − l2)| is defined by
xt − yz = 0 for a homogeneous coordinate (x; y; z; t) of P3. Then Q
contains two 5-dimensional families of twisted cubics. They correspond
to the matrices of the form(

x z f
−y −t g

)
and

(
x y f
−z −t g

)
,

where f and g are linear forms. The former family is characterized by
the property that the x = y = 0 is a bisecant line, and the latter family
has x = z = 0 as a bisecant line.

§5. Twisted cubics apolar to two reducible quadrics

In this section we study the locus TM0 of twisted cubics apolar to
M0 ⊂ (S2V )∨ when M0 is spanned by two quadratic forms q1 and q2 of
rank 2. qi is the pull-back of a quadratic form q̄1 on a line li for i = 1, 2.
We assume that two lines l1 and l2 are skew. By Proposition 3.2, TM0 is
the pull-back of P1 × P1 by the rational map TM0 · · · → P2 × P2 defined
by (16). We denote the restriction of (16) by

(18) fi : TM0 · · · → P
1 ⊂ Sym2li, i = 1, 2.

Similar to the previous section, we consider the correspondence

(19) X = {(R,Q) |R ⊂ Q} ⊂ TM0 × Λ

between TM0 and Λ. We denote the second projection X → Λ by
g. When a quadric Q in Λ is smooth, the fiber of g over [Q] is a 3-
dimensional projective subspace of |OP×P(1, 2)| � P

5. Similar to Propo-
sition 4.3, X is irreducible of dimension 6, and a generic P3-bundle over
Λ.

Proposition 4.1 holds for TM0 too, and we have the following by
Proposition 4.2.

Proposition 5.1. If the first projection π : X → TM0 is not an
isomorphism at [R], then one of the following holds:

(a) R is the union of l1 and a conic which have l2 as a bisecant line,
or vice versa, or
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(b) R is the union m1 ∪m2 ∪ li of three lines, with i = 1 or 2, such
that both m1 and m2 intersect l1 and l2, or

(c) R is the union l1 ∪ l2 ∪m of three lines such that m intersects
both l1 and l2.

The twisted cubics satisfying (a) are parametrized by open subsets
of A′

1 and A′
2 which are P3-bundles over P1. In particular, both A′

1 and
A′

2 are of dimension 4. The twisted cubics satisfying (c) are parametrized
by the intersection A′

1 ∩A′
2 � l1× l2. Since the twisted cubics satisfying

(b) forms a 3-dimensional family, the first projection π is birational, and
we obtain the rational map

TM0 · · · → Λ � P
3

which assigns the unique quadric Q ∈ |OP(2 − R − l1 − l2)| to R. The
correspondence X in (19) is nothing but the graph of this rational map.
π−1(A′

1) is of dimension 5 and its image by g is Λ0 � l2 × l1.
We need also the following information on the restriction of the

syzygy bundle F to a general fiber of the second projection g : X → Λ.

Lemma 5.2. If Q in Λ is smooth, then the restriction of F to
g−1[Q] � P3 is isomorphic to OP(1)

⊕2.

Proof. We take a homogeneous coordinate (x : y : z : t) of P3 such
that

Q1 : XY = 0, Q2 : ZT = 0, Q : xt− yz = 0,

where (X : Y : Z : T ) is the dual coordinate of P3,∗. A twisted cu-
bic in the fiber g−1[Q] is defined by the three minors of the matrix(

x z by + b′t
−y −t ax+ a′z

)
, where a, a′, b, b′ are constants. (See the argument

at the end of §4.) The syzygy space SyzR of R is generated by

x⊗{(ax+a′z)z+(by+b′t)t}−z⊗{(ax+a′z)x+(by+b′t)y}+(by+b′t)⊗q

and

−y⊗{(ax+a′z)z+(by+b′t)t}+t⊗{(ax+a′z)x+(by+b′t)y}+(ax+a′z)⊗q,

where we put q = xt − yz. Hence when R runs over the fiber g−1[Q],
SyzR generates the vector space of dimension 8 with the following basis:

