
Abelian variety and spin representation∗

Shigeru MUKAI

Abelian varieties and K3 surfaces1have bigger symmetry than their automor-
phisms. We have learned this from the study of vector bundles on them. This
phenomenon is similar to the action of metaplectic group on the function space
L2(Rn) and to sphere geometry of Lie. In this article, extending the Fourier
functor defined in [M2], we shall show that a unitary group2 U(X × X̂) acts
on the derived category Db

c(X) of an abelian variety modulo shift of complex
(Theorem 1.14). Moreover, using the spin representations (§2), we shall show
that a double covering group USpin(X × X̂) has a finer action. The Chern
character map and Riemann-Roch theorem are equivariant on this group action
(§3). The action will be constructed by semi-homogeneous vector bundles (or
their universal family), in place of the Poincaré line bundle (§4). In §5, we
show that the Lie group U(X × X̂)R is of Hermitian type and that the group
U(X × X̂) of autoequivalences acts on the tube domain

DX = NS(X)R +
√
−1(ample cone)

associated with the (formally real) Jordan algebra NS(X)R of Néron-Severi
group. (This might be a sign of a mirror symmetry for Abelian varieties if
there’s any.)

Notation

• g denotes the dimension of an abelian variety X.

• X̂ is the dual abelian variety of X, that is, the neutral component Pic 0X

of the Picard group PicX. The double dual ˆ̂
X is canonically isomorphic

to X.

• For a homomorphism of abelian varieties φ : X −→ Y , φ̂ : Ŷ −→ X̂ is its
transpose, which is the pull-back φ∗ : PicY −→ PicX by definition.

• P is a normalized Poincaré bundle, that is, universal bundle on X × X̂
such that both P|X×0 and P|0×X̂ are trivial.

0This is a translation of the author’s article in Proceedings of the symposium ”Hodge theory
and Algebraic Geometry”, Sapporo, 1994, pp. 110-135. He is grateful to the University of
Warwick for various supports where this translation was made in stimulating atomosphere
during his stay in 1998. All footnotes were added in this occasion.

1See [6], [7] and [8].
2In the original article this group was called orthogonal and denoted by O(X × X̂).
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• AutX denotes the group {φ : X −→ X|φ(0) = 0} of automorphisms of X
as Abelian variety.

• For a point a ∈ X, Ta : X −→ X is the translation x → x + a, which is
an automorphism of X as variety.

• For a morphism π : X −→ Y of schemes, Rπ∗ : Db
c(X) −→ Db

c(Y ) is the
derived functor of the functor π∗ : (OX −mod) −→ (OY −mod) taking
the direct image of sheaves by π.

• χ(E,F ) is the alternating sum
∑
i(−1)i dim Ext iO(E,F ) for a pair of co-

herent sheaves E and F on X.

1 Fourier transformation and Fourier functor

We recall the basic back-ground. Let G be a finite abelian group and G∗ the
group of characters χ. A function on G is expanded to a linear combination∑
cχχ of characters in the unique way and we get a function

(1.1) f̂ : G∗ −→ C, χ → cχ =
1
|G|

∑
g∈G

f(g)χ(g)

on G∗. This is the simplest example of the Fourier transformation. Note that
this is an isometry of two inner product spaces Map(G,C) and Map(G∗,C).

The most famous one is obtained, at least formally, by replacing the pair
(G,G∗) of groups with the pair (V, V ∨) of a real vector space V and its dual.
The Fourier transformation is defined by

(1.2) f̂(α) =
∫
V

f(x) exp(2π
√
−1 < x,α >)dx

for f ∈ L2(V ). As is well-known, this gives an isometry of two Hilbert spaces
L2(V ) and L2(V ∨).

These are special cases of the expansion of a function by special functions
(characters in the above case). We make an analogy of this in Algebraic Geome-
try. Namely we consider the expansion of a sheaf by a family of special sheaves.
As coefficients, we obtain a sheaf on another variety, the moduli space. The
best sample3is the Fourier functor, which expands a sheaf on an abelian variety
by the family of line bundles.

