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A Cartan subalgebra decomposes a simple Lie algebra into its eigenspaces.
This reduces many problems on simpel Lie algebras to a discrete geometry,
called root system. Here we study them from a different viewpoint.

In [4] E. Cartan found a 14-dimensional vector space of polynomials of 5
variables which is a simple Lie algebra with respect to the Legendre bracket
(see Table 1). The root system is of G2-type. In this article, we shall show that
all (finite dimensional) simple Lie algebras have similar description.

Theorem A simple Lie algebra g has a canonical embedding into the polyno-
mial ring C[x1, . . . , xn, p1, . . . , pn, z] of (2n + 1) variables endowed with a Lie
algebra structure by the Legendre bracket. 1

More explicitly there is a homogeneous polynomial F (x, p) of degree 4 such
that (the image of) g is generated by

(2z −
n∑

i=1

xipi)2 − F (x, p)

and variables x1, . . . , xn, p1, . . . , pn as Lie algebra. Therefore, the construction
of g is equivalent to finding a good quartic form F (x, p).

Proposition If g �� sp(n) or sl(n), then the quartic form F (x, p) is the dis-
criminant of a symmetric Legendre subvariety Xn−1 ⊂ P2n−1 in the odd di-
mensional projective space (see Definition 3.4 and 3.5).

In Cartan’s case, this projective variety X is a rational cubic curve in P3

and F (x, p) is the discriminant of a cubic equation. The general case is similar.
We just replace the complex number field C by a cubic Jordan algebra J over
it. Then Xn−1 ⊂ P2n−1 in the proposition is the cubic curve over J and
F (x, p) is the discriminant of the cubic equation over J. Jordan algebras may

0Translation of the author’s article in Nagoya Sūri Forum, 3(1996), 1-12. §§1-4 is mostly
based on his colloquium talk at the University of Warwick in November 1995. The translation
was made in his stay there in the spring 1998. All footnotes were added in this occasion. He is
grateful to the Mathematics Institute for various supports which made his stays comfortable.

1This number n is equal to h∨ − 3, where h∨ is the dual Coxeter number of the extended
affine root system (see [14] for the definition).
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not be very familiar but as one sees in Table 2, those with cubic norm all
appear in elementary Linear Algebra. The key of the classification of semi-simple
Jordan algebras is the following Hurwitz theorem (see [3], [10], [9, Appendix]).
Therefore, so is the classification of simple Lie algebras.

Theorem An involutive alternative algebra2over the real number field R is
isomorphic to either R, C, the quaternion algebra or the Cayley octanion algebra
O.

Table 1 Fourteen polynomials of 5 variables in Cartan[4]

deg f number polynomial f(x, y, p, q, z)
0 1 1
1 4 x, y, p, q
2 3 + 1 y2 + 4xq, 3xp+ yq, 4q2 − 3yp

2z − xp− yq (cf. (1.7))
3 4 12xz − 12x2p− 12xyq − y3

3yz − 3xyp− y2q + 4xq2

9pz − 4q3

12qz + 3y2p− 8yq2

4 1 36z(z − xp− yq) − 3y3p+ 12y2q2 + 16xq3

Table 2 Semi-simple Jordan algebras J over C with cubic norm

J Cubic norm Nm : J → C Symm. Legendre var. Lie alg.
(1) C Nm(x) = x3 Twisted cubic in P3 G2

(2) C ⊕ Cn Nm(x, y) = xq(y) with P1 ×Q ⊂ P2n+3 o(n+ 6)
a non-degenerate qudratic
form q on Cn

(3) Sym3C Determinant of symmetric 6-dim. symplectic F4

matrices of size 3 Grassmannian in P13

(4) M3C Determinant of square 9-dim. Grassmannian E6

matrices of size 3 G(3, 6) ⊂ P19

(5) Alt6C Pfaffian of skew-symmetric 15-dim. orthogonal E7

matrices of size 6 Grassmannian in P31

(6) H3O Reduced norm of Hermitian 27-dim. E7-variety E8

matrices of size 3 over in P55

the octanion algebra

2See Theorem 3.25 of [10]. An algebra A with a unit 1 is alternative if x2y = x(xy) and
yx2 = (yx)x hold for every x, y ∈ A. A is involutive if it has an anti-automorphism x �→ x̄
such that both x + x̄ and xx̄ are constant multiples of the unit 1 for every x ∈ A.
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1 Polynomial Lie algebra3

We review how Lie algebras usually appear in Geometry.

