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Curves, K3 Surfaces and Fano 3-folds of Genus < 10

Shigeru MUKAT*

A pair (S, L) of a K3 surface S and a pseudo-ample line bundle L on S with
@ (L?) = 29 — 2 is called a (polarized) K3 surface of genus g. Over the complex
number field, the moduli space F, of those (S, L)’s is irreducible by the Torelli
type theorem for K3 surfaces [12]. If L is very ample, the image Sz, of @z
is a surface of degree 29 — 2 in P9 and called the projective model of (S, L),
[13]. If g = 3,4,5 and (S, L) is general, then the projective model is a complete
intersection of g —2 hypersurfaces in P9. This fact enables us to give an explicit
description of the birational type of F, for g <5. But the projective model is no
more complete intersection in P¢ when g >6. In this article, we shall show that
a general K3 surface of genus 6 < g < 10 is still a complete intersection in a
certain homogeneous space and apply this to the discription of birational type of
Fgq for g < 10 and the study of curves and Fano 3-folds. The homogeneous space
X is the quotient of a simply connected semi-simple complex Lie group G by a
maximal parabolic subgroup P. For the positive generator O x (1) of PicX = Z,
the natural map X — P(H%(X,0x(1)) is a G-equivariant embedding and the
image coincides with the G-orbit G- %, where v is a highest weight vector of the
irreducible representation H°(X,Ox(1))V of G. For each 6 < g < 10, G and
the representation U = H°(X, Ox(1)) are given as follows:

g 6 7 8 9 10

G | SL(5) Spin(10) SL(6) Sp(3) exceptional

ﬁ“‘\ of type G,
dim G 24 45 35 21 14

(0.1) U | A*V®  half spinor AZVE AMVE/oAVE adjoint
representation representation

dim U 10 16 15 14 14
dim X 6 10 8 6 5

where V* denotes an i-dimensional vector space and o € A%?V® is a non-
degenerate 2-vector of V.

*Partically supported by SFB 40 Theoretische Mathematik at Bonn and Educational
Projects for Japanese Mathematical Scientists.
Received April 7, 1987.
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In the case 7 < g < 10, dim U is equal tog+n—1,n=dimX. X is of
degree 2¢g — 2 in P(U) = P9*+"~2 and the anticanonical (or 1st Chern) class
of X is n — 2 times hyperplane section (cf. (1.5)). Hence a smooth complete
intersection of X = X,, 5 and n — 2 hyperplanes is a K3 surface of genus 9.
(This has been known classically in the case g = 8 and is first observed by C.
Borcea (1] in the case g = 10.)

Theorem 0.2. If two K3 surfaces S and S' are intersections of Xag_p (7 <
9 < 10) and g-dimensional linear subspaces P and P’ » Tespectively, and if S C P
and §' C P’ are projectively equivalent, then P and P' are equivalent under the
action of G on P(U), where G is the quotient of G by its center.

By the theorem there exists a nonempty open subset & of the Grassmann
variety G(n - 2,U) of n — 2 dimensional subspaces of I/ such that the natural
morphism Z/G — Fg is injective. For each 7 < g < 10, it is easily checked that
dim Z/G = 19 = dim F,. Hence the morphism is birational.

Corollary 0.3. The generic K3 surface of genus 7 < g < 10 is a complete
intersection of Xpq_; C P(U) and a g-dimensional linear subspace in o unique
way up to the action G on P(U). In particular, the moduli space F, is bira-
tionally equivalent to the orbit space G(n — 2,U)/G.

In the case g = 6, the generic K3 surface is a complete intersection of X,
a linear subspace of dimension 6 and a quadratic hypersurface in P(U) = PO.
We have a similar result on the uniqueness of this expression of the K3 surface
(see (4.1)). In the proof of these results, special vector bundles, instead of line
bundles in the case g < 5, play an essential role. For instance, the generic K3
surface (5, L) of genus 10 has a unique (up to isomorphism) stable rank two
vector bundle with ¢;(E) = ¢;(L) and c;(E) = 6 on it and the embedding of S
into X = G/P is uniquely determined by this vector bundle E.

The following is the table of the birational type of Fq for g < 10:

(0.4)

genus | 2 3 4
birational type | P(S°U°)/PGL(3) P(S*U%)/PGL(4) P(U°)/S0O(5)

5 6 7
G(3,5*U%)/PGL(6) (UB o U")/PGL(2) G(8,U™%)/PS0O(10)

8 9 10
G(6, A*V®)/PGL(6) G(4,U™)/PSp(3) G(3,9)/G:
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where U¢ is a d-dimensional irreducible representation of the universal covering
group.

Corollary 0.5. F, is unirational for every g < 10.

By [5], there exists a Fano 3-fold V with the property PicV = Z(—Ky) and
(—=Kv)® = 22. The moduli space of these Fano 3-folds are unirational by their
description in [5]. The generic K3 surface of genus 12 is an anticanonical divisor
of V and hence F;; is also unirational.

Problem 0.6. Describe the birational types, e.g., the Kodaira dimensions, of
the 19-dimensional varieties Fg for g > 0. Are they of general type?

If (S,L) is a K3 surface of genus g, then every smooth member of |L| is a
curve of genus g. Conversely if C is a smooth curve of genus ¢ > 2 on a K3
surface, then Og(C) is pseudo-ample and (S, Og(C)) is a K3 surface of the same
genus as C. In the case ¢ < 9, the generic curve lies on a K3 surface, that is ,
the natural rational map

$g: Py = U |L| === M, = (the moduli space of curves of genus g)
(S,L)EF,

is generically surjective (§6). The inequality dim Mg < dim P, = 19 + g holds
if and only if ¢ < 11 and ¥y, is generically surjective ([10]). But in spite of
dim M, = 27 < dim Py = 29, we have

Theorem 0.7. The generic curve of genus 10 cannot lie on a K3 surface.

Proof. Let F, (resp. M) be the subset of Fyo (resp. M) consisting of
K3 surfaces (resp. curves) of genus 10 obtained as a complete intersection in
the homogeneous space X§; C P(g). M}, has a dominant morphism from a
Zariski open subset U of G(4, g)/G. Since the automorphism of a curve of genus
> 2 is finite, the stabilizer group is finite for every 4-dimensional subspace of g
which gives a smooth curve of genus 10. Hence we have dim M;, < dimU =
dim G(4, g) — dim G = 26 < dim M;4. On the other hand F{, contains a dense
open subset of 19 by Theorem 0.2. Hence the image of 9, is contained in the
closure of Mj, = 1P10(F'10) and 3y is not generically surjective. g.ed.