We denote the line bundle (or more precisely its isomorphism class) corre-
sponding to a point α ∈ X̂ = Pic 0X by Pα. The Fourier transform F̂ of a sheaf
F on X is the sheaf, or precisely speaking a complex of sheaves, on X̂ obtained
in the following way regarding the cohomology H•(X,F ⊗Pα) as the coefficient
or multiplicity of P−α.

3Another sample is a K3 surface. See references in the footnote of the first page. Beilinson’s
spectral sequence is also an expansion of a sheaf. His functor gives an equivalence of the derived
categories of sheaves on Pn and modules over the exterior algebra.
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Definition 1.3 Let P be the normalized Poincaré bundle on X × X̂. For a
coherent sheaf F on X, its Fourier transform F̂ is the element

RπX̂,∗(π
∗
XF ⊗ P)

of the derived category Db
c(X̂), where πX and πX̂ are the projections of the

direct product X × X̂ onto the first and second factors, respectively.

Remark 1.4 Db
c(X̂) is the triangulated category consisting of certain equiv-

alence classes, called quasi-isomorphism, of complexes

K• : · · · −→ Kn−1 −→ Kn −→ Kn+1 −→ · · ·

of quasi-coherent sheaves Kn of OX -modules such that the cohomology group
Hi(K•) is coherent for every i and zero except a finite number of i ([H]). This
category is considered as a (cohomological) completion of the category of coher-
ent sheaves.4

The following is the main result of [M2].

Theorem 1.5
ˆ̂ = (−1X)∗[g],

where −1X is the isomorphism x → −x of X and [g] is the g-shift operator of a
complex. In particular,ˆ is an equivalence between the derived categories Db

c(X)
and Db

c(X̂).

This theorem has a several variants. Recall that the Grothendiek K-group
K(X) is the abelian group whose generators are the isomorphism classes [F ]
of coherent sheaves F on X and relations are [F1] − [F2] + [F3] for all exact
sequences

0 −→ F1 −→ F2 −→ F3 −→ 0

on X. We obtain the well-defined homomorphismˆ: K(X) −→ K(X̂) by

(1.6) [F ] →
∑
i

(−1)i[RiπX̂,∗(π
∗
XF ⊗ P)]

and the duality ˆ̂= (−1)g(−1X)∗. We have similar duality ˆ for the Chow group
CH•(X) ⊗ Q and singular cohomology group H∗(X,Z) by using the Chern
characters of of the Poincaré bundle P. We have the commutative diagram:

(1.7)
Db
c(X) −→ K(X) Chern char.−→ CH•(X)Q −→ H∗(X,Q)
↓ ↓ ↓ ↓

Db
c(X̂) −→ K(X̂) −→ CH•(X̂)Q −→ H∗(X̂,Q)

4Compare with the fact that L2(Rn) is a completion of the space of usual functions.
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where the downward arrows are all Fourier isomorphisms. The most right one
is simple. Its degree i part is just the isomorphism

(1.8)
i∧
H1(X,Q) −→

2g−i∧
H1(X̂,Q)

of the complementary exterior products for the pair of mutually dual vector
spaces H1(X,Q) and H1(X̂,Q).

The group action on the derived category Db
c(X), which we are going to

discuss, has grown out from the following:

Observation 1.9 ([M2], p.163) Let (X,L) be a principally polarized abelian
variety. We identify X and its dual X̂ by the isomorphism φL : X −→ X̂ (see
(4.3)). If we neglect the shift of complexes, then the relation between the two
equivalences

F → F̂ , (Fourier transformation)

and
F → F ⊗ L, (basic twist)

of Db
c(X) is the same as the two matrices

(
0 1
−1 0

)
and

(
1 1
0 1

)
. In other

words, the modular group SL(2,Z) acts on Db
c(X) (modulo shift).

If we look for group actions on the category Db
c(X) for general abelian vari-

eties, then we immediately find the following two actions:

(1.10) If φ is an automorphism of X as variety, then φ∗ : Db
c(X) −→ Db

c(X) is
an autoequivalence. Therefore the automorphism group of X acts on Db

c(X).