x⊗xz−z⊗x2, x⊗z2−z⊗xz, x⊗yt−z⊗y2−y⊗q, x⊗t2−z⊗yt−t⊗q,

−y⊗xz+t⊗x2−x⊗q,−y⊗z2−t⊗xz−z⊗q, y⊗yt−t⊗y2,−y⊗t2−t⊗yt.
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SyzR has a 1-dimensional intersection with the vector space spanned
by the first four syzygies, and so does with that spanned by the last
four. Hence the fiber g−1[Q] is the projective space with (a : a′ : b : b′)
as its homogeneous coordinate, and F|g−1[Q] is isomorphic to OP(1)

⊕2.
Q.E.D.

§6. Doubly octagonal K3 surface and proof of Theorem 1.1

Let SM0,N ⊂ TM0 be the zero locus of the global section of F⊕2

corresponding to a 2-dimensional subspace N ⊂ (S2,1V )∨.

Lemma 6.1. If N is general, then SM0,N is disjoint from A′
1 and

A′
2, that is, a twisted cubic in SM0,N does not contain the line l1 or l2

as a component.

Proof. We may assume that q1 = XY and q2 = ZT for a homoge-
neous coordinate (x : y : z : t) of P3, where (X : Y : Z : T ) is the dual
coordinate of P3,∗.

Since F⊕2 is of rank 4 and generated by its global sections, it suffices
to show that a twisted cubic satisfying (a) does not belong to SM0,N .
Assume that such a cubic R satisfies the first half of the statement (a)
of Proposition5.1. Then R is defined by three minors of a matrix of the

form

(
f ∗ ∗
0 x y

)
and has x⊗yf−y⊗xf as its syzygy, where f is a linear

commination of x and y. When R runs over A′
1 these syzygies span the

2-dimensional vector space 〈x⊗ yz − y⊗ xz, x⊗ yt− y⊗ xt〉C in S2,1V .
Since N ⊂ (S2,1V )∨ is a general 2-dimensional space, its intersection
with N⊥ is zero. Hence A′

1 is disjoint from SM0,N . The same holds for
A′

2. Q.E.D.

By the lemma, the morphism π : X → TM0 is an isomorphism
over SM0,N . Hence we denote its pull-back in X by the same symbol
SM0,N ⊂ X. The restriction of the rational map fi (i = 1, 2) to SM0,N

is a morphism, which we also denote by the same symbol fi : SM0,N →
P1 ⊂ Sym2li.

Now we study the intersection of divisor DB,2 (§3) with SM0,N . Let
D1 be the locus of reducible twisted cubics R whose conical component
has l1 as a bisecant line.

Lemma 6.2. If N is general, then the intersection Z := D1 ∩ S is
isomorphic to P

1.

Proof. More precisely, we show that the restriction of f2|Z : Z →
P
1 ⊂ Sym2l2 is the double cover induced from P

1 × P
1 → Sym2l2.
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Let (p1, p2) be an ordered pair of points of l2 which is apolar to
(or orthogonal with respect to) q̄2. It suffice to show that there exist a
unique reducible twisted cubic R = C∪l in SM0,N ∩D1 whose linear part
l passes through p1 and conical part C through p2. Such a twisted cubic

is the common zero locus of the matrix of the form

(
f f1 f2
0 g1 g2

)
, where

f is the equation of the plane spanned by l and p2, and g1, g2 are linear
forms vanishing at p1. One syzygy of R is s(R) := g1 ⊗ fg2 − g2 ⊗ fg1
which belongs to the space of syzygies

(20) 〈x⊗ fy − y ⊗ fx, y ⊗ fz − z ⊗ fy, z ⊗ fx− x⊗ z〉C,

where {x, y, z} is a basis of linear forms vanishing at p2. Since N is
of dimension 2, s(R) belongs to N⊥ for suitable choice of g1 and g2.
Similarly another syzygy of R independent from s(R) belongs to N⊥ for
suitable choice of f1 and f2. This shows the existence of the required
R = C ∪ l.