Remark 0.8. Every curve of genus 10 has g},, a 4-dimensional linear system of
degree 12. If C is a general linear section of the homogeneous space X33 C P13,
then every g}, of C embeds C into a quadric hypersurface in P4. But if C is
the generic curve of genus 10, then the image Cy2 C P* embedded by any g%, is
not contained in any quadratic hypersurface. This fact gives an alternate proof
of the theorem.
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In the case 7 < g < 10, a Fano 3-fold Vo, C P9t! is obtained as a
complete intersection of the homogeneous space X7g—2 and a linear subspace
of codimension n — 3 in P(U) = P"+9-2. By the Lefschetz theorem, the Fano
3-fold V = V3,_; has the property PicV & Z(—Ky). The existence of such V
has been known classically but was shown by totally different construction ([6]).
Theorem 0.2 holds for Fano 3-folds, too.

Theorem 0.9. Let V35_; and Vy,_, (7 < g < 10) be two Fano 3-folds which
are complete intersections of the homogeneous space X5, _, C P"+9=% and linear
subspaces of codimension n—3. If Vag_ and V3,_, are isomorphic to each other,
then they are equivalent under the action of G.

We note that, by (1], the families of Fano 3-folds in the theorem is locally
complete in the sense of [7].

The original version of this article was written during the author’s stay at
the Max-Planck Institiit fiir Mathematik in Bonn 1982 and at the Mathematics
Institute in University of Warwick 1982-3. He expresses his hearty thanks to
both institutions for their hospitality. He also thanks Mrs. Kozaki for nice
typing into IATRX.

Conventions. Varieties and vector spaces are considered over the complex
number field C. For a vector space or a vector bundle E, its dual is denoted by
EV. For a vector space V, G(r,V) (resp. G(V,r)) is the Grassmann variety of
r-dimensional subspaces (resp. quotient spaces) of V. G(1,V) and G(V,1) are
denoted by P.(V) and P(V), respectively.

§1. Preliminary

We study some properties of the Cayley algebra C over C. C is an algebra
over C with a unit 1 and generated by 7 elements e;, i € Z/7Z. The multipli-
cation is given by

(L1) e;® = —1and €;¢i1qa = —€i1a6 = €it3a
’ for every i € Z/7Z and a = 1,2, 4.

The algebra C is not associative but alternative, i.e., z(zy) = z?y and
(zy)y = zy® hold for every z,y € C. Let Cy be the 7-dimensional subspace of C
generated by e;,i € Z/7Z and U the subspace of Cy spanned by a = e3 + /—1es
and B = eg — v/—1ley. It is easily checked that a® = 8% = af = fa = 0,i.e., U
is totally isotropic with respect to the multiplication of C. Moreover, U is max-
imally totally isotropic with respect to the multiplication of C, i.e., if zU = 0 or
Uz =0, then z belongs to U. Let ¢ be the quadratic form ¢(z) = z2 on Cy and
b the associated symmetric bilinear form. b(z, y) is equal to zy + yx for every =
and y € Cp. Let V be the subspace of Cy of vectors orthogonal to U with respect
to g (or b). Since U is totally isotropic with respect to g, V contains U and the
quotient V/U carries the quadratic form §.

,ﬂa’
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Lemma 1.2. z'(zy) = b(z,y)z’ — b(z’, y)z + y(z'z) for every z,z' and y € Co.

Proof. By the alternativity of C, we have u(vw) + v(uw) = (uv + vu)w.
Hence, if © and v belongs to Cq, then we have u{vw) + v(uw) = b(u, v)w. So we
have

' (b(z,y) — yz) = b(z,y)z’ — 2'(yx)
b(z,y)z’ — (b(z',y)z — y(z'z))
b(z,y)z’ - b(z', y)z + y(z'z).

z'(zy)

g.e.d.

Ifz € U and y € V, then U(zy) = 0 by the above lemma and hence zy
belongs to U. Hence the right multiplication homomorphism R(y), ¢ — zy, by
y € V maps U into itself. Since R(z) is zero on U if and only if z € U, R gives
an injective homomorphism R : V/U — End(U).

Proposition 1.3. (1) R(z)? = q(z)-id for every z € V/U, and

(2) R is an isomorphism onto sl(U), the vector space consisting of trace zero
endomorphisms of U.

Proof. (1) follows immediately from the alternativity of C. It is easy to
check the following fact: if r is an endomorphism of a 2-dimensional vector
space and if 2 is a constant multiplication, then either r itself is a constant
multiplication or the trace of r is equal to zero. Hence by (1), R(Z) is a con-
stant multiplication or belongs to si(U), for every Z € V/U. Therefore, R(V/U)
is contained in the 1-dimensional vector space consisting of constant multipli-
cations of U or contained in the 3-dimensional vector space si(U). Since the
quadratic form ¢ is nondegenerate on V/U, the former is impossible and R(V/U)
coincides with sl(U). g.ed.

Let G be the automorphism group of the Cayley algebra C. It is known that
G is a simple algebraic group of type G;. The automorphisms which map U
onto itself form a maximal parabolic subgroup P of G. The subspace spanned
by e, ez and e4 (resp. by e3 — v/—1e; and eg + +/—1 e7) can be identified with
sl(U) (resp. UV) by R (resp. b). C is isomorphic to C® U & sl(U) ® UV and if
f € GL(U), then 1® fdad(f)® *f is an automorphism of the Cayley algebra C.
Hence the maximal parabolic subgroup P contains GL(U) and X = G/P can
be identified with the set of 2-dimensional subspaces of Cy which are equivalent
to U under the action of G = AutC.

Let U be the maximally totally isotropic universal subbundle of Cp @ Ox:
the fibre U, C Cy at z is the 2-dimensional subspace corresponding to z € X.
Let V be the subsheaf of Cyp ® O x consisting of the germs of sections which are
orthogonal to &/ with respect to the bilinear form 5®1 on Cy ® Ox. V is a rank
5 subbundle of Cy ® Ox and contains &/ as a subbundle. The quotient bundle
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(Co ® Ox)/V is isomorphic to «¥ by b® 1 and V/U has a quadratic form g ® 1
induced by ¢ ® 1 on Cy ® Ox. By Proposition 1.3, we have

Proposition 1.4. The right multiplication induces an isomorphism R from
V/U onto the vector bundle sl(U) of trace zero endomorphisms of U and R(z)?
is equal to (¢ ® 1)(z) - id for every Z € V/U.