(1.11) If L is a line bundle on X, then F → F ⊗ L is an autoequivalence.
Therefore the Picard group of X acts on Db

c(X).

The automorphism group of X as variety is generated by all the trans-
lations Ta, a ∈ X, and the automorphisms as Abelian variety. Hence both
X and the dual abelian variety X̂ act on Db

c(X). In the sequel we con-
sider actions and autoequivalences modulo these actions. Two discrete groups,
that is, the automorphism group AutX of X and the Néron-Severi group
NS(X) = Pic X/Pic 0X ⊂ H2(X,Z) still act on Db

c(X) by (1.10) and (1.11),
respectively.

Problem 1.12 Does Db
c(X) has autoequuivalences other than the semi-direct

product (AutX) ·NS(X)?

The answer is yes by virtue of the Fourier equivalence Db
c(X) �−→ Db

c(X̂).
In fact, the Picard group Pic X̂ of the dual abelian variety X̂ acts on Db

c(X̂).
Though the action of Pic 0X̂ � X is translation T ∗

a , the action of the Néron-
Severi group NS(X̂) does not belong to (AutX) ·NS(X). A better answer to the
question is this:
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Definition 1.13 We denote an endomorphism φ of the product abelian variety
X × X̂ in the matrix form:

(
a b
c d

)
∈

(
End (X) Hom (X, X̂)

Hom (X̂,X) End (X̂)

)
= End (X × X̂).

Then the unitary group 5 U(X× X̂) associated with an abelian variety X is the
group consisting of all automorphisms φ which satisfy

(
a b
c d

) (
d̂ −b̂
−ĉ â

)
=

(
1X 0
0 1X̂

)
.

Theorem 1.14 The group U(X × X̂) acts on the derived category Db
c(X) of

an abelian variety X modulo shift of complex (and modulo the actions of X and
X̂).

The functors induced from L ∈ NS(X), ϕ ∈ AutX and M ∈ NS(X̂) are
included in this action and the following matrices correspond to them:

(
1 φL
0 1

)
,

(
ϕ 0
0 ϕ̂−1

)
,

(
1 0
φM 1

)
.

Example 1.15 (1) If (X,L) is a principally polarized abelian variety, then
the group U(X × X̂) contains

{(
aX bφL
cφ−1
L dX̂

)
a, b, c, d ∈ Z, ad− bc = 1

}
� SL(2,Z)

as its subgroup. They coincide when End (X) � Z.
(2) When End (X) = Z, U(X × X̂) is isomorphic to the Hecke group

Γ0(N) =
{(

a b
c d

)
c ≡ mod N

}
⊂ SL(2,Z),

where N is the smallest natural number which annihilates the kernel of the
generator φ : X −→ X̂ of Hom (X, X̂) � Z.

(3) If X is the product of g copies of the same elliptic curve E (or the
same abelian variety), then U(X × X̂) contains a subgroup isomorphic to the
symplectic group Sp(2g,Z). They coincide when End (X) � Z.

We endowH1(X×X̂) = H1(X)⊕H1(X)∨ with the inner product
(

0 I2g
I2g 0

)
.

Then the group U(X × X̂) coincides with the group of Hodge isometries pre-
serving this inner product.

We improve the theorem using the spin representation in §3. (U(X×X̂) has
no natural action on K(X) or CH(X)Q.)

5If we tensor Q, then this group is the SL(2) over the algebra End Q(X) with the Rosati
involution ′. See §5.
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2 Metaplectic representation and spin represen-
tation

First we review these representations a little bit. We consider the endomorphism
algebra of the polynomial ring k[x1, . . . , xn] as vector space. The multiplications
by xi and partial derivations ∂/∂xi, i = 1, 2, . . . , n, form a 2n-dimensional
subspace, which we denote by V . The subalgebra W generated by them is
called the Weyl algebra. The commutator [A,B] = AB − BA induces a non-
degenerate skew-inner product on V and makes W a Lie algebra.6 Moreover,
the subspace spanned by

xixj , xi
∂

∂xj
+

1
2
δij and

∂2

∂xi∂xj

is a Lie subalgebra of W and isomorphic to the symplectic Lie algebra sp(V ) �
sp(2n) of V . Hence the polynomial ring k[x1, . . . , xn] is a representation of
sp(2n). The metaplectic representation is the lift of this Lie algebra representa-
tion to a unitary representation of a Lie group in the case k = R.7 This action
does not lift to Sp(2n,R) but to its double covering denoted by Mp(2n,R).
Moreover, the space is no more the polynomial ring but itscompletion L2(Rn).

