LECTURES AT THE UNIVERSITY OF HONG KONG
— A GEOMETRIC CONSTRUCTION OF ALGEBRAS

HIRAKU NAKAJIMA

The difference between this note and what I distributed during lectures are the followings:

(1) Several errors are corrected.

(2) §5 is re-written. I explain the convolution on €, H.(X™) first.

(3) §8 is re-written so that the result holds for general quiver varieties, not necessarily fixed
point sets of Hilbert schemes.

(4) a subsection on crystal (§9.1) is included.

LECTURE ANNOUNCEMENT

The theme of lectures is an interplay of representation theory and geometry. I will explain
a geometric construction of affine Lie algebras (or their g-analogue) and their representations.
The spaces, which I will use, are moduli spaces of vector bundles over complex surfaces or
their variant. These spaces have been studied intensively from a geometric point of view, but
their relation to the representation theory is a new and hot topic.

Our method is an application of more general technique which has been used successfully
in the representation theory during the last several decades. It is the construction of algebras
by the convolution product, defined on homology groups (or their variants) of manifolds. For
example, Weyl groups and affine Hecke algebras were constructed by convolutions on homology
groups and equivariant K-homology groups of flag varieties (Springer, Borho-MacPherson,
Lusztig, Ginzburg, Kazhdan-Lusztig, etc). Also upper triangular parts of quantum enveloping
algebras and their canonical bases were constructed by convolutions using perverse sheaves on
moduli spaces of representations of quivers (Lusztig).

More precise plan of the lectures is the following: I will first prepare geometric staff, i.e.,
the convolution product on homology groups. Then I will introduce Hilbert schemes of points
on complex surfaces, and connect their homology groups with infinite dimensional Heisenberg
algebras. Then I will introduce quiver varieties, and study their homology groups. As an
application, we get a geometric construction of Kashiwara’s crystal base. If I still have time, I
will explain a construction of quantum affine algebras via the convolution on the equivariant
K-groups of quiver varieties.
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1. CONVOLUTION PRODUCT

1.1. General definition. Let X, Y be finite sets. Let F(X), F(Y) the vector space of C-
valued functions on X, Y. If a G-valued fuction K(z,y) on X X Y is given, we can define an
operator F(Y) — F(X) by

FV)3 f(y) — (K f)(z) € K(@,y)f(y) € F(X).

This is called the convolution product of K and f.
Suppose X, Y, Z are finite sets. For given functions K(z,y) on X x Y and K'(y, z) on
Y x Z, we consider the composition of operators given by the convolution products:

=S Ky (Z K’(y,zmz)) -

yey z2€EZ

This is equal to

> (Z K(z,y)K'(y, z)) f(z2).

z2€Z \yey

Hence if we define (K * K')(z,z) = o > yey K(2,y)K'(y, 2), then the composite of operators is
given again by the convolution product.

If we take X =Y, then the vector space of C-valued functions on X x X, which we denote
by F(X x X) is an algebra by the above convolution product K x K'. It is clearly associative:

(K+«K')xK"=K* (K'x K").
And the unit is given by the characteristic function of the diagonal Ax:
1 ifzx=y,
0 ifzx#y.

The algebra F(X x X) has a natural representation. Namely F(X) under the convolution
product !

KxAx=Ax*xK =K, where AX(x,:L')={

Example 1.1 (Trivial). Suppose #X = n. Then F(X x X) is the matrix algebra of n x n
matrices. F(X) is the vector representation.

This example means that we need to consider a subalgebra of F(X x X) in order to get an
interersting algebra.

1.2. Iwahori-Hecke algebra (due to Iwahori). The Iwahori-Hecke algebra #, is a ¢-
analogue of the group ring of the Weyl group W associated with a complex simple Lie algebra
g. Here ¢ is an indeterminate (parameter). We consider the simplest case g = sly. In this
case, the Weyl group W is Z/2Z. The Iwahori-Hecke algebra H, is the C[g, ¢~ ']-algebra with
generator 7" and the defining relation

(T—q)(T+1)=0.

Note that the relation reduces to 7? = 1 if ¢ = 1.

Let k = F, be the finite field of ¢ elements. We consider the projective line P! (k) of k, the
space of 1-dimensional subspaces of k2. We consider a natural action of SLy(k) on P!(k), and
the diagonal action on the product P!'(k) x P!(k). Let F(P!(k) x P'(k))S"2(*) be the vector
space of C-valued functions on P'(k) x P'(k) which is invariant under the SL,(k)-action.

By the following elementary result, F(P'(k) x P'(k))%"2(%) is an associative algebra (with
unit) by the convolution.



Lemma 1.2. Suppose a group G acts on X. Let F(X x X)% be the vector space of functions
on X x X invariant under the diagonal action of G. Then it is a subalgebra of F(X x X) with
respect to multiplication given by the convolution.

The vector space F(X x X) has a base given by characteristic functions of G-orbits in
X x X. In our case X = P'(k), G = SLy(k), it is easy to see that the diagonal action has two
orbits: the diagonal A and the complement of the diagonal U <" P (k) x PY(k) \ A. Let us
denote the characteristic functions by the same notation: A and U. In order to identify the
algebra F(P! (k) x P*(k))S2(¥) it is enough to compute the convolution products A% A, AU,
UxA, U=xU. But the first three are trivial. A is unit, so Ax A=A AxU=U,UxA="U.
Let us compute the last one:

UU)(z,2) = > Ulz,y)Uly,2) = #{y €P'(k) | y # z,y # 2}

yeP1(k)
_Jg-1 ifz#y,
N q if v =y,

where we have used #P' (k) = ¢+ 1. Thus we finally get
UxU = (¢g— 1)U+ qA,
Or, equivalently
(U—qA)*(U+A)=0.

After the substitution U — T'; A — 1, this is the defining relation of the Iwahori-Hecke algebra
for 5[2.

This example can be generalized to the case of arbitary Iwahori-Hecke algebra associated
with a complex simple Lie algebra g, by considering the flag variety G/B instead of P! (k).

1.3. The quantum universal enveloping algebra U,(sl;) (due to Beilinson-Lusztig-
MacPherson). Consider the Lie algebra sly(C). It is the complex Lie algebra generated

by
01 00 1 0
ol L R B Pt

with the defining relation
[h,e] =2e, [h, f]=2f [e f]=h

The universal enveloping algebra U(sly) is the associative algebra with generators e, f, h and
the same defining relation, where [z, y] is understood as zy — yz. Geometrically sly(C) is the
space of left invariant vector fields on the Lie group SLy(C), and U(sly) is the ring of invariant
differential operators on SLy(C). (A vector field is a 1st order differential operator.)

Let us define a g-analogue of U(sly), called the quantum enveloping algebra of Drinfeld-
Jimbo, attached to sly. Let v be an indeterminate. (We will use the finite field F, again, and
the parameter v will be given by ,/7.)

Let us introduce v-intergers:

V—v"



Let U,(sly) be the associative C(v)-algebra with generators e, f, k* and the defining rela-
tions

kk'=k"tk =1,
kek™' = v?e, kfk=' =v7%f,
k—k=!
ef — fe =

v—ovt

(1.3)

Heuristically we can think k¥ = v®. If we make v — 1, then we recover the defining relations of
5[2.