Next we shall compute the anticanonical class of X and the degree of Ox(1),
the ample generator of PicX, and show some vanishings of the cohomology
groups of homogeneous vector bundles U(i) and (S%)(i) etc.

Let G be a simply connected semi-simple algebraic group and P a maximal
parabolic subgroup of G. Fixing a Borel subgroup B in P, the Lie algebra g of
G is the direct sum of b and 1-dimensional eigenspaces g°, where 3 runs over all
negative roots. If we choose a suitable root basis A, then there exists a positive
root a € A such that p is equal to the direct sum of @ g” and b, where v runs
over all positive roots which are linear combinations of the roots in A \ {a}
with nonnegative coefficients. A positive root 3 is said to be complementary if
g8 N p = 0 or equivalently if B cannot be expressed as a linear combination of
the roots in A \ {a} with nonnegative coefficients.

Proposition 1.5. (Borel-Hirzebruch [2]) Let G, P, A and «a be as above and
L the positive generator of Pic(G/P). Then we have

(1) the quotient g/p is isomorphic to Dpsers gP, where Rp is the set of pos-
ttive complementary roots. In particular, dim(G/P) is equal to the cardi-
nality n of Rp,

(2) (L*) = n![Iper, %7,’—,:’%, where w is the fundamental weight corresponding
to a (or L) and p is a half of the sum of all positive roots, and

(3) the sum of allB € Rp isr times p for some positive integer r and c;(G/P)
(or the anticanonical class of G/P) is equal to r times ¢;(L).

/%‘

A homogeneous vector bundle on G/P is obtained from a representation of

P and hence from that of reductive part Gy of P. Note that the weight spaces
of G and Gy are naturally identified.

Theorem 1.6. (Bott [3]) Let E be a homogeneous vector bundle over G/P
induced by an irreducible representation of the reductive part of P. Let v be the
highest weight of the representation and p a half of the sum of all positive roots
of G. Then we have

(1) if (v+p,B) =0 for a positive root 3, then H'(G/P, E) vanishes for every
i, and

(2) let iy be the number of positive roots f with (y + p,B) negative (i is
called the indez of E). Then H*'(G/P,E) = 0 for alli except for iy and
H(G/P,E) is an irreducible G-module.
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Returning to our first situation, our variety X is the quotient of the excep-
tional Lie group G of type Gz by a maximal parabolic subgroup P. The root
system G has two root basis a; and a with different lengths and the root a
corresponding to P in the above manner is the longer one, say az. The line bun-
dle L = Ox(1) and the vector bundle V(1) on X come from the representation
with the highest weights w; = 3a; +2a; and wp = 2 + a3, respectively, which
are the fundamental weights of G. Since U is of rank 2 and A?U = Ox (1), UY
is isomorphic to 2(1). p is equal to w; + w; and the inner products of p, w;, w;
and the 6 positive roots are as follows:

|a1 3ay +az 2a; +az 3a; +2a; ai+a2 [2

P | 1 6 5 9 ) 3
wy | 0 3 3 6 3 3
wy | 1 3 2 3 1 0

By (1.5), X has dimension 5, ¢;(X) = 3¢;(L) and has degree

3-3-6-3-3

6-5-9-4-3_18

(L% =5t

in P**. The homogeneous vector bundles (S™U)(n) comes from the irreducible
representation with the highest weight mw, + (n — m)w,;. Applying (1.6), we
have

Proposition 1.7. The cohomology groups of U(n),(S*U)(n) and (S3U)(n) are
zero ezcept for the following cases:

(1) H(X,U(n)) for n > 1, H*(X, (S*U)(n)) for n > 2 and H(X, (S*U)(n))
forn >3,

(2) H(X,(S*U)(1)) and HA(X, (S*U)(~1)), and
(3) H3(X,U(n)), H3(X,(S*U)(n)) and H3(X,(S*U)(n)) for n < -3.

Let S be a smooth K3 surface which is a complete intersection of 3 members
of |Ox(1)|. By using the Koszul complex

(1.8) 0 — Ox(-3) — 0x(-2)®® — 0x(-1)®* — O0x — 05 — 0,
we have

Lemma 1.9. If E is a vector bundle on X and if Hti(X,E(—j)) = 0 for
every 0 < j <3, then HY(S,E|s) = 0.

Since U is of rank 2, sl(/) is isomorphic to S*U ® (det U)~! == (S?1/)(1). By
Proposition 1.7 and Lemma 1.9, we have
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Proposition 1.10. Let S be as above. Then H'(S, sl(U)|s) vanishes for every
i, H'(S, (slU)(n)|s) vanishes for every n and U|g or (S3U)(1)|s has no nonzero
global sections.

§2. Proof of Theorem 0.2 in the case ¢ = 10

Let A be a 3-dimensional subspace of H°(X, L) and S4 the intersection of
X = X4 and the linear subspace P(H(X, L)/A) of P(H°(X, L)). Let L, and
Ua be the restrictions of L and U to S 4, respectively. Let = be the subset of the
Grassmann variety G(3, H(X, L)) consisting of A’s such that S, are smooth
K3 surfaces and that the vector bundles U4 are stable with respect to the ample
line bundles L 4.

Proposition 2.1. = is a nonempty open subset of G(3, HO(X, L)).
Proof. U, is a rank 2 bundle and det U = L'. By Moishezon’s theorem
[9], Pic S4 is generated by L4 if A is general. Since H %(S4,U4) = 0 by Propo-

sition 1.10, U4 is stable if A is general. Since the stableness is an open condition
[8], we have our proposition. g.ed.

In this section we shall prove the following:

(2.2) If two 3-dimensional subspaces A and B belong to ZE and if the polarized
K3 surfaces (Sa, La) and (Sp, Lg) are isomorphic to each other, then S, and
Sg, and hence A and B, are equivalent under the action of G.

Let ¢ : S4 — Sp be an isomorphism such that ¢*Lg = L 4.
Step 1. There is an isomorphism 8 : Uy — ¢*Usg.