This story goes similarly when the variables x1, · · · , xn anti-commutes. We
replace the polynomial ring with the exterior algebra

∧•(x1, . . . , xn) and con-
sider its endomorphism algebra

End k
•∧

(x1, . . . , xn)

as vector space. This algebra is generated by n multiplications xi and n partial
derivations8 ∂/∂xi. Let V be the subspace sppened by these 2n generators. The
anti-commutator [A,B]+ = A◦B+B◦A induces an inner product on this vector
space V .9 The Clifford algebra is the pair of this algebra End k

∧•(x1, . . . , xn)
and this generating vector space V . We denote it by C . The vector subspace
spanned by

xi ∧ xj , xi ∧
∂

∂xj
+

1
2
δij and

∂2

∂xi∂xj

is a Lie subalgebra 10 isomorphic to the orthogonal Lie algebra so(V ) � so(2n)
of V . Hence

∧•(x1, . . . , xn) is a representation of so(2n). The (group-theoretic)

6The (2n + 1)-dimensional vector space V ⊕C · 1 is also a Lie subalgebra. This is called a
Heisenberg algebra. sp(V ) is the normalizer of this in W .

7Metaplectic representation is called the Weil representation in arithmetic context. This
plays a crucial role in the theory of modular functions and theta functions. See [11], [12], [5]
and [10]. Metaplectic representation appears in Frenel optics also. See[3].

8In literatures, the symbol xi?u is used in place of ∂u/∂xi.
9The (2n+1)-dimensional space V ⊕C ·1 is closed under anti-commutator and normalized

by so(V ). This is called a Heisenberg superalgebra.
10The anti-commutator [ , ]+ and the commutator [ , ] are the same on the even part of

algebras.
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spin representation is a lift of this Lie algebra representation to a representa-
tion of an algebraic group. The even part and odd parts are both irreducible
representations and called half spin representations. Similar to the symplectic
case, the Lie algebra representation does not lift to SO(2n) but its double cover,
Spin(2n). The construction is as follows:

The even invertible elements g ∈ C such that gV g−1 = V form a group
under multiplication. This is called the special Clifford group and denoted by
CSpin(2n). This acts on V preserving the inner product and we obtain the
exact sequence

(2.1) 1 −→ Gm −→ CSpin(2n) −→ SO(V ) −→ 1.

The spinor group is the subgroup of this Clifford group consisting of those g
with spinor norm11 1. Hence we have the exact sequence

(2.2) 1 −→ Spin(2n) −→ CSpin(2n)
sp. norm−→ Gm −→ 1.

Combining the two exact sequences, we have

(2.3) 1 −→ {±1} −→ Spin(2n) −→ SO(V ) −→ 1,

which shows Spin(2n) is a double over of SO(2n).

3 Action of USpin(X × X̂) on the derived cate-
gory

As Theorem 1.14 shows the derived category Db
c(X) of an abelian variety X has

a bigger symmetry than its automorphism and Picard group. This is similar
to the Hamiltonian formalism in classical and quantum mechanics and also to
the contact transformation of Lie in the classical theory of partial differential
equations. We recall the former a little bit (cf. [A]). Let

m
d22x

dt2
= 2F in Rn

be the equation of motion of the location 2x = (x1, . . . , xn) of particles. This is
transformed to the canonical equations

(3.1)
dxi
dt

=
∂H

∂pi
,
dpi
dt

= −∂H
∂xi

on the phase space Rn⊕Rn by introducing the new variables pi = mdxi

dt , where
H = H(2x, 2p) is the Hamiltonian function. The symmetry of the symplectic
group Sp(2n) thus obtained is a great advantage of this formalism.