(1.1) All vector fields on a manifold form a Lie algebra by the Lie bracket.
In the one variable case, the bracket is

[
f(z)

d

dz
, g(z)

d

dz

]
=

(
f(z)

dg(z)
dz

− g(z)
df(z)
dz

) d

dz

(1.2) All functions on a symplectic manifold form a Lie algebra by Poisson
bracket. If the symplectic form is

∑n
i=1 dxi ∧ dpi, then the Poisson bracket of

f(x, p) and g(x, p) is given by

(f, g) =
n∑

i=1

( ∂f

∂xi

∂g

∂pi
− ∂g

∂xi

∂f

∂pi

)

The Lie algebra of infinitesimal contact transformations is a certain mixture
of the above two examples.

(1.3) All functions on a contact manifold form a Lie algebra by Legendre
bracket. For example, if the contact form is

α = dz −
n∑

i=1

pidxi,

then the Legendre bracket of two functions f(x, p, z) and g(x, p, z) is given by

{f, g} = f
∂g

∂z
− g

∂f

∂z
+

n∑
i=1

( df

dxi

dg

dpi
− dg

dxi

df

dpi

)
,

where
d

dxi
=

∂

∂xi
+ pi

∂

∂z

for every i. 4 Equivalently we have

(1.4) {f, g} = (f − Epf)
∂g

∂z
− (g − Epg)

∂f

∂z
+ (f, g)

in terms of the Poisson bracket (1.2) and the Euler operator

E :=
n∑

i=1

pi
∂

∂pi
.

As a class of functions we choose a miminal one,5that is, all polynomials.
The polynomial ring C[x, p] of even number of variables and C[x, p, z] of odd

3These are usually called infinite dimensional Lie algebras of Cartan type.
4In the theory of partial differential equations, z is the unknown function z(x) of variables

x = (x1, . . . , xn) and p1(x), . . . , pn(x) are its partials. Hence this definition of d/dx is natural.
5Another minimal choice is the space of functions with compact supports.

3



number of variables are both Lie algebras by Poisson bracket (1.2) and Legendre
bracket (1.3), respectively. For our purpose the latter is crucial. We endow the
polynomial ring C[x, p, z] with a ring grading by

deg xi = deg pi = 1 and deg z = 2.

If f(x, p, z) and g(x, p, z) are (quasi-) homogeneous with respect to this grading,
then so is the Legendre bracket {f, g}. Moreover, we have

deg{f, g} = deg f + deg g − 2

(if it is not zero). Hence deg f − 2 is a Lie algebra grading of C[x, p, z]. We
denote this graded Lie algebra by L =

⊕
i∈Z Li. Its negative part L−1 ⊕L−2 is

generated by the variables x1, . . . , xn, p1, . . . , pn which satisfy the relations

{xi, xj} = {pi, pj} = 0 and {xi, pi} = δij

for all 1 ≤ i, j,≤ n. Hence we have

(1.5) the polynomial Lie algebra C[x, p, z] is zero in degree less than −2
and the negative part is the Heisenberg Lie algebra with (1-dimensional) center
L−2.

Moreover, L is universal among all graded Lie algebras with this property.
In other words, L is the algebraic prolongation of the Heisenberg Lie algebra
L<0 in the sense of [11].

Proposition 1.6 Any isomorphism from the negative subalgebra of a graded
Lie algebra g to that of L extends a homomorphism Φ : g −→ L uniquely.

An element δ of a graded Lie algebra g =
⊕

i∈Z gi is a scaling element if
[δ, x] = (deg x)x holds for every homogeneous element x of g. For L = C[x, p, z],

(1.7) z̃ = 2z −
n∑

i=1

xipi

is the unique scaling element. Since the homomorphism Φ preserves degree, we
have Φ(δ) = z̃ if g has a scaling element δ.