The representation theory (finite dimensional representations) of U,(sly) is known to be
the same as that of sly(C). In particular, we have the unique irreducible representation of
dimension N + 1 for each N € Z>,. It is realized on the space of polynomials in z with degree
< N as

[N—d+1],2%! ifd>0,

def. _ def.
kxd et UN ded, 6.’L‘d et . ,
0 ifd =0,

Fat et [d+ 1],2%! ifd < N,
0 ifd=N.

(The defining relation (1.3) follows from the identity [N — d],[d + 1], — [d],[N —d + 1], =
[N - 2d]v-)

We give a geometric realization of U, (sly), which is nothing to do with the ring of differential
operators on SLy(C). In fact, the Lie group SLy(C) is absent in the following construction.

Let k = T, be the finite field of g elements. Set v = ,/g. Fix a positive integer N. Let G
be the Grassmann variety of all subspaces of k. It is a disjoint union of G4 with 0 < d < N,
where G, is the Grassmann variety of d-dimensional subspace of k%Y. We consider the action
of GLy(k) on G and the diagonal action on G x G. Then the vector space F(G x G)Gt~ (k) of
C-valued GLy (k)-invariant functions on G X G is an associative algebra by the convolution.

It has a base given by the characteristic functions of orbits.

Lemma 1.4. The GL,(k)-orbits in G X G are parametrized by 2 X 2-matrices

a1 Q12
G21 (22
with entries a;; € Z>q satisfying a1 + a1z + az + azp = N. The corresponding orbit is the set
of pairs (V, V') of subspaces of k™ with
dlm(V N VI) = a1y, dlm(V/V N VI) = a12,
dim(V'/V V') = ay, dim(EY/V + V') = ag.

Let A, denote the diagonal in G; X G;. The corresponding matrix is [d 0 } . Let e4 be

0 N—-d
the orbit
{(V,V|V cV' dimV =d—1,dimV’' = d}.

d—-1 0

1 N_ d] . Exchanging the role of V and V', we also define

The corresponding matrix is [

fa:

. . d 0
fa={(V, V)|V DOV dmV =d+1,dimV' =d} +— [1 N—d—1:|'



Let us denote the characteristic functions by the same symbol as orbits. Let e def. Zizv:o ed,

fdéf' Zévzo fa- We compute the convolution products of these functions. The followings are
obvious:

Ad*Adl :5dd’Ad7 Ad*g: € x Ad—|—17 Ad*f: f* Ad—l-
Let us compute the commutator [e, f] =&+ f— fxe. We have
ExHV,V)=4#{V"Ck¥ |V c V' D>V, dimV" =dimV +1 = dim V' + 1},
(fN* OV, V) =#{V" ckEN |VOV”"c V' dmV" =dimV — 1 =dim V' —1}.
In particular, the both are 0 unless dim V' = dim V' and dim VNV’ = dim V —1 (or equivalently
dimV +V’'=dimV +1). Moreover, if V # V' then we must have V" =V + V' V" =V nNV".
This means that the both functions take values 1 on this pair (V,V'). The only remaining case
is V =V’'. We have
Ex YV, V) =#{V" CkN |V Cc V" dimV" =dimV + 1} = #P(k" V),
(F*)(V,V)=#{V" CkY |V O V" dim V" =dimV — 1} = #P(V*),
where P( ) is the projective space of 1-dimensional subspace of a given vector space. We have

#P(kN/V) =1 +q+q2 4 .. '+qN—dimV—1’ #P(V*) =1 +q+q2 4o +qdimV—1'

Thus we have

UI_N(E* f)(V, V) — U1—N(J7* WV, V) = o1=N (,U2dimV 4p2dimVE2 ,UZN—ZdimV—Q)

— p2dimV-N+1 4 2dimV-N-1_ o  N-2dimV-1 _ [N — 2dim V],.

We define

def. d—N def. —d
€ = E v €4, f = E v fd:
d

d

and also define
k=Y oV A,
d

Then the above computation means that e, f, k satisfy the defining relation (1.3) with param-
eter v = ,/q. Thus we have an algebra homomorphism

®: U,_ sq(sly) = F(G x G)FvE),

This cannot be an isomorphism since dim F(G x G)®*¥®) < oo, while dim U,_ ;(sl) = oc.
However one can show that

Proposition 1.5. The homomorphism ® is surjective. So F(G x G)U~v &) s q quotient of
U, /q(sly) divided by a two-sided ideal Iy.



Consider the constant function ¢; on G4;. Then we have

k*Cd — UN—QdC ,
(exca)(V) = v N#{V' |V C V', dimV + 1 = dim V' = d}
o if dimV #d— 1,
| vENH#P(EY/V)  otherwise,

=[N —d+1], ca-1(V)
(frea)(V)=v V' |V D V' dimV —1 =dim V' = d}
_{0 ifdimV £d+1,
v 4#P(V*) otherwise,
= [d+ 1], ca1 (V).

These equations mean that the representation F(G)Lv®*) of F(G x G)GL~ (k) is isomorphic to
the (IV + 1)-dimensional irreducible representation of U, (sly) via the homomorphism &.

This example can be generalized to the quantized universal enveloping algebra U, (sl,) by
considering the n-step partial flag varieties

{o=V,cwvic---cV,=k"}

instead of the Grassmann variety. Here the dimensions of V; is not fixed as above. So the

above variety is a disjoint union of varieties of various dimensions.
However, a generalization of this example to U,(g) for arbitary g is still open, even for g of
classical type.
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2. CONVOLUTION ON BOREL-MOORE HOMOLOGY

2.1. Convolution on cohomology. We can replace finite sets by the Euclidean space R™,
the summation over the finite set by the integration in the definition of the convolution product.
Namely, if X = R™, Y = R" with coordinates (z1,...,%n), (Y1,---,Yn), then a given function
K(z1,...,Zm,Y1,--.,Yn) on X X Y defines an operator from the space of functions on Y to
the space of functions X by the formula

def.
(K*f)(xla:xm) = K(xla-"axm:yla'",yn)f(yla"'ayn) dyldyn
R

The Fourier transform is an example of an operator given by the convolution. Strictly speaking,
we must impose some restrictions on functions to have convergence of the integration.

We can further replace R™, R" by oriented C'*°-manifolds and functions by differential forms
on the manifolds. Let M and N be oriented C*°-manifolds. Let A*(M), A*(N) be the vector
space of all (complex valued) differential form on M and N. If a differential form K on M x N
is given, we want to define an operator A*(N) — A*(M) by

(2.1) A*(N)BaHK*adg'/K/\aEA*(M).
N

More precisely, K A « is the exterior product of K and the pullback of & to M x N, and [ N
is the integration of K A « over each {z} x N. If M and N are compact, the integration is
well-defined. We assume this condition for a moment. However it will be too restrictive for
our later purpose.

The composite of this convolution is again a convolution of this type: If K (resp. K') is a
differential form on M x N (resp. N x O) with the above condition, then we have

K*(K’*a):/o</NK/\K')/\a.