When an unordered pair {p1, p2} runs over P
1 ⊂ Sym2l2, the im-

age of f2, (20) is a 1-dimensional family of 3-dimensional subspaces.
Hence the usual dimension count argument shows that the linear part l
is unique for a given (p1, p2) if we choose N general enough. Similarly
the conical part C is unique also if N is general. Q.E.D.

We now compute the intersection numbers of several divisor classes
on S. We denote the restriction of H = c1(E) to S by h, and the divisor
class of a general fiber of fi : S → P1 by ai for i = 1, 2.

For every R in S, H0(OP(2−R)) has 1-dimensional intersection with
H0(OP(2− l1 − l2)) and 2-dimensional intersection with H0(OP(2− li)),
i = 1, 2, by Proposition 4.1 and Lemma 6.1. Hence we have an exact
sequence

(21) 0 → OS(a1)⊕OS(a2) → E|S → OS(b) → 0

on S, where we put b = h− a1 − a2.

Lemma 6.3. 1) (h.a1) = (h.a2) = 8.
2) (a1.a2) = 3.

Proof. 1) A general fiber of the morphism (15) consists of all twisted
cubics passing through two points p1, p2 ∈ l. Hence its fundamental co-
homology class is (c2 − d2)

2 by [1, Section 7]. Hence (h.a1) and (h.a2)
are equal to the intersection number (c1(c2 − d2)

2d22c3), which is equal
to 82− 2 · 57 + 40 = 8 by [1, Table 1].

2) By Proposition 2.2 and the exact sequence (21), we have c2(E|S) =
(a1.a2) + (b.a1 + a2) = 13. Hence 2) follows from 1). Q.E.D.
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By the lemma, the a1, a2 and b spans an integral sublattice of rank

3 in the Picard lattice of S with inner product

⎛
⎝0 3 5
3 0 5
5 5 4

⎞
⎠. Since the

discriminant is equal to 14 and square free, 〈a1, a2, b〉Z is a primitive
sublattice. Theorem 1.1 follows from Proposition 2.2 and the following

Lemma 6.4. S = SM0,N , for general N , is mapped to a quartic
surface by the morphism g : TM0 → P

3.

Proof. The pull-back of the tautological line bundle of P3 by g is
OS(b). By Lemma 6.3, we have (b2) = (h − a1 − a2)

2 = 4. Hence the
restricted morphism g|S : S → P

3 is of degree 4. By Lemma 5.2, every
general fiber of g|S is a linear subspace of P3. Hence g|S cannot be a
double cover of a quadric or a quartic cover of a plane. Hence g|S is
birational onto a quartic surface. Q.E.D.

Since (a1.a2) and (a1.b) are coprime, the divisor class a1 is primitive.
Hence the fiber of f1 is connected. Therefore, f1 is an elliptic fibration
of degree 8 of the polarized K3 surface (SM0,N , h). The same holds for
f2. We call SM0,N doubly octagonal for this reason. The Mukai vectors
of E|S and F|S are (3, h, 5) and (2, h, 8), respectively, by Proposition 2.2.
Hence, we have χ(E|S ,F|S) = 24− 30+10 = 4, (v(E|S)2) = 30− 30 = 0
and (v(F|S)2) = 30− 32 = −2 ([4, §2]).

§7. Proof of Proposition 1.3 and Theorem 1.2

We prove Proposition 1.3 step by step. Let S be SM0,N for general
N as in the previous section.

claim 1. Hi(S, E|S) = 0 for all i > 0.