2 Embedding of simple Lie algebras into poly-
nomial rings

Let g be a finite simple Lie algebra over the complex number field C and P(g)
the associated projective space. Then g acts on the nilpotent subvariety N ⊂
P(g)6and it has a unique closed orbit. We denote it by Z. Take an sl(2)-
triple {xθ, h, yθ} (cf. [5]) with [xθ] ∈ Z and decompose g by the action of h.

6N is the complete intersection of � invariant hypersurfaces ([15]), where � is the rank of
g.
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h is semi-simple and the eigenvalues are only 0,±1 or ±2. So we have the
decomposition

(2.1) g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2.

Moreover, the negative part is the Heisenberg algebra with center g−2 = C · yθ.
Hence, by Proposition 1.6, we have,

Proposition 2.2 There exists an embedding Φ of graded Lie algebras from g

to L = C[x, p, z] which is an isomorphism on negative parts.

The element h of the sl(2)-triple is the scaling element of (2.1). Hence we
have Φ(h) = z̃. Since Φ(yθ) is a nonzero constant, we normalize so that Φ(yθ) =
1. Φ(xθ) is a homogeneous quartic polynomial and is equal to z̃2−Fg(x, p) for a
quartic polynomial Fg of x and p. Let L(F ) be the subalgebra in L = C[x, p, z]
generated by the variables and z̃2 − F (x, p) for a polynomial F (x, p) .

Corollary 2.3 g is isomorphic to L(Fg) for the quartic Fg(x, p) determined
from the decomposition (2.1).

Remark 2.4 Let R be C[x1, . . . , xn] and

V = R
∂

∂x1
⊕ · · · ⊕R

∂

∂xn

the Lie algebra of the vector fields with polynomial coefficient. V has a natural
grading

⊕
i≥−1 Vi, whose negative part V−1 is abelian. Moreover, V is the most

universal one among such graded Lie algebras. For example, every symmetric
Lie algebra g = g−1 ⊕ g0 ⊕ g1 is embedded into V (see e.g., [8, §7]). Our
Proposition 2.2 is the Heisenberg analogue of this fact.

It is very rare that L(F ) is of finite dimension. In Cartan’s case (Table 1),
we have

(2.5) 9F = 9(xp+yq)2+3y3p−12y2q2−16xq3 = (3xp+yq)2−(y2+4xq)(4q2−3yp).

We give two simpler examples (but exceptional as we will see later).

Example 2.6 If the quartic F (x, p) is identically zero, then L(F ) consists of
all quadratic polynomials in the usual sense. Simple computation shows that
the Lie algebra L(F ) is the symplectic Lie algebra sp(n+ 2).

Example 2.7 If F (x, p) is the square of a non-degenerate quadratic form, say,
(
∑n

i=1 xipi)2, then L(F ) is the special linear Lie algebra sl(n+ 2).
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Remark 2.8 The latter example becomes more interesting if we consider
over the real R. Regard the n-dimensional complex vector space Cn as a 2n-
dimensional real vector space R2n by the usual coordinate zi = xi +

√
−1yi,

1 ≤ i ≤ n. This space has a skew inner product
∑n

i=1 x
∗
i ∧ y∗i and an inner

product q(x, y) =
∑n

i=1(x
2
i + y2

i ), as the imaginary and real part of Hermitian
inner product H(z, w) =

∑n
i=1 ziw̄i, respectively. Then the Lie algebra L(q2)

is isomorphic to the special unitary Lie algebra su(1, n + 1). This Lie algebra
acts on the unit ball Bn ⊂ Cn and its boundary sphere S2n−1. The latter has
a real contact structure as CR-manifold. 7

It is well-known that the homogeneous projective variety Zg ⊂ P(g) is a
disjoint union of finite cells Ck’s. Let f1(x, p, z), . . . , fN (x, p, z), N = dim g, be
a basis of the image of Φ in Proposition 2.2 and consider the morphism

C2n−1 −→ P(g), (x, p, z) �−→ (f1(x, p, z) : · · · : fN (x, p, z)).

Then the image of this morphism is the (open) top dimensional cell.

3 Legendre projective variety

Let P2n−1 be the projective space associated with an even dimensional vector
space C2n with a non-degenerate skew inner product

〈 , 〉 : C2n × C2n −→ C.