The space A*(M) of differential forms is too big. We work on the de Rham cohomology
group H*(M), which is by definition, the space of closed forms modulo the space of exact
forms:

HA (M) def. {a € A¥(M) | dae = 0} '
{dp € AK(M) | p € AF1(M)}
(We always consider the cohomology group with complex coefficients. So we do not write
H¥(M,C). Moreover, all results which we will use on cohomology can be found in a standard
textbook, e.g., [2].)
If K is a closed p-form on M x N, then we have

dM</KAOZ>:/deNKACk /K/\dNCk
N N

where we put the suffix to the exterior differential operator in order to emphasize the manifold
where the relevant differential form is defined. In particular, the convolution product maps
closed (resp. exact) forms to closed (resp. exact) forms. Therefore, we have a well-defined
operator

(2.2) K x-: H*(N) — H*(M).
Let us consider the degree more precisely. If « is a k-form, then K A « is (k + p)-form, so
Jy K ANais (k+ p — dim N)-form.

Moreover, if K is written as K = dy«nF', then the operator on the de Rham cohomology
group is 0 as

/KA@Z/(dMXNF)Aa:/dMXN(F/\O!):O,
N N

N



where we have used the Stokes theorem in the last equality. This means that the operator
(2.2) depends only on the class in

[K] € H*(M x N).

Take M = N. Then the cohomology group H*(M x M) has a structure of an associative
algebra by the convolution.

Example 2.3. Suppose that M is a compact oriented C'*°-manifold as above. By the Kiinneth
isomorphism H*(M x M) = H*(M)® H*(M), together with the Poincaré duality (H*(M))" =
HYmM=k(\r) the algebra H*(M x M) is isomorphic to the matrix algebra End(H*(M)).

2.2. Borel-Moore homology. As illustrated by above example, the condition that M is
compact is restrictive, and we do not get an interesting algebra by the convolution product on

cohomology groups.
If we carefully see the definition (2.1), we find that it is enough to impose the following:

the restriction of the projection M x N — M to the support of K is proper.

Recall that a continuous map between topological spaces is proper, if the inverse image of a
compact set is again compact. Then the above integration is convergent. Thus the operator
is well-defined.

In our later examples, we have the following situation: Let Z be a fixed closed subset
Z C M x N such that

the restriction of the projection M x N — M to Z is proper.
Then we consider a variant of the de Rham cohomology group
{K | dyxnK = 0, the support of K is contained in a small neighbourhood of Z}

{dpxnF | the support of F is contained in a small neighbourhood of Z}

Then the operator H*(N) — H*(M) is well-defined. Namely the integration is convergent,
and the result is independent of the choice of the representative in the above coset.

The above definition is a little bit naive. A rigorous defintion is given by the relative
cohomology group

H*(M x N,M x N\ Z),

which is, by definition, the cohomology groups of the following complex:

d 0

o = AF(M x N) @ AF {(M x N\ Z) M>A’“+1(M X N)@® A*(M x N\ Z) —---,
where j: M x N\ Z — M x N is the inclusion. For most of our purpose, the above naive
definition is sufficient.

For the study of the convolution product, it is more natural to consider the above cohomology
group than the usual cohomology group. The above is (a variant of) the so-called Borel-Moore
homology group. We give the definition and list its properties.

When X is a topological space which can be embedded as a closed subset in an oriented
C*°-manifold M, we define

Hy(X) % gamM—k(pr A\ X).

The relative cohomology group is defined as above. (NB: We will never use the ordinary
homology group. So there is no confusion in the notation.)

We must check that the right hand side is independent of the choice of M. Let us study it
in an example.

0 if k#n,

Hi(®') = H™H(R") = {cc if k = n.



In particular, our Borel-Moore homology is different from the usual homology. Consider the
embedding R in R**! as a linear subspace. So we might define as

Hk(Rn) — Hn+17k (Rn+1 ’ Rn+1 \ Rn)

Let us check that this gives us the same answer. By the Kiinneth theorem, the above is equal
to

P H®R) @ H(RR\{0})

So the assertion follows from

Lemma 2.4.

0 ifqg#l,

HIRR\ {0}) = {C T

Since the proof is so simple. We give it.

Proof. Obviously the cohomology group vanishes unless ¢ = 0, 1. Consider the case ¢ = 0
first. Let j: R\ {0} — R be the inclusion. By the above definition of the relative cohomology
group, a class is represented by a closed form « such that j*a = 0. A closed 0-form on R is
nothing but a constant function. And j*a = 0 means that the constant must be 0.

Next consider the case ¢ = 1. A 1-form « on R is written as

a = f(z)dz.
By the definition of the relative cohomology group, H'(R,R \ {0}) is represented by a pair
(f(z)dz, g(z)) of 1-form on R and a function on R\ {0} such that dg = j* f(z)dz, i.e., ¢'(z) =

f(z) for x € R\{0}. If there exists a function F'(z) on R such that F'(z) = f(z), j*F(z) = g(z),
then the class (f(x)dz, g(z)) is zero. We define a map

H'(R,R\ {0}) > (f()dz, g(z)) — /_g f(z)dz — (g(e) — g(—¢)) € C,

where ¢ is a positive real number. It is independent of the choice of the representative of the
class. Namely, if F'(z) = f(z), j*F(z) = g(x) for some F(x), then the above is 0. Moreover,
since ¢'(z) = f(z) outside {0}, the above is independent of .

Obviously the map is linear and surjective. Let us show that is is injective. Define

Fla) = / "0t + g(—2).

It defines a function on R and satisfies df = f(z)dx. It satisfies F(—¢) = g(—¢). If
(f(x)dz, g(x)) is contained in the kernel of the above homomorphism, then it means that
F(e) = g(¢). Then (f(x)dxz, g(x)) = dF, so it is 0 as a cohomology class. O

Note that we can take a representative (f(z)dz, g(x)) so that its support is contained in a
given arbitrary small neighbourhood of 0. In this sense, we recover the naive definition.
Our canonical isomorphism

H*F(R") — H™ 'R (R R\ {0))
is given by
[a] — [@ A f(@n41)dTni, 0 A g(2n4a)] = [o] ALf (@ni1)denia, 9(2na)],
where (f(x)dx,g) is a class such that

| 1@yis— (g - g2 =1

This [f(2ni1)dTni1, g(Tne1)] is an example of the Thom class.



Theorem 2.5. If E is an oriented C'*™ vector bundle over a C'*°-manifold M of rank r, then
there exists a unique class ® € H"(E,E\ M) such that

[ a=1

for each fiber E, of E. Here M 1is embedded in E as the 0-section.

This class is called the Thom class of E. And as above, the support of ® is contained in
arbitrary small neighbourhood of M.

If S is an oriented closed submanifold of M, then its tubular neighbourhood is diffeomor-
phic to the normal bundle Ng/,. We can consider the Thom class of Ng/ as a class of
HeedmS(Af M\ S). If X is a closed subset of S, then the homomorphism

HYImS=F(G S\ X) > ar an® e H™M k(M M\ X)

is an isomorphism. This means that two definitions of the Borel-Moore homology group Hy(X),
one using S and the other using M, are canonically isomorphic. Based on this result, one can
prove

Proposition 2.6. The Borel-Moore homology group Hy(X) = HE¥M-k(M M\ X) is inde-
pendent of the choice of the umbient manifold M.