Proof. Since ¢;(Us) = —¢1(L4) and ¢;(Ug) = —c1(Lp), the first Chern
classes of Us and ¢*Up are same. Since (Sp,Up) is a deformation of (54,U4),
Up and U4 have the same second Chern number. Hence the two vector bundles
Homos(Ua,9*Up) and Endog(Ua) have the same first Chern class and the
same second Chern number. Therefore, by the Riemann-Roch theorem and
Proposition 1.10, we have

X(HomOs (UA’ ‘P‘ UB))

x(Endos(Ua))
x(0s,) + x(sl(Ua)) = 2.

By the Serre duality, we have
dim Homos(UA, (p'UB) + dim Homos(w‘UB, UA)
2 x(Homog(Ua, ¢*Up)) = 2.
Hence there is a nonzero homomorphism from U4 to @*Up or vice versa. Since

U, and ¢*Up are stable vector bundles and have the same slope, the nonzero
homomorphism is an isomorphism. q.ed.
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Step II. There is an isomorphism v : C; — Cp (as C-vector spaces) such
that the following diagram is commutative:
Ua £, p*'Up
n N

Co®0s, 8 Co®0s, =¢*(Co ®Osp)

Proof. Let vy be the dual map of
Hom(ﬁ,OsA) : Homos((p*UB,OsA) — Homos(UA,OSA).

Claim: The inclusion Uy C Cy ® Og, induces an isomorphism Hom(Cg, C) —
Homos(UA, Os,)-

Let K be the dual of the quotient bundle (Co ® Ox)/U on X. The natural
map from Hom(Cy, C) to Home, (U, Ox) is an isomorphism because both are
irreducible G-modules. Hence both H°(X,X) and H!(X,K) are zero. By the
exact sequence

0 —>K—C ®0x —-UY —0

and Proposition 1.7, we have H(X,K(—i)) = H*Y(X,K(—i)) = 0 for i = 1,2
and 3. Hence by Lemma 1.9, both H°(S,X|s) and H'(S,K|s) are zero and we
have our claim.

By the claim and by applying the claim to ¢*Up C ¢*(Cy ® Os, ), we have
a homomorphism 7 : Cp — Cp such that the following diagram

AN

Co cl)
L L
Homos(UA,OsA)v 2o, Homos((p'UB,OsA)V

is commutative. Since 3 is an isomorphism, vy and v are isomorphisms and «
enjoys our requirement. g.e.d.

Step IIL. There is an isomorphism « : Cp — Cq (as C-vector spaces) such
that (y ® 1)(Ua) = ¢*Up C Cp ® Ox and z? = y(z)? for every z € Cp.

Proof. Take an isomorphism - which satisfies the requirement of Step II.
Put g(z) = z? and ¢'(z) = 7(z)?. Then ¢ and ¢' are quadratic forms on Gy
and both ¢ ® 1 and ¢’ ® 1 are identically zero on Us. Hence replacing v by
some multiple by a nonzero constant if necessary, we have our assertion by the
following:

Claim: The quadratic forms Q on Cy such that (Q ® 1)|y, = 0 form at most
one dimensional vector space.
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Let A be the kernel of the homomorphism S%a : S2Cp ® Ox — S2UV.
Since S2Cg is a sum of two irreducible G-modules of dimension 1 and 27 and
since H%(S%a) is a homomorphism of G-modules, we have dim H(X,N) =
dim KerH°(S%a) = 1. By the exact sequence

H™Y(X, S*UY(-n)) — HY(X,N(-n)) — H'(X,5%C, ® Ox(—n))

and Proposition 1.7, H(X,N(~i)) is zero for every i = 1,2 and 3. Hence by
the Koszul complex (1.8), the restriction map HY(X,N) — HO(S,N|s) is
surjective and we have dim H°(S,N|s) < dim H%(X,N) = 1, which shows our
claim. q.ed.

Step IV. There is an isomorphism + : C; — Cp such that (y ® 1)(U,) =

©*Up,z? = 4(z)? for every z € Co and (v ® 1)(zy) = ((v ® 1)(z))((7 ® 1)(¥))
for every z € U4 and y € V.

Proof. Take an isomorphism 4 which satisfies the requirements of Step III.
Then v ® 1 maps V4 onto ¢*Vp C Cy ® Ox and induces an isomorphism T :
Va/Us — ¢*(Vs/Usg) which is compatible with the quadratic forms on V4 /U4
and Vp/Up. Let 74 : Va/Us — sl(Ua) be the restriction of R : V/U — sl(U)
to S4. Consider the following diagram:

Va/Ua REN sl(Ua)
r| leaven)

©*(Ve/Us) =3 *si(Us)

The vector bundles sl(U4) and si(Up) have the quadratic forms f — (trf?)/2
and all the homomorphisms in the above diagram are isomorphisms compatible
with the quadratic forms by Proposition 1.4. If g is an automorphism of si(U,)
and preserves the quadratic form, then g or —g comes from an automorphism
of U because H!(S,Z/2Z) = 0. Since every endomorphism of U, is a constant
multiplication, g is equal to +id. Therefore, the above diagram is commutative
up to sign. Hence, for v or —v, the above diagram is commutative. Since
zy = ra(§)(z) for every = € U, and y € Vy, v or — satisfies our requirements,
where § € V4/U4 is the image of y € V4. q.ed.

We shall show that, for the isomorphism v in Step IV, ¥ = 1@ : C; — C°®
satisfies ¥(zy) = 5(z)¥(y) for every z,y € Cp. If z,y € Cy, then zy + yz is equal
to b(z,y), where b(z,y) is the inner product associated to the quadratic form gq.
Hence the real part of zy is equal to b(z, y)/2, that is, zy—b(z,y)/2 belongs to C,.
Since v preserves the quadratic form ¢, 5(z,y) and §(z)%(y) have the same real
part, that is, their difference belongs to Cp. Put §(z,y) = §(z, y) — ¥(z)¥(y)for
every ¢,y € Cp. §: Co ® Cp — Cp is skew-symmetric and § ® 1 is identically
zeroon Up @V CCQCy ® OSA-

Step V. § ® 1 is identically zero on V4 @ V4 C Cy ® Cp @ Og, .
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Proof. Since § ®1 is skew-symmetric and identically zero on U4 ® V4, §®1
induces a skew-symmetric form § on V,/U,s. Since V,4/U, is isomorphic to
sl(Ua), A*(Va/U4)V is also isomorphic to sl(Us) and has no nonzero global
sections. Hence & is zero and § ® 1 is identically zero on V ® V. g.ed.