For every nonzero vector v, the symplectic complement v⊥ = {u ∈ C2n | 〈u, v〉 =
0} is a vector subspace of codimension one which contains v. In the language
of projective geometry, a hyperplane Hp passing through p is assigned linearly
for every point p ∈ P2n−1. This is referred as nil-correlation. 8

Definition 3.1 An (n− 1)-dimensional smooth closed subvariety X of P2n−1

is Legendrian if the tangent space of X at p is contained in Hp for every p ∈ X.

The symplectic group Sp(n) of the skew inner product 〈 , 〉 acts on P2n−1

preserving the nil-correlation p �→ Hp.

Definition 3.2 A Legendre subvariety Xn−1 ⊂ P2n−1 is symmetric if an
algebraic subgroup of Sp(n) acts on X transitively and if X is symmetric with
respect to the action.

7(R2n,
∑

dxi ∧ yi) is the phase space of Rn and E = 1
2
q : R2n −→ R is the energy

of harmonic oscillators. The complex space Pn−1 is obtained as the reduced phase space
E−1(1)/S1.

8This is an example of (holomorphic) contact structure. An odd dimensional projective
space is a contact Fano manifold.
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Example 3.3 The image R of the third Veronese embedding

P1 −→ P3, z �−→ (1 : z : z2 : z3)

of the projective line P1 is a symmetric Legendre subvariety. Let (x : y : q : p)
be the homogeneous coordinate of P3. Then we have

1. The tangent vector of R at the point p = (1 : a : a2 : a3) is contained in
the plane

a3x− 3a2y + 3aq − p = 0.

Hence R is Legendrian with respect to the skew inner product

x∗ ∧ p∗ − 3y∗ ∧ q∗.

2. An algebraic subgroup of Sp(2) isomorphic to SL(2) acts on R transitively
and R is symmetric with respect to this action.

Special quartics are obtained as discriminant of symmetric Legendre subva-
rieties.

Definition 3.4 The locus X̌ of p such that the intersection Hp ∩ X is not
transversal is a closed subvariety of P2n−1. This is called the (projective) dual
of X.

For a Legendre subvariety X, the dual X̌ coincides with the union of all
tangent spaces of X ⊂ P2n−1.

Proposition-Definition 3.5 For a symmetric Legendre subvariety, its dual
is a quartic hypersurface. We call its defining equation the discriminant of X.

It is easy to find the discriminant for Example 3.3. The plane

ap− 3bq + 3cy − dx = 0

corresponds to a point (a : b : c : d) ∈ P3 by the nil-correlation. The plane does
not cut R transversally if and only if

f(z) := az3 − 3bz2 + 3cz − d = 0

has a multiple root. Therefore, the discriminant of R ⊂ P3 is that of the cubic
equation f(z) = 0, which is equal to

(3.6)
D(a, b, c, d) = a2d2 − 6abcd− 3b2c2 + 4ac3 + 4b3d

= (ad− bc)2 − 4(b2 − ac)(c2 − bd)

and essentially the quartic (2.5). Other simple Lie algebras are obtained from
similar discriminants.
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Theorem 3.7 The Lie subalgebra L(D) is of finite dimension if D = D(x, p)
is the discriminant of a symmetric Legendre subvariety, where (x : p) is a sym-
plectic homogeneous coordinate of P2n−1. Moreover, every simple Lie algebra
g �� sp(n) or sl(n) is obtained in this way.

We have already seen the quartics F which yield sp(n) and sl(n) as L(F ) in
Examples 2.7 and 2.8.

Example 3.8 Let S be a regular symmetric matrix of size n and define the
inner product on Cn by

〈)x, )y〉 = )xSt)y.

Furthermore, endow the 2n-dimensional vector space Cn ⊗C2 = Cn ⊕Cn with

the skew inner product by
(

0 S
−S 0

)
. Let Q be the quadratic hypersurface

defined by 〈)x, )x〉 = 0 in Pn−1. Then the image of P1×Q by the Segre embedding

P1 × Pn−1 ↪→ P2n−1

is a symmetric Legendre subvariety. The discriminant is equal to the difference
of the two sides of the Cauchy-Schwarz inequality, that is,

D()x, )p) = 〈)x, )p〉2 − 〈)x, )x〉〈)p, )p〉

for the coordinate ()x : )p) ∈ P(Cn⊕Cn). The Lie algebra L(D) is the orthogonal
Lie algebra o(n+ 4).