We list up properties of the Borel-Moore homology, which we will use later.
(Fundamental class of manifolds) Suppose M is a connected oriented C'* manifold.
Then

Hy(M) = HY™M=k(pr),

If K = dim M, then a constant function on M with value 1 is a generator of H°(M). We call
the corresponding element in Hgim, pr (M) the fundamental class of M, and denote it by [M].
Note that it is always nonzero. If M is not necessarily connected, its fundamental class is
defined as a sum of the fundamental classes of connected components.

If S is an oriented submanifold of M, then the fundamental class [S] is identified with the
Thom class of the normal bundle under the two realization of the Borel-Moore homology:

H°(S) 21 +— ®€ HCW"™(M,M\S)
I 7 I I
HdimS(S) > [S] S [S] € HdimS(S)

(Pull-back with support) Suppose that M and N are oriented C'*° manifolds with
dimM = m, dimN = n, and f: M — N is a smooth map. If X C M, Y C N are
closed subsets with f~!(Y) C X, then we have a homomorphism

f*I Hk(Y) — Hk:fn-l—m(X)
as a composite
HE(N,N\Y) L5 B F(M, M\ f7(Y)) — H™E=ntm) (01 M\ X).
This map depends on manifolds M, N, f. A continuous map f: X =Y does not necessarily
induce a homomorphism f*: Hg(Y) = Hg_pnim(X).
In particular, we consider the following situation:

e X is an open subset of Y,
e Y is a closed subset of an oriented C'*°-manifold N.

Then we take M = N \ (Y \ X), which is an open submanifold of N containing X as a closed
subset. Then we have a homomorphism



(Pushforward) (See also Remark 2.11 below) Suppose f: X — Y is a proper continuous
map. Then we have a homomorphism

This is defined as follows. Suppose that X (resp. Y) is embedded in (0,1)™ (resp. R") as a
closed subset. Then the composition

X5y % 0,1)™ >V x[0,1]" = R" x R™

is a closed embedding. The properness of f is used to show that the image is closed. Thus
Hy(X) = H™™ R" x R™,R" x R™ \ X).
We have a map
H™™FRY x R™ R* x R™\ X) — H™™ FR* x R™, R* x R™ \ 'Y x [0,1]™),
ie.,
Hi(X) — Hg(Y x [0,1]™).
By the Kiinneth theorem, we have H(Y x [0,1]™) = H,(Y)® H,([0,1]™). But it is

p+q=k ~~P
easy to see

m ~ J0 ifqg#0,
Hy([0,1) >={C S

The isomorphism for ¢ = 0 is given by

Hy([0,1]™) = H™(R™,R™ \ [0,1]™) > [a, B] a e C,

Rm
where we suppose «,  have support contained in a neighourhood of [0, 1]™ as before.
Thus we have a homomorphism

Ezercise 2.7. Show that f, is independent of various choices. Show that (g o f)., = g. o f..

If X is compact, then the projection P: X — point is proper. Thus we have a map
P,: Hy(X) — Hy(point). But Hy(point) is isomorphic to C, where the constant function on
point with value 1 corresponds to 1 in C. This map is identified with

Hy(X) = HY™M(M, M\ X) 3 [a, 5] — / a € C,
M
where we take the representative [, 5] so that its support is contained in a small neighbourhood
of X.
Ezxercise 2.8. Check the above assertion from the definition.

(Long exact sequence) Let U be an open set of X, and Y = X \ U be the complement.
Let i: Y — X, j: U — X be inclusions. We have a long exact sequence

s Hy(YV) S H(X) D HU) S B (Y) = -

where 6* is the boundary homomorphism.
(Intersection with support) Suppose X, Y are closed subsets of an oriented C'*° manifold
M with dim M = m. Then we can define a cap product (in M)

N: H (X))@ H(Y) = Hipyy (X NY)
from a cup product in the relative cohomology:
U: H¥ (M, M\ X)® H(M,M\Y) — H*Y(M, M\ (X NY)).
Note that this depends on the umbient space M.



Ezercise 2.9. Suppose that X and Y are oriented submanifolds of M. Assume that they
intersect transversally. Namely, T, X +T,Y =T, M for allz € XNY. Then X NY is an
oriented manifold with dimension dim X + dim Y — dim M, where the orientation is induced
from that of X and Y. We have the following formula:

X]n[Y] = [XNY)
in Him X +dimy —dimm (X NY).

(Self-intersection and Euler class) We suppose X,Y are oriented submanifolds of M.
We want to compute the intersection product [X] N [Y] without assuming the intersection
is transverse. The most extreme case is when X = Y. In this case [X]| N [X] is called
self-intersection. Let & € H®Y™X(M M \ X) be the Thom class of the normal bundle.
Let ¥: H*(M,M \ X) — H*(M) be the natural homomorphism, and let i: X — M be the
inclusion. Then it is easy to check that [X]N[X] is identified with *99® under the isomorphism
HOdmX(X) & Hao x—codimx (X). In general, the pullback of the Thom class of an oriented
vector bundle E is called the Euler class of E. Thus *9® is the Euler class of the normal
bundle.

If 7/ is a small pertubation of i: X — M, then ¢ and ¢ is homotopic, so the class i*9® is
equal to i”*9®. Using the above argument backwords, we find

90 = j. ([I'X] N [X]),

where j: /X N X — X is the inclusion. We can choose 7' so that i'X and X is transversal.
Then the right hand side is j,.([#’ X N X]). Combining all these discussions, we get

[X] N [X] = [i'X N X].

(Fundamental class of subvarieties) Let M be a complex manifold, and X C M be a
closed subvariety (not necessarily irreducible) with dim¢ X = n.

Proposition 2.10. We have Hi(X) = 0 for k > 2n and Hy,(X) has a base corresponding to
irreducible components of X of dimension n.

Proof. If X is nonsingular, this is obvious from H(X) = H?"7*(X). We prove the assertion
for general case by induction on dim¢ X. The case dim¢ X = 0 is obvious. We have a closed
subvariety Z C X with dim Z < n such that and X \ Z is nonsingular, of pure dimension n.
We consider the long exact sequence

s Hy(Z) S Hy (X)) D Hy(X\2) S He i (2) — - -

By the induction hypothesis, Hy(Z) = 0 if £ > 2(n — 1). And we have Hy(X \ Z) = 0 if
k > 2n, and H,,(X \ Z) has a base given by fundamental classes of its connected components.
Since the connected components of X \ Z are the irreducible components of X with dimension
n, we get the assertion. O

If X is irreducible, we denote by [X] the class in Ho,(X) given by the above lemma, and
call it the fundamental class. If X is not irreducible, its fundamental class is the sum of
fundamental classes of irreducible components of dimension n.

Remark 2.11. (See also Professor Borel’s note [1].) It is known that our Borel-Moore homology
group Hy(X) is isomorphic to homology group of infinite singular chains with locally finite
support. More precisely, a formal infinite singular chains ), a;0;, where o; is a simplex, a; € C,
is called locally finite, if for any compact subset D C X there are only finitely many nonzero «a;
such that DN Suppo; # (. One can define the boudary operator exactly as in the usual finite
singular chains. It preserves the locally finiteness condition, so one can define the associated
homology group. It is canonically isomorphic to our Hy(X).



