幾何学」演習問題

担当: 中島 啓 TA: 木村嘉之, 森谷駿二, 山川大亮

2007年6月27日(水)

先调の演習問題の略解は

http://www.math.kyoto-u.ac.jp/~nakajima/Lecture/07_Kika1.html を参照のこと.

問題 58. (1) n 次元 C^{∞} 級多様体 M 上に n 次微分形式 ω で、M 上のすべての点 p で、 ω_n が0とならないものが与えられたとする。このとき、M上に向きが次の条件を満すように 与えられることを示せ。

向きを与える座標 $\varphi_{\alpha} \colon U_{\alpha} \to U'_{\alpha}$ によって $\omega = f dx_1 \wedge \cdots \wedge dx_N$ と表わしたときに f > 0となる。

(2) 逆に、M に向きが与えられたとき、上の性質をみたすような、いたるところ0 にな らなn 次微分形式 ω が存在することを証明せよ。

問題 59. n 次元球面 S^n は向きづけ可能であることを証明せよ。

問題 60. (1) メビウスの帯が向きづけ可能でないことを証明せよ。

(2) 2次元実射影空間 $\mathbf{R}P^2$ は向きづけ可能でないことを証明せよ。

ヒント: $\mathbf{R}P^2$ は、メビウスの帯の端に円板を貼って得られることを、まず示せ。

問題 61. (1) 問題 33 の状況で、n=m の場合を考え、写像 $f\colon \mathbf{C}^n\to\mathbf{C}^n$ は同じよう に各変数について正則であるとする。このとき、 $z_i = x_i + iy_i$ によって \mathbb{C}^n に座標を (x_1,y_1,\ldots,x_n,y_n) によって入れる。このとき f のヤコビ行列の行列式が常に非負であるこ とを証明せよ。

(2) 複素射影空間 $\mathbb{C}P^n$ が向きづけ可能であることを証明せよ。

問題 62. f を S^1 上の C^∞ 級関数とし、問題 48 のように dx を取って、 S^1 上の 1 次微分形 式 $\alpha = f(x)dx$ を考える。このとき $\alpha = dg$ となるような S^1 上の C^∞ 級関数 g が存在する ための必要十分条件は、 $\int_{S^1} \alpha = \int_0^1 f(x) dx = 0$ であることを証明せよ。

必要条件であることは、来週紹介する予定のストークスの定理の特別な場合である。

問題 $63. \sigma$ -コンパクトな位相空間は、パラコンパクトであることを証明せよ。

問題 **64.** M をコンパクトな C^∞ 級多様体とし, M を覆う有限個の座標系 $\varphi_1\colon U_1\to U_1',\ldots,\varphi_N\colon U_N\to U_N'$ と、開被覆 U_1,\ldots,U_N に従属した 1 の分割 ρ_1,\ldots,ρ_N を取る.このとき C^∞ 級写像

$$F(x) = (\rho_1(x), \rho_1(x)\varphi_1(x), \dots, \rho_N(x), \rho_N(x)\varphi_N(x)) \in \mathbf{R}^{(n+1)N}$$

がMの $\mathbf{R}^{(n+1)N}$ への埋め込みであることを証明せよ.