Step V1. Every homomorphism f from V4 to U, is zero.

Proof. Since V4 /U, is isomorphic to si(U,), there are no nonzero homo-
morphisms from V4 /U4 to Og, . Hence V4 /U4 cannot be a subsheaf of Co®0s, .
Therefore, the exact sequence 0 — Uyq — V4 — V4/Uq — 0 does not
split. Hence the restriction f|y, : Us — Uy of f to U, is not an isomorphism.
Since every endomorphism of U, is a constant multiplication, f|y, is zero and
f induces a homomorphism f : V4/Us — Uys. Since Va4/Ua = sl(Ua), we
have

HOmoS(VA/UA,UA) = HO(SA,SI(UA)®UA)
= HO(SA,UA@(SSUA)®LA).
Hence by Proposition 1.10, f is zero and f is also zero. g.ed.

Step VII. 6 is zero.

Proof. Let T be the cokernel of the natural injection A2V — A2C, ®
Os,. Since § ® 1 belongs to Home,(T',Cp ® Op, ), it suffices to show that
Homgp, (T, Og,) is zero. There is an exact sequence

2
0——>VA®EA——>T‘—>/\EA———)0,

where E4 is the quotient bundle (Cy ® Os,)/Va and isomorphic to UY by the
bilinear form b associated to g. By Step VI, we have Homp,(Va ® B4, Os,) &
Home,(V4,U4s) = 0. Since A2E, is an ample line bundle, Homp,(A2E4, Os,)
is zero. Therefore, by the above exact sequence, Homeg (T, Og, ) is zero. q.e.d.

By Step VII, 1@+ is an automorphism of the Cayley algebra C. The auto-
morphism of X3 = G/P induced by 1 & ¥ maps S4 onto Sp. Hence we have
(2.2) and, in particular, Theorem 0.2.

§3. Generic K3 surfaces of genus 7,8, and 9

The proof of Theorem 0.2 in the case ¢ = 7,8, and 9 is very similar to
and rather easier than the case ¢ = 10 dealt in the previous sections. The
(24 — 2g)-dimensional homogeneous spaces X = X3,_3 C P29 (g = 7,8 and
9) are also generalized Grassmann variety as in the case g = 10. In the case
g =8, X4 C P is the Grassmann variety G(V,2) of 2-dimensional quotient
spaces of a 6-dimensional vector space V embedded into P(A2V) by the Pliicker
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coordinates. In the case ¢ = 9, X C P is the Grassmann variety of 3-
dimensional totally isotropic quotient spaces of a 6-dimensional vector space
V with a nondegenerate skew-symmetric tensor ¢ € A2V, where a quotient
f:V — V'is totally isotropic with respect to o if (f ® f)(0o) is zero in V/ @ V'.
The embedding X;5 C P!3 is the linear hull of the composite of the natural
embedding X C G(V,3) and the Pliicker embedding G(V,3) Cc P(A*V). In
the case ¢ = 7, X C P!® is a 10-dimensional spinor variety. Let V be a 10-
dimensional vector space with a non-degenerate second symmetric tensor. The
subset of G(V,5) consisting of 5-dimensional totally isotropic quotient spaces
of V has exactly two connected components, one of which is our spinor variety
X. The pull-back of the tautological line bundle Op(1) by the composite X —
G(V,5) — P(A®V) is twice the positive generator L of Pic X and the vector
space H%(X, L) is a half spinor representation of Spin(V'), the universal covering
groups of SO(V). In each case, X is a compact hermitian symmetric space and
the anticanonical class of X is equal to dim X — 2 times the positive generator L
of Pic X (Proposition 1.5 and [2] §16). Moreover, by Proposition 1.5 and an easy
computation, we have that the embedded variety X — P(H°(X, L)) has degree
2g — 2. Hence every smooth complete intersection of X and a linear subspace
of codimension n — 2 (resp. n — 3, n — 1) is the projective (resp. canonical,
anticanonical) model of a K3 surface (resp. curve, Fano 3-fold) of genus g.

Each homogeneous space X = Xj,_; has a natural homogeneous vector
bundle £ on it. In the case g = 8, we have the exact sequence

(3.1) 0 —F > Ve0x-5E—0,

where £ (resp. F) is the universal quotient (resp. sub-) bundle and is of rank 2
(resp. 4). In the case g = 7 (resp. 9), we have the exact sequence

(3-2) 0— &Y - VROx & —0,

where £ is the universal maximally totally isotropic quotient bundle with respect
tooc®1 €V @V ®Ox and is of rank 5 (resp. 3).

Theorem 0.2 is a consequence of the openness of the stability condition and
the following:

Theorem 3.3. Let S and S' be two K3 surfaces which are complete intersec-
tions of Xag—2 C P2279 (g = 7,8 and 9) and linear subspaces R and R', respec-
tively. Then we have

(1) i#f R is general, then the vector bundle £|s is stable with repsect to Og(1),
the restriction of L = Ox(1) to S, and

(2) if €|s and E|s are stable with respect to Og(1) and Og (1) end if SC R
and S' C R' are projectively equivalent, then R and R' are equivalent
under the action of G on X.

For the proof we need the following property of the vector bundle E = £|s.
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Proposition 3.4. Let S be a complete intersection of X = Xa4_2 C P22-9 gnd
a g-dimensional linear subspace and E the restriction of £ to S. Then we have

(1) Hi(S,sl(E)) =0 for every i,

(2) the homomorphism H(a): V — H(S, E) is an isomorphism,

(3) in the case g = 7 (resp. 9), the kernel of the homomorphism H®(S%a) :
S’V — HY(S,S’E) (resp. H'(A%a) : A’V — HO(S,A’E)) is 1-
dimensional and generated by o ® 1, and

(4) in the case g = T (resp. 8, resp. 9), BE(—1),(A’E)(=1), (A*E)(-2) or
(A*E)(—2) (resp. E(—1), resp. E(—1) or (A’E)(—1)) kas no nonzero
global sections.