4 Jordan algebra and Legendre subvariety

Definition 4.1 A vector space J with a multiplication J×J −→ J is a Jordan
algebra if

xy = yx and x2(yx) = (x2y)x

hold for every x, y ∈ J.

Example 4.2 If J is an associative algebra, then J with the new multiplication
x · y = 1

2 (xy + yx) is a Jordan algebra.

The notion of center and (semi-)simplicity is defined as usual. We restrict
ourselves to central semi-simple Jordan algebras over C (cf. [3], [9, Appendix
1]).

For an element x of a finite dimensional Jordan algebra J, let ∆(x) be the
determinant of the multiplication by x:

∆(x) := det[J x−→ J] ∈ C.

Then ∆(x) is a homogeneous polynomial of x. If J is simple, then ∆(x) is a some
power of an irreducible polynomial F (x), which is called the reduced norm of J.
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An arbitrary power of F (x) is called a norm. A semi-simple Jordan algebra is
the direct product of simple ones. A polynomial on it is called a norm if it is
product of norms of simple factors.

Now we pay our attentions to Jordan algebras J with a cubic norm Nm :
J −→ C. Table 2 is the classification of them. Note that they have a quadratic
map J � x �→ x′ ∈ J such that xx′ = Nm(x) · 1. For example, x′ is the cofactor
matrix in the cases (3) and (4) of the table. Imitating (3.3) we consider the
morphism

(4.3) J −→ P(C ⊕ J ⊕ J ⊕ C), x �−→ (1 : x : x′ : Nm(x)).

The closure of the image of this morphism is called the (cubic) Veronese variety
over J. In the case (1) of the table, this is the cubic rational curve.

Proposition 4.4 The Veronese variety over a Jordan algebra with a cubic
norm is a symmetric Legendre subvariety. Moreover, the converse holds also.

For example, the projective variety P1 × Q ⊂ P2n−1 in (3.8) is the cu-
bic Veronese over the decomposable Jordan algebra of (2) in Table 2. These
Veronese variety is symmetric since the symmetric Lie algebra J⊕ (J�J)⊕ J of
J acts on it transitively. Combining with Theorem 3.7, we have that all simple
Lie algebra other than sp(n) and sl(n) are obtained from cubic Jordan algebras.
9

We explain this connection more directly in the next section.

5 G2-decomposition of simple Lie algebras

We return to the graded Lie algebra

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2

in §2 and consider the subset

(5.1) Xg = {[y] | [y, [y, xθ]] = 0}.

of P(g−1).

Proposition 5.2 Xg is empty if and only if g is isomorphic to the symplectic
Lie algebra sp(n).

In the sequel, we assume that Xg is non-empty.

9The quartic discriminant form D(a, b, c, d) is equal to

Trace{(ad − b�c)2 − k(b′ − ac)�(c′ − db)}

for (a, b, c, d) ∈ C ⊕ J ⊕ J ⊕ C, where k is a constant and the trace is taken over J.
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Proposition 5.3 There is a Lie subalgebra s ⊂ g which is isomorphic to sl(3)
and which contains the sl(2)-triple {xθ, h, yθ}.

We decompose g by the adjoint action of this subalgebra s � sl(3). s it-
self is one irreducible component. An irreducible component other than s is
either trivial or isomorphic to the standard 3-dimensional representation V or
its dual V ∨. Let g0̄ be the normalizer of s. Let g1̄ (resp. g2̄) be the union of
subrepresentations isomorphic to V (resp. V ∨). Then the decomposition

g = g0̄ ⊕ g1̄ ⊕ g2̄,

is a Lie algebra grading by integers modulo 3. By definition (and the complete
reducibility), there exists a vector space J, which is trivial as representation of
s, such that

g1̄
∼= J ⊗C V, g2̄

∼= J
∨ ⊗C V ∨.

The bracket [ , ] of g induces g1̄ × g1̄ → g2̄, J × J → J
∨ and finally the cubic

map N : J −→ C.