11There is a unique anti-automorphism ∗ of C which is identity on V . If g ∈ CSpin(2n),
then gg∗ = N(g) · id. This N(g) is called the spinor norm.
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When we pass to the quantum mechanics, the problem changes from the
motion of particles in Rn to the (wave) functions on the phase space. But the
symmetry of Sp(2n) is still vital. It survives as the action of metaplectic group
Mp(2n) reviewed in the previous section. We are now making an analogy of
this for Abelian varieties. The dictionary is this:

(3.2)

Rn Abelian variety X
function f(x) sheaf F

multiplication f(x)g(x) tensor product F ⊗G
integral transformation

∫
K(x, y)f(y)dy integral functor π∗(K ⊗ τ∗F )

Hilbert space L2(Rn) derived category Db
c(X)

polynomial ring C[x1, . . . , xn] exterior algebra
∧•(x1, . . . , xn)

Heisenberg group odd Heisenberg group12

1 −→ C∗ −→ H −→ Rn ⊕Rn −→ 0
Mp(2n) 2:1−→ Sp(n,R) USpin(X × X̂) 2:1−→ U(X × X̂)

Restricting the exact sequence (2.3), we have the exact sequence

1 −→ {±1} −→ Spin(4g,Z) −→ O(H1(X × X̂),Z) −→ 1
∪

U(X × X̂).

Definition 3.3 USpin(X × X̂) is the inverse image in Spin(4g,Z) of U(X ×
X̂).

Theorem 3.4 The group USpin(X × X̂) acts on the derived category Db
c(X)

modulo even shift of complexes. The nontrivial element z of the kernel of
USpin(X × X̂) 2:1−→ U(X × X̂) shifts complexes by one under this action, i.e.,
K• z→ K•[1].

The group USpin(X × X̂) also acts on K(X), CH(X) and H•(X) and the
action of z is the multiplication by −1. Note that the even part

Hev(X) =
ev∧
H1(X)

is the half spin representation of Spin(4g), by definition.

Theorem 3.5 The Chern character homomorphism ch : Db
c(X) −→ Hev(X)

is equivariant with respect to the action of USpin(X × X̂) ⊂ Spin(4g). More-
over,

χ(E,F ) = β(ch(E), ch(F ))

12The exact sequence 1 −→ C∗ −→ P∗ −→ X×X̂ −→ 0 was put here in the original article
instead.
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holds for a pair of coherent sheaves on X, where β is the invariant bilinear form
on the half spin representation.

The second half is the equivariance of the Riemann-Roch formula with re-
spect to the action of USpin(X × X̂). The bilinear form β is called the funda-
mental polar form in [Ca, §102]. This is symmetric or anti-symmetric according
as g is even or odd. 13

4 Semi-homogeneous sheaf

The Fourier functor for sheaves is an integral functor whose kernel (sheaf) is
the Poincaré line bundle P. We prove Theorems 1.14 and 3.4 by replacing P
with the universal family of semi-homogeneous sheaves. 14

Let E be a coherent sheaf on an abelian variety. We define a subgroup of
X × X̂ by

(4.1) Φ(X) = {(X,α)|T ∗
xE � E ⊗ Pα}.

This is also a subvariety15. We denote its neutral component by Φ0(E).

Definition 4.2 A coherent sheaf E on an abelian varietyX is semi-homogeneous
if dim Φ(E) = dimX holds.

If E is a (holomorphic) vector bundle, then the first projection Φ(E) −→ X
is finite. Hence the above definition is compatible with the one in [M1], that is, a
vector bundle E is semi-homogeneous if for every x ∈ X there exists P ∈ Pic 0X
such that T ∗

xE � E ⊗ P . A line bundle L is always semi-homogeneous and the
subgroup Φ(L) is the graph of the homomorphism

(4.3) φL : X −→ Pic 0X = X̂, x → T ∗
xL⊗ L−1

associated with L. Another typical example of semi-homogeneous sheaf is a
sheaf which has finite support. In this case, the connected component Φ0(E) is
0 × X̂. The category of semi-homogeneous sheaves is closed under two opera-
tions, the pull-backs π∗ and the direct images π∗ by isogenies π. It is also closed
under Fourier transformation. For example, the category of artinian sheaves
and that of homogeneous vector bundles are interchanged by the Fourier func-
tor ([M2, (2.9)]).