We prove the proposition in the case g = 7. The other cases are similar.
According to [4], we take a; = e; —e;41, 1 i< 4,and a5 = e, +e5 as a
root basis of SO(10). The positive roots are e; 3 e;,7 < j and the conjugacy
class of the maximal parabolic subgroup P corresponds to a; (or as). The
homogeneous vector bundles Ox(1), A*€, sl(€) and S are induced by the ir-
reducible representations of the reductive part of P with the highest weights
%(el +-:-4e5), 1+ +e;, €1 — es and 2e,, respectively. The half p of the
sum of positive roots is equal to 4e; + 3ex + 2e3 + e4. Applying Bott’s theorem,
we have

Lemma 3.5. (g = 7) The cohomology groups of £(n),(A2E)(n), (sl £)(n) and
(S2&)(n) vanish except for the following cases:

(1) HY(X,&(n)), HY(X, (A2E)(n)), H® (X, (§%£)(n)) for n >0 and
HY(X,(slE)(n)) for n>1,

(2) HQ(X) (/\28)(—'8)): and

(3) H(X, &(n)), HY(X, (sl E)(n)) for n < —9 and H?O(X, (A2E)(m)),
HY(X,(S%6)(m)) for m < -10.

Remark 3.6. In the above case g = 7, the 10 roots e; +¢;, 1 <i < § <5, are
complementary to P. Their sum is equal to 4(e; + - -+ + e5) and this is 8 times
the fundamental weight w. By Proposition 1.5, the self intersection number of
Ox(1) is equal to

! I %%;’—;:10! II G+ =12

BERp 0<i<i<a

Hence X is a 10-dimensional variety of degree 12 in P!3 and the anticanonical
class is 8 times the hyperplane section.

Proof of Proposition 3.4 (in the case g = 7): S is a complete intersection of
8 members of |Ox(1)|. Hence, if Ais a vector bundle on X and H***(X, A(—a))
vanishes for every 0 < a < 8, then so does H*(S, A|s).
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(1 and 4) (1) and the vanishings of H%(S, E(~1)) and H(S, (A2E)(-1))
follow immediately from Lemma 3.5. Since A®£ is isomorphic to @x(2), A*€ is
isomorphic to (A*~*£)V @ Ox(2). Hence by the Serre duality and Lemma 3.5,
we have

HY(X, (A*€)(~2 ~ 1)) HO7(X, (A€)Y(2+i - 8))

HY( X, (A2E)(i -8))V =0

R iR

and

Hi(X,(A*E)(-2-14)) HY (X, (M) (2 +i—8))V

HY(X,£(i — 8)))Y =0,

R IR

for every 0 < ¢ < 8. Therefore, (A*E)(—2) or (A*E)(—2) has no nonzero global
sections.

(2) By the Serre duality, H(X, EV(—i)) and H**!(X, EV(~i)) are isomor-
phic to H1%~i(X, £(i — 8))" and H®~*(X, £(i — 8))", respectively and both are
zero for every 0 < i < 8, by Lemma 3.5. Hence both H%(S, EV) and H'(S, EV)
vanish. Therefore, by the exact sequence (3.2), we have (2).

(3) Let X be the kernel of the homomorphism S%a : S?V @ Ox — S2£. We
have the exact sequence

0 —K— S’Ve0Ox — S26 — 0.

The G-module S?V is isomorphic to the direct sum of an irreducible G-module
of dimension 54 and a trivial G-module generated by 0. Hence the G-module
H%(X,K) = Ker H%(S%a) is 1-dimensional and generated by ¢. By Lemma 3.5
and the Kodaira vanishing theorem, H'=}(X, (S2€)(—{)) and H*(X,Ox(-1))
are zero. Hence by the above exact sequence, H'(X, K(—i)) vanishes for every
1 £ i £ 8. By using the Koszul complex, we have that the restriction map
H°(X,K) — H°(S,K]|s) is surjective. Therefore, the kernel of H°(S%a|s) is at
most 1-dimensional. It is clear that the kernel contains ¢ ® 1. Hence we have
(3). g.ed.

Proof of Theorem 3.3: Let S (resp. S') be a K3 surface which is a complete
intersection of X and a linear subspace P (resp. P’) and E (resp. E') the
restriction of £ to S (resp. S'). If P is general, then Pic S is generated by
Os(1) and, by (4) of Proposition 3.4, F is stable. Hence we have i). Assume
that S and S’ are isomorphic to each other as polarized surfaces and that E
and E’ are stable. By (1) of Proposition 3.4 and the same argument as Step
Iin §2, E and E’' are isomorphic to each other. By (2) of Proposition 3.4, we
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have an isomorphism 3 : V — V' and a commutative diagram

als

VeOs — E — 0
B®1 |1 IE

Vvieos s B —,

Hence, in the case g = 8, § and S’ are equivalent under the action of GL(V). In
the case g = 7 or 9, by (3) of Proposition 3.4, 5?3 maps o to ac for a nonzero
constant a. Hence, replacing 3 by a'/?83, we may assume that $?3 preserves o.
Hence S and §' are equivalent under the action of SO(V, ¢) or Sp(V, o). q.e.d.

§4. Generic K3 surface of genus 6

A K3 surface of genus 6 is obtained as a complete intersection in the
Grassmann variety G(2, V?) of 2-dimensional subspaces in a fixed 5-dimensional
vector space V3. G(2,V®) is embedded into P? by Pliicker coordinates and
has degree 5. A smooth complete intersection X5 C P® of G(2,V?) and 3
hyperplanes in P? is a Fano 3-fold of index 2 and degree 5. A smooth complete
intersection X; and a quadratic hypersurface in P® is an anticanonical divisor
of X5 and is a K3 surface of genus 6. The isomorphism class of X5 does not
depend on the choice of 3 hyperplanes and X5 has an action of PGL(2) (see
below).

Theorem 4.1. Let S and S’ be two general smooth complete intersections of
X5 and a quadratic hypersurface in P8. If S C P® and S’ C P® are projectively
equivalent, then they are equivalent under the action of PGL(2) on Xj.