Moreover, it is clear that a proper continuous map f: X — Y induces a homomorphism
for He(X) = Hg(Y) exactly as in the case of usual homology groups, since the locally finiteness
condition is preserved under the proper map f.

2.3. Lagrangian construction of the Weyl group (due to Ginzburg). Let M;, My, M;
be oriented C'* manifolds with dim M; = m;. Let Zio C My X My, Zy3 C My x M3 be closed
subsets satisfying

the restrictions of the projections M; X My — My, My x Ms — My to Zio, Zy3 are
proper.

Let pi1a: My x My x M3 — M x My, etc, be the projection. Then we can define the convolution
product by

Hy(Z12) ® Hi(Z23) > K @ K’
> D13« (pTZK mp;?lK,) € Hk—l—l—Tflz(pl?)(ZlQ X M3 N M1 X Zgg)).

More precisely, we take the cup product of p{o K € Hy s (Z12 X M3) and pis K' € Hyyp, (M7 X
Zs3) in My X My x M3. Then the restriction of pi3 to Z1o x M3 N My X Zss is proper by the
above condition. Thus the pushforward is well-defined. Note that pi3(Z12 X M3 N My X Zs3)
is a closed subset of M; x Mj.

Let M = T*P'(C), the cotangent bundle of the complex projective line. It is the set of pairs

T*P'(C) = {(V,§) € P'(C) x End(C*) | £(V) = 0,£(C*) C V'}.
Note that & is nilpotent by the condition. We define the Steinberg variety

Z S {(V1,V2,€) € P'(C) x P'(C) x End(C”) | (V4,€), (V5,€) € T"P*(O)}.

It is a closed subvariety in T*P*(C) x T*P*(C). If & # 0, then V; = V, = Ker¢. Thus it
is contained in the diagonal of T*P'(C) x T*P'(C). Thus Z is a union of two 2-dimensional
complex submanifolds

Arpyg U (P1(C) x P'(C)),
where P! (C) is contained in T*P*(C) as £ = 0 (0-section). Thus
Hy(Z) = CAppic)] ® C[P'(C) x P*(C)].

By the definition, the map Z — T*P!(C) is proper. Hence we have the convolution product
on Hy(Z):

Hy(Z) x Hy(Z) > (K, K") — p13.(p;. K Npi K') € Hy(Z),
where we should notice p13(Z x M NM x Z) = Z.

Theorem 2.12. H,(Z) is isomorphic to the group ring C[Z/27Z)] of the Weyl group Z/2Z of
5[2.

Proof. Let us compute the convolution product
[Ap-pig] * [Areprg),  [Ar-py o] * [P1(C) x PH(C)],
[P'(C) x P'(O)] ¥ [Ar-pig],  [P(C) x PH(C)] * [P'(C) x P*(C)].
The first threes are easy. The intersections are transversal, and we easily get

[Agepio)] * [Arpio)] = [Arrio),
[Agpio] * [P1(C) x P1(C)] = [P1(C) x P1(C)] * [Agpyg] = [PL(C) x P(C)].

Namely [Ar-p1()] is the unit. This holds in general.



Let us consider the last one. We have
[P'(C) x P'(C)] * [P'(C) x P'(C)] = pus« ([P'(C)] x ([P*(C)] N [P*(C)]) x [P*(C)])
= P, ([P'(C)] n [P'(Q)]) [P'(C) x P*(C)],

where [P*(C)] N [P!(C)] is the intersection product in My = T*(P*(C)), and P: P! — point is
the projection to the single point. So P, ([P'(C)] N [P*(C)]) is an element in Hy(point). But it
is considered as a real number by the isomorphism H(point) = C.

Ezercise 2.13. Compute the self-intersection [P!(C)] in T*P*(C):
[P*(C)] N [P*(C)] = —2[point],

where point is the fundamental class of a point in [P*(C)]. (It is independent of the choice of
points.)

By this exercise, T <" [P!(C) x P'(C)] + [Agspicy] satisfies T? = [Apwpi(g)]. Thus we get
the assertion. 0

Remark 2.14. The result of this section and that in §1.2 is deeply connected. The result of §1.2
can be reformulated by using SLy-invariant mixed perverse sheaves on P'. Functions appeared
in §1.2 are traces of the Frobenius homomorphism on stalks of perverse sheaves on rational
points. Forgetting the mixed structure, one can formulate the result on equivariant D-modules
on the complex manifold P! (C) (the Riemann-Hilbert correspondence). It gives the group ring
Z[W], the specialization of the Hecke algebra #, at ¢ = 1. There is a natural passage from
D-modules to cycles in cotangent bundles, i.e., characteristic cycles.

Ezercise 2.15 (See [4]). By considering the cotangent bundle of the Grassmann variety, con-
struct U(sly).
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3. SYMMETRIC GROUPS AND SYMMETRIC FUNCTIONS

The results of this section is well-known. See [2, 1] for example.

3.1. Let &, be the symmetric group of n letters. Let R(S,) be the complexified represen-
tation ring of &,,. It is defined to be the complex vector space generated by the isomorphism
classes [p] of all representations of &, modulo the subspace generated by all [p@® p'] — [p] — [¢']-
It is isomorphic to the space of class functions:

3(6,)% < {f: 6, = C| floxo ") = f(z) forall z,0 € &,,} .

The isomorphism is given by the characters of representations. (Of course, this holds for any
finite group G, not necessarily &,,.)

We define an inner product on R(&,) as usual. Namely, if we identify R(&,,) with §(&,)®"
then it is given by

(f.9) = 6 Y fla)glz)

ze6,

Forgetting the multiplicative structure on R(S,), we define a new multiplication on the
direct sum @, , R(S,,) as follows. (We set Gy = {1}.) Using the inclusion &,, x &,, C Spim,
we consider the induction functor

Indg™ s+ R(Gpn) ® R(G,) = R(Gpin)-

This can be considered as a multiplication on @, R(S,). It is easy to check that this mul-
tiplication is commutative. We also have a comultiplication A: @, R(S,) — @, R(S,) ®
@, R(S,), given by the restriction functor

Resg™ s ¢ R(Gnin) — R(6,) ® R(G,).

It is also easy to check that it is cocommutative.
These operators are examples of covolution products. For x € G,, x &, y € &,,, we define

Z(z,y) def. #Zs,,..(y) if z and y are conjugate in Sy, iy,
0 otherwise,

then the induction operator is identified with

1 1
f(z) — m(f * Z)(y) = mwee’mzxen f(@)Z(z,y),
while the restriction opeator is identified with
1
9 — g5 —(Z*9)@) = g5 — > Z(z,y)9()-

Y€Gmin

Frobenius reciprocity (Res p, p') = (p, Ind p') is expressed as an obvious identity
#6m+n(f * 7, g) = #6m#6n(fa Z * g)-

FEzercise 3.1. (1) Check the above identifications of ind/res operators.