We look at the Abelian subvariety Φ0(E) more closely. The homomorphism
(4.3) defined for a line bundle L is characterized by the symmetric property

13Note that χ(E, F ) = (−1)gχ(F, E) holds by Hirzebruch-Riemann-Roch theorem or by
Serre duality.

14The basic reference of this section is [M1]. The proof of results is similar to the case of
semi-homogeneous vector bundles, or reduces easily to that case. Note that if F is a semi-
homogeneous sheaf, then the Fourier transform of F ⊗L is a semi-homogeneous vector bundle
for a sufficiently ample line bundle L.

15More precisely, a natural scheme structure on Φ(E) is defined as in [M1] using the tech-
nique of [Mum §10].
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φ̂L = φL among all homomorphisms from X to X̂. So the image NS(X) of
PicX in the exact sequence

(4.4) 0 −→ Pic 0X −→ PicX −→ Hom (X, X̂)
L → φL

coincides with the subgroup {φ̂ = φ} in Hom (X, X̂). When we regard the linear
map H1(φL) : H1(X) −→ H1(X̂) as a tensor w ∈ H1(X) ⊗ H1(X), φ̂L = φL
is equivalent to the anti-symmetricity of w. This tensor w is nothing but the
Chern class c1(L) ∈ H2(X) =

∧2
H1(X) of L. The anti-symmetricity is also

equivalent to saying that the graph of H1(X) −→ H1(X̂) is totally isotropic

with respect to the inner product
(

0 I2g
I2g 0

)
.

Proposition 4.5 Φ0(E) ⊂ X×X̂, or more precisely, the subspace H1(Φ0(E))

is totally isotropic with respect to
(

0 I2g
I2g 0

)
. In particular, we have dim Φ(E)

≤ g.

Remark 4.6 Let ψ : Z −→ Ẑ be a homomorphism from an abelian variety
to its dual. We can define a homomorphism f : Y −→ Z be isotropic with
respect to ψ by the property f̂ ◦ φ ◦ f = 0. Then the totally isotropicness in
the proposition is equivalent to that of the natural inclusion homomorphism
Y ↪→ X × X̂ with respect to the homomorphism

J :=
(

0 1X
−1X̂ 0

)
: X × X̂ −→ X̂ ×X = dual of X × X̂.

(It will be natural to call this homomorphism J skew-polarization since it satis-
fies Ĵ = −J .)

Recall that a maximally totally isotropic subspace, or a Lagrangian, de-
termines a vector in the spin representation, which is unique up to constant
multiplication ([Ch], [Ca]). We call it the spinor coordinate. In our situation, E
is semi-homogeneous and H1(Φ0(E)) ⊂ H1(X)⊕H1(X̂) is a Lagrangian. Hence
we obtain an element of the cohomology group H∗(X) as spinor coordinate.The
following is important:

(4.7) For a semi-homogeneous sheaf E its Chern character ch(E) is the spinor
coordinate of H1(Φ0(E)).

(4.8) The Chern character of semi-homogeneous vector bundle E is equal to

r(E) exp(
c1(E)
r(E)

) ∈
ev∧
H1(X),

where r(E) is the rank of E. For a general semi-homogeneous sheaf E, the
Chern character ch(E) is equal to [Y ] ∧ expw for suitable w ∈ H1,1(X,Q),
where [Y ] is a connected component of the support of E.
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A semi-homogeneous sheaf E has a filtration

E = En ⊃ En−1 ⊃ · · · ⊃ E2 ⊃ E1 ⊃ E0 = 0

such that all successive quotients Ei/Ei−1 are simple, semi-homogeneous and
have the same Abelian subvariety, i.e. Φ0(Ei/Ei−1) = Φ0(E). (A semi-
homogeneous vector bundle E is semi-stable and the above filtration coincides
with the JHS-filtration.) Therefore, simple ones are important. They are clas-
sified in the following way: (A sheaf E is simple if EndO(E) = C.)

