p.715, Corollary 4.3: $\zeta \cdot \mathbf{v} = 0$ should be $\zeta^{\circ} \cdot \mathbf{v} = 0$.

In the proof: The second sentence 'As $\zeta_{\mathbb{R}}^{\circ}$ -stability implies the $\zeta_{\mathbb{R}}$ -stability, τ is surjective thanks to Proposition 4.1(1)' is ridiculous, as we cannot assume both $\zeta \cdot \mathbf{v} = 0$ and $\zeta^{\circ} \cdot \mathbf{v} = 0$. The proof should be corrected as follows:

First assume σ is injective and τ is surjective everywhere. Then the argument goes through to get a contradiction. Therefore σ has a kernel or τ has a cokernel at a point $\xi \in X_{\zeta^{\circ}}$. If σ has a kernel, the argument goes through. If τ has a cokernel at ξ , we consider $\tau_{\xi}^* \colon V \to \mathcal{R}_{\xi}^*$ and take $0 \neq \eta \in \text{Ker } \tau_{\xi}^*$. Then the same argument as in the case σ has a kernel shows η is an isomorphism.