Proof. Since OS(b) is the pull-back ofOP(1) by g, Hi(S,OS(b)) = 0
for all i > 0. Since |aj | contains a smooth elliptic curve, Hi(S,OS(aj)) =
0, for all i > 0 and j = 1, 2. Hence the claim follows from the exact
sequence (21). Q.E.D.

We need to investigate the restriction of the syzygy bundle F to S.
By Proposition 3.1, we have an exact sequence

(22) 0 → OS(a1)⊕OS(a1) → F|S → j∗γ → 0,

where j : Z = D1 ∩ S ↪→ S is a natural inclusion and γ is a line bundle
on Z. We have deg γ = 5 by Lemma 6.2 and Proposition 2.2.

claim 2. Hi(S,F|S) = 0 for all i > 0.
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Proof. Obvious from (22) and the vanishing H1(Z, γ) = 0 and
Hi(S,OS(a1)) = 0 for i > 0. Q.E.D.

claim 3. Exti(E|S ,F|S) = 0 for all i > 0.

Proof. We denote E|S ,F|S by E and F , respectively. Since χ(E,F ) =
4, it suffice to show dimHom(E,F ) = 4 and Hom(F,E) = 0. Since E is
extension of three line bundles OS(a1),OS(a2),OS(b), it suffice to show

h0(F (−a1)) + h0(F (−a2)) + h0(F (−b)) ≤ 4.

Taking dual and twisting by OS(a1), the exact sequence (22) induces
an exact sequence

(23) 0 → F (−a2 − b) → OS ⊕OS → j∗α → 0,

where α is a line bundle of degree 1 on Z. The induced linear map
H0(OS ⊕OS) → H0(α) is an isomorphism. Tensoring with OS(a2), we
have the exact sequence

0 → F (−b) → OS(a2)⊕OS(a2) → (j∗α)⊗OS(a2) → 0

The restriction of the linear system |a2| to Z is of degree 2 and free.
Hence

H0(OS(a2)⊕OS(a2)) → H0(j∗α⊗OS(a2))

is injective. Therefore, we have H0(F (−b)) = 0.
The exact sequence (22) twisted by OS(−a1) is

0 → OS ⊕OS → F (−a1) → j∗β → 0.

for a line bundle β of degree −3. Hence we have h0(F (−a1)) = 2, and
similarly h0(F (−a2)) = 2. This shows dimHom(E,F ) = 4.

Hom(F,E) = 0 follows from H0(F (−a1 − b)) = H0(F (−a2 − b)) =
H0(F (−a1 − a2)) = 0. Q.E.D.

claim 4. The natural linear map V = C4 → Hom(E|S ,F|S) (via
Hom(E ,F)) is an isomorphism.

Proof. It suffice to show the linear map is injective. Assume the
contrary. Then there exists a point p ∈ P3 such that every R belonging
to S is the union of three lines passing through p. This is obviously
impossible. Q.E.D.

claim 5. F|S is simple.

Proof. By the exact sequence (23), F|S is the reflection of j∗α by
the rigid bundle OS Since j∗α is simple so is F|S by [4, Proposition
2.25]. (See also the remark below.) Q.E.D.
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Remark 7.1. In the terminology of [9], F|S is the spherical twist
TOS (j∗α) of j∗α by the spherical object OS . Since TOS is an auto-
equivalence of the derived category of coherent sheaves on S by [9, The-
orem 1.2], F|S is simple.

Proof of Proposition 1.3. We already proved it mostly in the
above claims 1–5 taking SM0,N as S, except for the simpleness of E|S .
We need an extra argument, since the restriction of E on SM0,N is not
simple. In fact, the 6-fold TM0 has an action of the 3-dimensional torus,
and the restriction of E to there is not simple.