Theorem 4.9 (1) If E is simple and semi-homogeneous, then Φ(E) is con-
nected.

(2) (Riemann-Roch) For a pair of simple semi-homogeneous sheaves E1 and
E2, we have

χ(E1, E2)2 =
{
|Φ(E1) ∩ Φ(E2)|

0

according as the intersection Φ(E1) ∩ Φ(E2) is finite or not. In particular, we
have

χ(E)2 = |Φ(E) ∩X × 0| and r(E)2 = |Φ(E) ∩ 0× X̂|
for a semi-homogeneous sheaf E.

(3) Let E1 and E2 be as above. Then Φ(E1) and Φ(E2) coincide if and only
if there exist a ∈ X and α ∈ X̂ such that E1 � T ∗

aE2 ⊗ Pα. When both E1 and
E2 are vector bundles, then these are also equivalent to the condition

c1(E1)
r(E1)

=
c1(E2)
r(E2)

in H1(X,Q).

(4) For a Lagrangian Abelian subvariety Y of X × X̂, there exists a simple
semi-homogeneous sheaf E on X such that Φ(E) = Y .

Remark 4.10 For a semi-homogeneous vector bundle E, the Abelian subva-
riety Φ0(E) coincides with the image of the homomorphism

(rX , φL) : X −→ X × X̂

where r is the rank ofX and L is determinant detE. Hence the semi-homogeneous
vector bundles modulo deformation are parameterized by NS(X) ⊗ Q by the
correspondence E → φdetE/r(E). All semi-homogeneous sheaves are param-
eterized by the rational points of the projective line over the Jordan algebra
NS(X), which is the natural compactification of NS(X).

All deformations of a simple semi-homogeneous sheaf E is isomorphic to
T ∗
aE ⊗ Pα for some a and α and the moduli space M(E) is isomorphic to the

quotient Abelian variety (X × X̂)/Φ(E). Now assume that there exists another
semi-homogeneous sheaf F with χ(E,F ) = ±1. By (2) of the theorem, X × X̂
is the direct product Φ(E)×Φ(F ). Moreover on the product X ×M(E), there
exists a universal family E . The direct image RπM,∗(π∗XF

∨⊗E) is a line bundle
on M(E) (modulo shift). We normalize E so that this line bundle is trivial.
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Proposition 4.11 The integral functor

RπX,∗(E ⊗ π∗M?) : Db
c(M(E)) −→ Db

c(X)

is an equivalence of categories and send the sky-scraper sheaf k(0) to E and the
structure sheaf OX to F (modulo shift).

Using Theorem 4.9, especially (4) of it, we can eliminate E and F from the
above statement.

Proposition 4.12 Assume that an isomorphism

ω =
(
a b
c d

)
∈

(
Hom (Y,X) Hom (Y, X̂)
Hom (Ŷ ,X) Hom (Ŷ , X̂)

)
= Hom (Y × Ŷ ,X × X̂)

satisfies
(
a b
c d

) (
d̂ −b̂
−ĉ â

)
=

(
1X 0
0 1X̂

)
.

Then there exists an integral functor

Ω : Db
c(Y ) −→ Db

c(X)

whose kernel is a universal family of semi-homogeneous sheaves and such that

Ω(T ∗
yG⊗ Pα) � T ∗

a(y)+c(α)Ω(G)⊗ Pb(y)+d(α)

holds 16 for every G ∈ Db
c(Y ), y ∈ Y and α ∈ X̂.

Note that the assumption of theorem implies that the images of Y × 0 and
0 × Ŷ are both totally isotropic subvarieties of X × X̂. Theorem 1.14 is the
special case Y = X of this proposition.

Remark 4.13 In the notation of §2, there exists a standard isomorphism

: : :
•∧
V −→ C

from the exterior algebra
∧•
V to the Clifford algebra ([SMJ]). In our case the

isomorphism is
: : : H∗(X × X̂) −→ C.