(2) Check that €, R(6,) is a graded commutative/cocommutative Hopf algebra. The
counit €: €, R(S,) — C is the linear map which vanishes on R(S&,) for n > 1, and ¢(1) = 1.
(R(6&p) = C.) The antipode S: @, R(6,) = @D, R(S,) is just —id on R(S,,) for n > 1 and
id on R(Sy). (cf. [3])

We would like to have a concrete description of this Hopf algebebra @, R(S,). For this,
we relate it to the representation ring of general linear groups, and the ring of symmetric



function A. Let V' be a complex vector space. For a representation p: &,, — W, we define a
representation of GL(V') by
Ve @c W

Ve Q W = ,
CiSn] Span{v,)) ® - @ Up(n) ®T — 11 @ - QU ®0(2) | 0 € Gy}

where GL(V') acts through the diagonal action on V®". (C[S,,] is the complexified group ring of
S,.) Then we consider the trace of an element diag(zi,...,zy) € GL(V) (where N = dim V)
on this representation space. It is a symmetric function on zy, ..., xzn. If we make the
dimension of V' large, i.e., letting N — oo, it defines an element in the projective limit, i.e.,
the ring of symmetric functions. For example, if p: &, — W is the trivial representation of
S, then V®" ®qe,] W is the symmetric power S™V, so the corresponding symmetric function
is the nth complete symmetric function h,,:

h, = the sum of all monomials of degree n.

If p: &, — W is the sign representation of &, then V®" ®e, | W is the exterior power A"V,
so the corresponding symmetric function is the nth elementary symmetric function e,,:

€p = Z Li1 Liy -« - Ly -
11<ig<-<lp
This map
(3.2) P Rr(S,) — A

is an algebra homomorphism since
VE® @6 min] (Indg:fj&n WK W’) = (V¥ ®qge,. W) ® (V" ®qe,] W') -

Since it is known that A is a polynomial ring in h,,’s, so the map is surjective.

It is well-known that a conjugacy classe of &,, corresponds to a partition of n: An element
o of G, is a product of cycles, and the lengths of the cycles arranged in decreasing order
can be viewed as a partition of n. Let A be a partition of n and C) be the corresponding
conjugacy class. We identify it with its characteristic function, and consider it as an element
of §(6,)% = R(S,). It is known that it is mapped under (3.2) to

C
iG’\p,\, where py = p),D», --. and p, = a7 + x5 + x5 + - .
n
It is also well-known that A is a polynomial ring in p,’s

A= C[p17p27 o ]
Since {Cy} is a base of F(&,)®, the map (3.2) is injective.

Theorem 3.3. The map (3.2) is an algebra isomorphism.

Since we know that C) is mapped to %p)\, it is easy to describe the comultiplication and

the inner proudct in terms of symmetric functions. They are given by
(34) Apn:1®pn +p,®1,

_ #C\
(3.5) (DA, D) = 5A“#T|A\’

FEzercise 3.6. (This will be used later.) Using Ap, = 1Q pp + pn @ 1, (Pm, Pn) = MOy, and
(Af,g®h) = (f, gh), show (3.5)

where |[A| = n if A is a partition of n.



3.2. The infinite dimensional Heisenberg algebra. Next we relate A to a certain Lie
algebra.
Let us consider A as a polynomial ring C[py, pe,---| of infinitely many variables. Let us
define an operators P[n] acting on A by
multiplication of p_,, ifn <0,
Pin] % )0 if n=0,
R
n—
Opn
It is straightforward to check that P[n] is the hermitian adjoint of P[—n]:
(Plnlf,g) = (f, P[-nlg).
It is also clear that P[n)’s satisfy the following relation
[P[m], P[n]] = Mmbmnoid.
Let s be the Lie algebra with generators P[n| (n € Z), K, d satisfying the defining relation
[Plm], Pln]] = méminoK,  [P[n],K]=0,  [d, P[n]] =nP[n].

This (almost commutative) Lie algebra is called the infinite dimensional Heisenberg algebra.
The space A is a representation of s, where P[n| is mapped to the operator denoted by the
same symbol, and K is mapped to the identity. It is called the Fock space.

Digression: The usual Heisenberg algebra has generators P[n] (n = +1), K and the same
defining relation as above.

The Lie algebra s plays a fundamental role in the representation theory of the affine Lie
algebra g associated with a complex simple Lie algebra g, which is

§=9®Clz,z '|®CK & Cd

ifn > 0.

with the Lie algebra structure
(X ®:"Y " =[X,Y]®2™" +mbpno(X,Y)K, [g,K]=0,
d, X ®z"]=mX ® 2",
where (X,Y) is the Killing form of g.
In physics, s is a fundamental object in string theory. We have the following dictionary:
A <— the Fock space
A 5 1 +— the vaccum vector
P[n] (n < 0) +— creation operator
P[n] (n > 0) +— annihilation operator

Remark 3.7. We have the following nice expression of the generating function of dimensions
of R(6,,), in other words, the character of the Fock space:

Zq" dim R(6&,,) = Zq"#{partitions of n} = H
n=0 d=1

n=0

1
1—q%

This is essentially Dedekind’s n-function. It is an example of a modular form. But the modular
invariance is completely misterious from the view point of symmetric groups.
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4. HILBERT SCHEMES OF POINTS

In this section, we give a geometric object whose homology group has exactly the same
structure of the Hopf algebra studied in the previous section. Since the symmetric group &,
played the crusial role there, one might guess that such a geometric object should be a kind of
a quotient space by &,,. We have such a space, namely a symmetric product S"X = X"/&,,
of a C'"*°-manifold X. We have a candidate for induction and restriction, namely the graph of
the map

ST"X x S§"X > (01,02) — Ci+Cy e Sgmtn X

We can view it as a submanifold of S™X x S*"X x S™X and can define functors by con-
volution. (Although S™X is not a manifold, it is an orbifold, or a V-manifold in Satake’s
terminology. The rational homology group of an orbifold satisfies the Poincaré duality.) How-
ever, it turns out that the homology group of the symmetric product is far simpler than the
representation ring R(S&,). One of the reason of simplicity is that lots of information are lost
when taking the quotient by &,,.

A right object is ‘the Hilbert scheme of points on a complex surface’, which is a resolution
of singularities of the symmetric product of the surface.

Ezercise 4.1. Study the Hopf algebra structure of @, ;) H.(S"X).

Remark 4.2. One can define the structure of a Hopf algebra on @, K°"(X"), where K (X")
is the equivariant K-theory of the n-th Cartesian product X™. If X = C2, it is known that
K®»(X™) is isomorphic to R(G,). However, K (X™) and the Hopf algebra structure can
be defined for any topological space X. Thus one might have interesting examples of Hopf
algebras. This observation is due to Grojnowski ([4] in the next section). An interesting
example was found by Wang [10].

4.1. Definition. In this subsection, we define the Hilbert scheme of points on the complex
plane, and study its geometric properties. We do not use a general construction due to Gro-
thendieck, and give an elementary treatment which works only our special case.

First we do not restrct ourselves to the case when dimension is 2. Let X be the N-dimensional
complex affine space C. We define the Hilbert scheme of points by

X < {I'| I is an ideal of C[z1,...,zy] with dimClzy,...,zx]|/I = n}.

So far, we consider X ™ just a set.

The Hilbert scheme X[ is related to the symmetric product S®X in the following way. If
we have distinct n points pq, ..., p, in X, then it defines both a point in S™X and a point in
XM In fact, if we set

IS {f € Clz1,...,xy] | f vanishes at py, ..., pn},

it is an ideal with dim C[z1,...,2n]/I = n.