By the exact sequence (21), E|S is an extension of the direct sum of
two line bundles by the line bundle OS(b). Now we replace the direct
sum by nontrivial extension G of OS(a1) by OS(a2). This is possible
since (a1 − a2)

2 = −6. Furthermore, we take a nontrivial extension E′

of G by OS(b). This is possible since (a1 − b)2 = (a2 − b)2 = −6. Since
|b−ai| = |ai−b| = ∅ for i = 1, 2 and since |a1−a2| = |a2−a1| = ∅, E′ is
simple. (The emptyness of linear systems follows easily since a1, a2 and
b are nef.) There is a family of vector bundles {Et} on S parametrized
by the affine line A

1 such that E0 � E|S and Et � E′ for every t �= 0.
By the upper semi-continuity of cohomology, E′ satisfies the same

vanishing as E|S . In particular, we have dimHom(E′,F|S) = χ(E′,F|S)
= 4. The universal property (*) in §2 applies to the pair (E′,F|S) and
V ′ := Hom(E′,F|S), and we have a morphism from S to the EPS com-
pactification T ′(� T ) of twisted cubics. The morphism is an embedding
since it is so for the pair (E|S ,F|S). The image is a complete intersec-
tion with respect to E⊕2 ⊕ F⊕2 by virtue of the cohomology vanishing
since it is so for the pair (E|S ,F|S). S is isomorphic to SM ′,N ′ for a
pair (M ′, N ′), which is a deformation of the pair (M0, N), by the claims
1–4. This K3 surface SM ′,N ′ satisfies all the requirement of the propo-
sition. Q.E.D.

Proof of Theorem 1.2. We denote the non-empty open subset of
P (see Introduction) consisting of (M,N) such that the restriction of E
and F to SM,N satisfies the requirement of Proposition 1.3 by P0. Let
(S, h) be a small deformation of (SM,N ,H|SM,N ) as polarizedK3 surface.
Then by Proposition 1.3 and the proposition below E|SM,N and F|SM,N

deforms to vector bundles E and F , with detE � detF � OS(h), on
S. Since (E,F ) is a small deformation of (E|SM,N ,F|SM,N ), it embeds
S into T and the image of S is a complete intersection with respect to
E⊕2⊕F⊕2, again by Proposition 1.3 and a similar argument in its proof.
Therefore, the image of the classification morphism

P0 → F16, (M, N̄) �→ (SM,N ,OS(1)),
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is open. Q.E.D.

Proposition 7.2. ([7, Proposition 4.1]) Let E be a simple vec-
tor bundle on a K3 surface S and (S′, L′) be a small deformation of
(S,detE). Then there is a deformation (S′, E′) of the pair (S,E) such
that detE′ � L′.

Remark 7.3. The rational map (5) factors through the birational
quotient P/PGL(4), which is of dimension 21(=20+16-15). Every gen-
eral fiber of P/PGL(4) · · · → F16 is birational to a (K3) surface. In
fact, it is the moduli space MS(3, h, 5) of semi-rigid vector bundles E
on S with Mukai vector (3, h, 5). See [8, Corollary to Theorem 2] for a
similar result in the case of genus 13.

§8. Comparison with the case of genus 12

It is worth recalling here the description of a general K3 surface
(S, h) of genus 12, that is, (h2) = 22, which is the origin of our descrip-
tion in this article.

There exist two rigid vector bundles E and F on S with Mukai vector
(3, h, 4) and (2, h, 6), respectively. The vector space V ∨ = Hom(E,F )
is of dimension 4 and the universal property (*) applies. Hence we have
a morphism from S to the EPS compactification T . The induced linear
map S2V ∨ → H0(E) is surjective and its kernel N is of dimension 3.
Hence the image of S is contained in the moduli TN of twisted cubics
apolar to the net of quadrics |N |. TN is a Fano 3-fold of genus 12 ([6,
§3]). The image of S is an anticanonical member of TN .

Theorem 1.2 concerning on K3 surfaces of genus 16 was found re-
placing two vector bundles E and F above by a semi-rigid vector bundle
([4, §3]) with Mukai vector (3, h, 5) and a rigid vector bundle with Mukai
vector (2, h, 8), respectively.
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