All the Fano 3-folds of index 2 and degree 5 are unique up to isomorphism
[5]. There are several ways to describe the Fano 3-folds. The following is most
convenient for our purpose: Let V be a 2-dimensional vector space and f € S8V
an invariant polynomial of an octahedral subgroup of PGL(V). f is equal to
zy(z* — y*) for a suitable choice of a basis {z,y} of V. Then the closure X; of
the orbit PGL(V)-f in P.(5°V) := (S°V — {0})/C"* is a Fano 3-fold of index
2 and degree 5, [11]. H°(X;,Ox(2)) is generated by H°(X;s, Ox(1)) = S°V,
(5], and has dimension 1(—Kx)® + 3 = 23. Hence the kernel A of the natural
map S?H°(X,0x(1)) — H°(X,0x(2)) is a 5-dimensional SL(V )-invariant
subspace. As an SL(V)-module, S?H%(X, Ox(1)) is isomorphic to S?(S%V) =
S12V @ S8V @ SV @ 1. Hence we have

Proposition 4.2. (1) H(X;,0x(—Kx)) is isomorphic to S12V & S8V @ 1
as SL(V')-module, and

(2) the vector space A of quadratic forms which vanish on X5 C P® is iso-
morphic to S*V as SL(V)-module.
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There is a non-empty open subset = of | — Kx| and a natural morphism
Z/PGL(V) — Fg. Both the target and the source are of dimension 19 and the
morphism is birational by the theorem. Hence by the proposition we have

Corollary 4.3. The generic K3 surface of genus 6 can be embedded into X5
as an anticanonicel divisor in a unique way up to the action of PGL(V). In
particular, the moduli space Fg is birationally equivalent to the orbit space
(S*2V @ S8V)/PGL(V).

First we need to show that PGL(V) is the full automorphism group of Xj :

Proposition 4.4. The automorphism group Aut X5 of X5 is connected and
the natural homomorphism PGL(V) — Aut X5 is an isomorphism.

Proof. There is a 2-dimensional family of lines on X5 C P% and a 1-
dimensional subfamily of lines £ of special type, i.e., lines such that Ny x =
O(1) ® O(-1). The union of all lines of special type is a surface and has singu-
larities along a rational curve C. C is the image of the 6-th Veronese embedding
of P(V) = P! into P(S®V). C is invariant under the action of Aut X;. Ev-
ery automorphism of X; induces an automorphism of C. Hence we have the
homomorphism a : Aut X5 — Aut C = PGL(V). Since a|pgr(v) is an isomor-
phism, Aut X is isomorphic to PGL(V) x Ker a. Let g be an automorphism of
Xs which commutes with every element of SL(V'). Since SV is an irreducible
SL(V)-module, g is the identity by Schur’s lemma. g.ed.

Next we construct an equivariant embedding of X; into the Grassmann
variety G(2,5%V). Let W be the 2-dimensional subspace of S*V generated
by z* + y* and z?y? for some basis {z,y} of V and Y the closure of the orbit
PGL(V)-[W]in G(2,5*V). Consider the morphism J : G(2, §*V) — P,(S°%V)
for which

J([cg+0h])=det(g’; g‘; )

where {X,Y} is the dual basis of {z,y}. Then J is a PGL(V)-equivariant
morphism and sends [W] to the point f,f = zy(z* — y*). Hence J maps
Y onto X5 C P.(S®V). Define two GL(V)-homomorphisms ¢ : A2S*V —
S?V @ (det V) and j : A2S*V — S°V @ detV by

@(gAh)= > ijk(D;D;Dig)(D_;D_;D_th) ® (X AY)™?
i,5,k==%1

and

jlgAh) =det( gi% gjggg )@(X/\Y)“l,



K3 Surfaces and Fano 3-folds 373

where Dy, are the derivations by X and Y. The GL(V)-module A?S*V is
decomposed into the direct sum of irreducible GL(V)-submodules Kery and
Kerj. Since p(A?W) = 0, the Pliicker coordinates of W lies in the linear
subspace P = P.(Keryp) of P,(A2S*V) and Y is contained in the intersection
G(2,5*V) N P. The morphism J is the composite of the Pliicker embedding
G(2,54V) C P.(A2S4V) and the projection P,(j) : P.(A2$%V) .. — P,(S°V)
from the linear subspace P,(Kerj). Since the restriction of P.(j) to P is an
isomorphism, J gives a PGL(V)-equivariant isomorphism from the projective
variety Y C P onto X5 C P.(S%V).

Lemma 4.5. Y coincides with the intersection of G(2,5*V) and P in
P.(A25%V).

Proof. Let Y' be the intersection of G(2,5*V) and P and B (resp. B’)
the vector space consisting of quadratic forms on P which vanish on Y (resp.
Y'). Both Y and Y’ are intersections of quadratic hypersurfaces. Hence it
suffices to show that B = B’. Since G(2,5%V) does not contain P, B’ is not
zero. On the other hand, since Y C P is isomorphic to X5 C P%, B is an
irreducible SL(V')-module by Proposition 4.2. As we saw above, ¥ is contained
PGL(V)-equivariantly in Y’ and hence B’ is an SL(V)-submodule of B. Hence
B’ coincides with B. g.ed.

So we have constructed a PGL(V)-equivariant embedding of X; into
G(2, 8*V) and shown that X5 coincides with the intersection of its linear hull
and G(2,5%V).

Proof of Theorem 4.1.  There is a universal exact sequence
0—E—SVRO0x —mF — 0

on G(2,5*V), where & (resp. F) is the universal sub- (resp. quotient) bundle
and has rank 2 (resp. 3). Let S and S’ be two members of the anticanonical
linear system | — Kx| on X5. By the same arguments as in Sections 2 and 3,
we have

(i) H(S, sl(€)|s) = O for every i,

(ii) If S is general, then the vector bundle £|s is stable with respect to 0s(1),
and

(iii) If £|s and £|g are stable with respect to O@s(1) and Os:(1), respectively,
and if S and S’ are isomorphic as polarized surfaces, then there are iso-
morphisms « : £|s — £|s» and B € GL(S*V) such that the diagram

0 — E|g — StV ® Og
al 1t se1
0 — Elg¢g — S'VEOs
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is commutative. In particular, the automorphism 3 of G(2, 5V induced
by # maps S onto S’ isomorphically.

Since Xj is the intersection of G(2,5*V) and the linear span of S (resp. S’ )s
the automorphism 8 maps X onto itself. Hence, by Proposition 4.4, S and §'
are equivalent under the action of PGL(V) on Xj. q.ed.

§5. Fano 3-folds of genus 10

In this section we shall prove Theorem 0.9 in the case g = 10. The other
cases g = 7,8 and 9 are very similar.