However, the difference occurs if some points collide. Consider the case n = 2. In this case,
there are two types of ideals in X[?. The first type is an ideal given by two distinct points p,
q. The other type is an ideal given by

(4.3) I'={f1]f(p) =0, dfp(v) =0}

for some point p € X and nonzero tangent vector v € T,X. This ideal is a limit of ideals
of the first type when ¢ approaches to p. And the information of the direction in which ¢
approaches to p is remembered in /. In the symmetric product, the limit is simply 2p, and
this information is lost. When the number of points is greater than 2, much more complicated
ideals will occur.

Ezercise 4.4. Show that the Hilbert scheme X[™ coincides with the symmetric product S*X
when the dimension of the base space is 1.



Our definition of X™ can be modified to the case when the base space is a projective space
PV. Let Y = PY. We consider the homogeneous coordinate ring of PV, i.e.,

Clzo, 21, .-, zN]-
We define the Hilbert scheme Y™ of points in Y by
{I'| I is a homogeneous ideal of Clxg, x1,...,zyx]| with dim Clzg, z1,...,zx]/I = n}.
Let C[zg,x1,---,Zn]|m be the degree m part of Clzg,z1,...,zx], i.e., the vector space of ho-

mogeneous polynomials of degree m. Then it is clear that
INClzy,z1, .-y ZN|m = Clzo, 21, .. ., TN|m
if m > n. Thus I can be considered as an ideal of
Clzo, z1,. .., TN]
D rnimzn Clzo, 21, - TNl

This is a finite-dimensional space ! Thus Y™ is a subset of the Grassmann manifold of
codimension n subspaces of the above space. For such a subspace S, the condition that it is a
point in Y, ie. it is an ideal, is just

xSCS fori=0,...,N.

This shows that Y™ is a closed subvariety of the Grassmann manifold. This discussion is
easily generalized to the case of a projective variety X C PV (see [8]).

Ezercise 4.5. Let X = CN, Y =PV . Show that X" is an open subset of Y,

We return back to the case X = CV. We give a matriz description of X", Let V =
Clz1,...,zn]/I. We define linear operators B; on V by

B;(f mod I) I 2if mod I.

We define a vector v € V as v “© 1 mod I. Then it is clear that they satisfy the following

properties
(4.6.2) v is a cyclic vector, i.e., if a subspace S C V contains v and is invariant under B;’s, then
it must be the whole space V.

Conversely, if a vector space V and such (By,...,By,v) is given, we can define an ideal [
as a kernel of a surjective homomorphism
C[.Tl,.. .,.TN] > f(xl,. . .,.ZCN) — f(Bl, ,BN)’U evV.

Here f(Bi,...,By) makes sense since [B;, Bj] = 0. Moreover, the surjectivity follows from
the cyclicity of v. Thus I is a point in X", This I is not changed under the action of GL(V)
given by
(Bla SR BNa U) L (gBlg_ln s agBNg_lagU)'
Moreover, it is easy to check that these maps are mutually inverse. We have a set-theoretical
bijection
XM« {(By,...,By,v) | (4.6.1),(4.6.2)} / GL(V).

When a GL(V)-orbit through (B, ..., By,v) is considered as a point in X[, we denote it by

[(Bi,...,By,v)].
For example, consider the case n = 2. Since [B;, B;] = 0, we can make B;’s simultaneously
into upper triangular matrices as

T aq Tg G2
B = By =
1 [ 0 y1:| ) 2 |: 0 y2:| )



If (x1,29,...,2N5) # (Yy1,Y2,---,Yn), then we can simultaneously diagonalize all B;’s. This case

corresponds to the ideal given by distinct two points. Suppose (21, Zg,...,Zx) = (Y1, Y2, - - -, YN)-
Then the cyclicity implies that (a1, as,...,ay) # (0,0,...,0). Now it is not difficult to see
that this case corresponds to an ideal of type (4.3) with v = (a1, as,...,an).

From now on we assume N = 2.

Theorem 4.7. X" is a nonsingular complex manifold of dimension 2n.

Proof. Let X < {(By, By, v) | (4.6.1), (4.6.2)}, i.e., X" = X[/ GL(V).

Step 1. We first show that X[ is a nonsingular complex manifold of dimension 2n + n?.
Let

p: End(V) x End(V) x V — End(V)
be a map defined by
,U'(Bla BQ, U) = [317 BQ]

Then X is an open subset of p~1(0). The differential of y at (By, By, v) is given by
du(&Bl, 5B2, 51)) = [Bl, 532] + [5B1, BQ]
It is enough to show that the cokernel of du is dimension n for any (B;, By, v) € X, We

identify the dual space of End(V) with itself by the inner product given by trace. Then the
cokernel of dy is

{C € End(V) | tr (Cdu(d By, § By, 6v)) = 0 for all (6B, By, v)}
={C € End(V) | [B,,C] = [B,C] = 0}.
This space is isomorphic to V under the map C' — Cv thanks to the conditions (4.6.1), (4.6.2).
This completes the step 1.

Step 2. Next we show that the action of GL(V') on XM is free. Suppose that g € GL(V)
stabilizes (Bi, By, v), i.e.,

gB1g™t = By, gByg™! = By, gv = .

Then S % Ker(g — 1) is a subspace of V' which is invariant under B;, B, and contains v.
Hence S =V by the condition (4.6.2). Thus we have g = 1.

Step 3. We show that every GL(V)-orbit in X is closed. In fact, the closure of an orbit
is a union of orbits, but any orbit cannot be contained in the closure of another orbit since
both have the dimension dim GL(V) by Step 2. In particular, the quotient space X/ GL(V)
is Hausdorff.

Step 4. We show that a bijection

GL(V) x X" 5 T {(z, gz) € X" x X" | g € GL(V)}
is a homeomorphism. Thus we want to show that the inverse of the map is continuous. Suppose
lim ((Byg, By, vi), (9iBuig; > 9iBaig; ' 9ivi)) = ((By, By, v), (9B1g ™, gBag 7, gv)).
We need to show that g; converges to g. Set
Bl =giBig; ', Bj;=giBsig; ", v = g
We have
giB1; = Bi,igi, 9iB2; = B;,igi-



We consider h; = g¢;/||gs||. Then ||h;]| = 1, so we may assume that h; converges to an en-
domorphism h € End(V) with ||h|| = 1 if we replace h; by a subsequence. Therefore, we
have

hBy = gBi1g~"h, hBy;=gBsg~'h.

Suppose ||g;|| = 0o. Then

hv = lim h;v; = lim v; = 0.
72— 00 2—>00 ||gz||
This means the kernel of h contains v and invariant under By, By. Thus h = 0 by (4.6.2).
This contradicts with ||h|| = 1. Therefore ||g;|| is bounded, and may assume g; converges to
¢ € End(V). As above, we have

9B = gBlg_l g, ¢By= ngg_1 g, g'v=gv.

By Step 2 (we do not need the invertibility of ¢'), we have g = ¢’. This completes the proof of
Step 4.

Step 5. The rest of the proof is a standard argument (see e.g., [9, Theorem 2.9.10]). So we
explain it only briefly.