The equivalence of categories associated with

ω̃ ∈ USpin(X × X̂) ⊂ C,

a lift of ω, is the composite of two functors: one is the integral functor whose
kernel is the semi-homogeneous sheaf F on X × X̂ with : ch(F ⊗ P±1) := ω̃
and the other is the Fourier functor. This has a similarity with the formalism
of Fourier integral operators in the theory of partial differential equations ([D]).

16This functor Ω may be called semi-homogeneous by this property. Another possible name
will be a spinor functor.
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5 Action on a tube domain

The unitary group U(X×X̂) of an abelian variety X is the set of integral points
of an algebraic group. The Lie algebra17of this algebraic group is

(5.1) u(X × X̂) =
{(

a b
c d

)
+

(
d̂ −b̂
−ĉ â

)
= 0

}
⊂ End (X × X̂)

and decomposed into three parts:

(5.2)

u(X × X̂) � NS(X) ⊕End (X)⊕ NS(X̂)

(
ϕ φL
φM −ϕ̂

)
↔ (L, ϕ, M)

.

In this section we study the structure of this Lie algebra u(X × X̂) over Q.
We fix an ample line bundle L on X and let φL : X −→ X̂ be the ho-

momorphism in (4.3). Since this is an isogeny, φ−1
L is defined as element of

Hom (X̂,X)Q. The map

End (X)Q " a → a′ = φ−1
L aφL ∈ End (X)Q

is called the Rosati involution. The positivity Tr(aa′) > 0 is famous ([Mum,
§21]). By (4.4) the Néron-Severi group NS(X)Q is isomorphic to the subspace
{a′ = a}. This subspace is closed under the product a ◦ b = (ab+ ba)/2. Hence
NS(X)Q becomes a Jordan algebra whose unit is φL. This Jordan algebra is
formally real by the above mentioned positivity ([Mum, ibid.]).

Now we consider the element

(5.3) HL =
1
2

(
0 φL

−φ−1
L 0

)

of the Lie algebra u(X × X̂)Q. By easy computation, u(X × X̂)Q decomposes
into the direct sum of 0-eigenspace

(5.4) k =
{(

a φLb
−bφL −â

)
a, b ∈ End (X)Q, a+ a′ = 0, b = b′

}

and (−1)-eigenspace

(5.5) p =
{(

a φLb
bφ−1
L −â

)
a, b ∈ End (X)Q, a = a′, b = b′

}

of (ad HL)2. By the positivity of Rosati involution ′ , the Lie algebra kR is of
compact type. Moreover, ad HL induces a complex structure on p.

17a) This Lie algebra acts on the cohomology group H∗(X). The subaction of{(
a bφL

cφL̂ −a

)
a, b, c ∈ R

}
is the sl(2)-action of the Lefschetz decomposition (see [2]).

b) This kind of Lie algebras is studied for general varieties in [4].
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Proposition 5.6 The Lie algebra u(X × X̂) is of Hermitian type and HL is
its H-element (see [S, Chap. II] for the terminology.)

In particular, the Lie group U(X × X̂)R acts transitively on a bounded
symmetric domain. In our case the domain is the tube domain

DX = NS(X)R +
√
−1B ⊂ NS(X)⊗C,

where B is the set of positive elements of NS(X)R, that is, the ample cone.
So the discrete group U(X × X̂), studied in the previous sections, acts this
domain DX discontinuously. It will be interesting to study how the category
relates with the quotient variety U(X×X̂)\DX , Shimura variety, Hodge group,
Hodge structures, the Kuga-Satake Abelian varieties of K3 surfaces, etc.. 18 But
we do not pursue them here.

Remark 5.7 When L is a principal polarization, then the H-element of (5.3)
corresponds to the Fourier transformation ˆ.

Example 5.8 Let X be the product E × · · · ×E of elliptic curve as in (3) of
(1.15). If EndE = Z, the Lie algebra u(X × X̂)R is the symplectic Lie algebra
sp(2g,R) and k is the unitary group u(g). Hence the tube domain DX is the
Siegel upper half space of degree g. When E has a complex multiplication, then
u(X × X̂)R is isomorphic to the general linear Lie algebra gl(2g,R) and k is a
subalgebra isomorphic to u(g)⊕ u(g). The domain DX is of dimension g2 and
of type Ig,g.
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