Let V and V' be Fano 3-folds which are complete intersections of X8 C
P*? and linear subspaces of codimension 2. By the Lefschetz theorem, both
PicV and Pic V' are generated by hyperplane sections. Let &/ be the universal
subbundle of o ® Ox,, as in Section 1 and F and F' the restrictions of &/ to V
and V’, respectively.

Proposition 5.1. Let ¢ : V — V' be an isomorphism. Then 0*(F') is iso-
morphic to F.

Proof. Let S be the generic member of | — Ky| and put S’ = ¢(S). The
Picard group of S is generated by the hyperplane section. The restrictions
E = F|s and E' = F'|s are stable vector bundles as we saw in the proof of
Proposition 2.1. Hence F and F' are also stable vector bundles. Put M =
Home, (F,p*F'). By Step I in Section 2, there is an isomorphism f, : E =
(pls)*E'. Hence the restriction of M to S is isomorphic to Endo,(E). By
Proposition 1.10, we have

H'(S, M(n)|s) = H'(S,05(n)) ® H*(S, (sl E)(n)) =0

for every integer n. Since H'(V,M(n)) is zero, if n is sufficiently negative,
we have by induction on n that H!(V,M(n)) is zero for every n. In par-
ticular H'(V, M(—1)) vanishes and hence the restriction map H°(V, M) —
H(8, M|s) is surjective. It follows that there is a nonzero homomorphism
f: F — ¢*F' such that f|s = f,. Since f, is an isomorphism, the cokernel
of f has a support on a finite set. Since the Hilbert polynomials x(F(n)) and
X{(9*F')(n)) are same, the cokernel of f is zero and £ is an isomorphism.
q.e.d.

By Proposition 5.1 and similar arguments as Step II-VII in Section 2, we
have an isomorphism 8 : F — ¢*F' and an isomorphism v : ¢ — C, such
that the diagram

F £, @ (F')
n n

o0y B o0y = ¢*(Co @ Ov)
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is commutative and such that 1 @ v is an automorphism of the Cayley algebra
C. Hence the automorphism of X3 = G/P induced by 1 & v maps V onto V',
which shows Theorem 0.9 in the case ¢ = 10.

§6. Curves of genus < 9

In this section we shall show the following:
Theorem 6.1. The generic curve of genus < 9 lie on a K3 surface.

In the case g < 6, the generic curve is realized as a plane curve C of degree
d < 6 with only ordinary double points. Take a general plane curve D of degree
6—d and let S be the double covering of the plane with branch locus CUD. Then
the minimal resolution § of S is a K3 surface and contains a curve isomorphic
to C.

In the case 6 < g < 9, we shall show that the generic curve C of genus g
can be embedded into P® by the complete linear system of a line bundle L of
degree g + 4 and that there is a K3 surface S which is a complete intersection
of 3 quadratic hypersurfaces in P® and which contains the image of C.

Let C be a curve of genus 6 < g < 9 and D an effective divisor on C of
degree g — 6. Put I = wg ® Oc(—D). Then L is a line bundle of degree g + 4.
If D is general, then dim H%(C,L) = 6. Since deg L®? > degwc, we have
dim HY(C,L®) =2(g+4)+1—-g=g+9.

Proposition 6.2. If C and D are general, then we have
(1) L is very ample end dim H°(C,L) = 6,

(2) the natural mep
S*H(C,L) — H°(C, L®?)

is surjective and its kernel V is of dimension 12 — g, and

(3) there are 3 quadratic hypersurfaces Q1,Q2 and Q3 in P(H°(C, L)) which
contains the image of C' by ®|r| and such that the intersection S = Q1 N
Q2N Q3 is a K3 surface.

Proof. 1t suffices to show that there exists a pair of C and D which satisfies
the conditions (1), (2) and (3). Let R be a smooth rational curve of degree
g — 4 in P® whose linear span < R > has dimension g — 4. Since R is an
intersection of quadratic hypersurfaces, the intersection of 3 general quadratic
hypersurfaces Q1,Q2 and Q3 which contain R is a smooth K3 surface. Let Cy
be the intersection of S and a general hyperplane H. We show that the pair
of the generic member C of the complete linear system |Cp + R| on S and the
divisor D = R|¢ satisfies the conditions (1), (2) and (3).

The intersection number (Cy - R) is equal to degR = g — 4 > 2. Hence the
linear system |Cy + R| has no base points. Therefore C is smooth and D is
effective. The genus of C is equal to (Co + R)?/2+1 = g and the degree of D is
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equal to (Cp + R.R) = g — 6. Since wc is isomorphic to O¢(C) = O¢(Cy + R),
the line bundle L = wg(—D) is isomorphic to Og(Cy), the restriction of the
tautological line bundle of P* to C. There is a natural exact sequence

0 — Os(—R) — 05(Cy) — Oc(Cp) — 0.

Since H(S, Og(—R)) =0 for i =0 and 1, the restriction map HY(P®,0p(1))
=5 H(S,05(Cy)) — H(C,0c(Co)) is an isomorphism. Hence the mor-
phism &1, is nothing but the inclusion map C — P® and (1) and (3) are
obvious by our construction of C.

Claim. Let V) be the vector space of the quadratic forms on P® which are )
identically zero on Cy U R. Then the dimension of V; is at most 12 — g.

Let F; = 0 be the defining equation of the quadratic hypersurface Q; for
i=1,2and 3 and G = 0 that of the hyperplane H. Let F be any quadratic
form on P% which is identically zero on Cp U R. Since F is identically zero on
Co, F is equal to a1 Fy + a2 Fy + a3F; + GG’ for some constants a;, e, and a3
and linear form G’. Since Fy, F>, F3 and F are identically zero on R, so is GG'.
Hence G’ is identically zero on R. Therefore, the vector space Vj is generated
by Fy,F;,F3 and GG',G' being all linears from vanishing on < R >. Since
dim< R>=g—4,wehavedim V; <3+5-(9—4)=12—g.

Since C is a general deformation of Cy U R, we have, by the claim, that the
dimension of V is also at most 12 — g. Since

dim S*H%(C,L) — dim H*(C,L®?) =21 - (g+9)=12—g,

HY(C, L®?) is generated by H°(C, L) and V has exactly dimension 12 — g.
g.e.d.

By the theorem and Corollaries 0.3 and 4.3, we have

Corollary 6.3. The generic curve of genus 3 < g < 9 is a complete intersection )
in a homogeneous space.
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