Proposition 5.5 If the cubic map N : J −→ C is zero, then g is isomorphic
to the special linear Lie algebra sl(n) with n ≥ 3.

Proposition 5.5 If N : J −→ C is not zero, then J is a Jordan algebra and
N is its cubic norm.

Conversely, if Nm : J −→ C is the cubic norm of a Jordan algebra, then the
multiplication of J and quadratic map J � x �→ x′ ∈ J defines a bracket [ , ] on

(5.7)
g = (sl(3) ⊕ J�J) ⊕ (J ⊗ C3) ⊕ (J∨ ⊗ C3),

� � �
g0̄ g1̄ g2̄

which satisfies the Jacobi law. This makes g a simple Lie algebra.
The six roots of sl(3) and the weights of 3-dimensional representations locate

in R2 as follows

◦ : 6 roots of sl(3)
v : 3 weights of V
a : 3 weights of V ∨

◦

◦ a v ◦

v a

◦ a v ◦

◦

Figure 1
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and the Lie algebra (5.7) is visualized as follows:

C

C J
∨

J C

J , J
∨

C J
∨

J C

C

Figure 2 , = C2 ⊕ (J�J)

The six C’s on the outermost orbits and C2 at the center make the Lie
algebra sl(3). If the twelve vertices in Figure 1 are all roots, then it is a root
system of G2. Hence it seems natural to call Figure 2 the decomposition of G2

type. 10

The Xg in (5.1) is a Legendre subvariety with respect to the skew inner
product [ , ] : g−1 × g−1 −→ g−2 � C. This is the Veronese variety of the
Jordan algebra in (5.7). Thus simple Lie algebras and symmetric Legendre
subvarieties are related with each other as Jordan algebras are their same root.

Postscript
I was led to this consideration in my study of primary Fano 3-folds. 11

Though I have not still found any reason, four homogeneous spaces related with
10Jordan algebra J is the direct sum of C · 1 and the traceless part J0 and the Lie

algebra J�J is isomorphic to J ⊕ Der J. Hence, rearranging (5.7) and Figure 2, we have

g =




C

C C C C

C C2 C

C C C C

C




⊕




J0 J0

J0 J0 J0

J0 J0


⊕ Der J,

� �

Der O O0 ⊗ J0

where O is the octanion algebra and O0 is the subspace of pure imaginary ones. This con-
structuion of Lie algebras is the last row of the Freudenthal magic square. See Theorem 4.13
in [10].

11A smooth complete algebraic variety is called Fano if the anti-canonical class −K is ample
and primary if the Picard group is generated by −K. Note that a primary Fano variety does
not exist in dimension ≤ 2 over algebraically closed fields. There are exactly 10 types of
primary Fano 3-folds, whose genera are 2 ≤ g ≤ 10 and g = 12. The Fano 3-folds V22 of genus
12 are still mysterious though we have several nice descriptions of them (see [17] [18]).
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cubic Jodan algebras appeared as key varieties of Fano 3-folds of genus g = 8, 9
and 10 when I classified them by vector bundles (cf. [7]). In the case g = 8,
the homogeneous space is the 8-dimensional Grassmannian, which is the Severi
variety12 associated with the cubic Jordan algebra Alt6C. In the case g = 9,
it is the 6-dimensional symplectic (or Lagrangian) Grassmannian, which is the
Veronese variety over the Jordan algebra Sym3C. In the case g = 10, it is the
minimal (co-)adjoint orbit in P13 = P(g) of the simple Lie algebra g of type
G2. As explained in (2.9), this is the closure of the image of the morphism
C5 −→ P13 defined by 14 polynomials of Cartan.

Finally I mention about a connection with the existing literatures in my
best knowledge. The condition that the Lie subalgebra L(F ) ⊂ C[x, p, z] do not
contain a polynomial of degree ≥ 5 is equivalent to the system of axioms of the
symplectic triple system defined in [2] and [13], and to that of the Freudenthal
triple system in [6]. It is proved in [2] that every simple Lie algebra is obtained
from such a triple system. 13 The equivalence of such triple systems and cubic
Jordan algebras is proved in [6].

I would like to thank Prof. Keizō Yamaguchi for his interest in this research
and invaluable suggestions.

September 2, 1996 in Nagoya
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