Take (By, By,v) € X[™. Consider the deformation complex at (Bi, B, v):

End(V) “End(V) x End(V) x V % End(V),
where ¢ is the differential of the GL(V)-action, i.e.,
L(é-) = ([57 B1]7 [5: BZ]: S’U)

By the arugment in Step 1, we know that ¢ is injective. We can take a submanifold S of Xl
passing through x such that

(1) its tangent space TS is complementary to Im ¢,
(2) GL(V) - S is an open subset of X and the map GL(V) x S — GL(V) - S is an
isomorphism of complex manifolds.

We can give a structure of a complex manifold to the quotient space X /GL(V) = X"l g0
that the natural map {1} x S — GL(V)-S — X[ is an isomorphism onto an open set of
X, O

Ezercise 4.8. Show that the above complex structure on X[ is isomorphic to the complex
structure induced by

XM ¢ vy ¢ (Grassmann manifold),
where Y = P? and the embedding Y™ C (Grassmann manifold) is the one discussed above.

Remark 4.9. (1) Theorem 4.7 is originally due to Fogarty [6]. Our proof here is completely
different, and somehow similar to the construction of a moduli space in the gauge theory.

(2) We will see later this description of X" is a symplectic quotient (in the category of
complex manifolds). In particular, X" is a symplectic manifold. Originally this result was
proved by Beauville [2].

4.2. The Hilbert-Chow morphism and the punctual Hilbert scheme. Let S™X be
the nth symmetric product of X = C2?. It is an orbifold, locally isomorphic to an open set
of the Euclidean space divided by an action of a finite group. In particular, it has a natural
topology and complex structure. It is an affine algebraic variety, whose coordinate ring is
C[A1, p1y - -+, Ay ). It is known that the ring is generated by Y, A’ u? for various p, g.



The symmetric product has a natural stratification indexed by partitions of n:

S"X =| |S3X,  where S}X = {Z Niz; € S"X
A 7

For example, if A = (1) = (1,...,1), then S{},)X is the open set consisting of distinct n
points. It is a nonsingular locus of S™X, i.e., S"X has singularities along the complement
S" X\ S{inyX. The other extreme is A = (n). Then S7;, X is the set of points with multiplicity
n. Hence S("n)X is isomorphic to X.
Let [(By, By,v)] € X", Since [By, By] = 0, we can make B; and B, simultaneously into
upper triangular matrices as
Al L. x M1 ...k
Bi=|: . |, By=|: .
0 ... M\ 0 ... Wy
We define a map 7: X" — S7X by
7([B1, B2, v]) = (A1, 1) + - + (A, i)

From the above remark on the coordinate ring of S™X, it is clear that this is a morphism
between complex analytic varieties. It is called the Hilbert-Chow morphism. If [(By, By, v)]
corresponds to an ideal given by distinct n points, then it is easy to see that the corresponding
matrices By, By are simultaneously diagonalizable, and the eigenvalues are the given points.
This shows that 7 is an isomorphism on an open set consisting of ideals given by distinct
points, i.e., 7r‘1(S("1n)X).
The other extreme is the inverse image of a point in S("n)X . We define
X a o), XIS (S, X)

*

where 0 is the origin of X = C2. The formar X[" is called the punctual Hilbert scheme. These
are closed subvarieties of X and we have X" = X" x X. If n = 1, X}" = {0}. If n = 2,

X(?] =~ P! by the description explained in §4.1. The inverse image of the other points can be
easily described. If C' € S7.X, then

(4.10) o) 2 X s xP
where A = (A1, Ag, - - -) is a partition of n.
It is known that
Theorem 4.11. Ifn # 0, X([)"] is an (n — 1)-dimensional irreducible subvariety. (If n =0, we
understand X([)n] = {point}.)
This result is due to Briangon [4] (see also Iarrobino [7]). Later we will show a weaker

statement:

(4.12) There is only one (n — 1)-dimensional irreducible component in X(En].

In fact, as was remarked in [5], the stronger statement follows from the weaker statement
together with a result of Gaffney-Lazarsfeld.

Theorem 4.13. 7: X™ — S"X is a resolution of singularities. Namely, 7 is a proper sur-
jective morphism such that

(1) X is nonsingular,
(2) 7 is an isomorphism on W_I(SZ’M)X).
(3) ﬁ_l(San)X) is a dense subset in XM,

Moreover, X™ is irreducible.



Proof. We do not prove that 7 is proper yet. For example, it becomes obvious if we consider
the Hilbert scheme (IPQ)[R] of points on projective plane. Then (]P’2)["] is a projective variety
since it is a subvariety of the Grassmann manifold. In particular, it is compact. We can define
the Hilbert-Chow morphism 7 : (IPQ)[R] — S™(P?). It is clearly proper. Then X" = 7~1(S"X),
where S™X is an open subset of S"P?. Thus the properness is clear.

Another way to show the properness is to identify S"X with the quotient in the geometric
invariant theory:

S"X = u~(0)J GL(V).

Then the properness follows from a general theory in the geometric invariant theory. This
argument is necessary for quiver varieties.

Now we check other conditions. The surjectivity of 7 is clear. The remaining one is the
condition (3). We have proved that X[ has dimension 2n. Thus the condition (3) follows if
we show that dim 7~ 1(S"X \ S{inyX) < 2n. And this follows easily from the previous theorem

and (4.10). Since it is clear that S(inyX is connected, it also implies that X 7l is connected. [

Remark 4.14. For the proof of this theorem, the full strength of Theorem 4.11 is not necessary.
It is enough to prove the weaker statement (4.12). In fact, even weaker statement dim X([)"] <

n — 1 is enough. There is a very simple proof of this statement based on the symplectic
geometry on X[ ([Lecture, 1.13)).

Remark 4.15. Using Theorem 4.11, one can show that
1
dim 7 '(C) = n — # of nonzero entries in \ = 5 codim SY X", C e SyX"

Thus the map 7 is semi-small. This immediately gives us a formula of Betti numbers of X[,
(See [Lecture, Chapter 5].)

4.3. Bialynicki-Birula decomposition associated with a C*-action. We first explain a
general result about a C*-action on a projective manifold. (In fact, the result more generally
holds for a Hamiltonian S'-action on a compact (real) symplectic manifold). Unfortunately,
it is less elementary compared with results used in other sections. However one can check the
result for flag varieties (Exercise 4.17). And I hope this topic will be explained in Prof. Lu’s
lectures......

Suppose that the multiplicative group C* acts on a projective manifold M algebraically. By
a theorem of Borel, the action must have a fixed point. We further assume that fixed points
are isolated. So the fixed point set is a finite set py, ..., pn.

We define (+)-attracting sets:

Sz-={p 1§5t-p=pi},
Ui:{p limt-p:pi}.
t—00

It is known that

(1) S; and U; are locally closed submanifolds of M.

(2) Each S; (resp. U;) is isomorphic to an affine space whose dimension is equal to the
dimension of the positive (resp. negative) weight space in 7, M with respect to the
C*-action. (In particular, dim S; = codim U;.)

(3) If we order the fixed point set p; in an appropriate way, then (J;,; ;. Si (resp. Uy, Ui)
is open (resp. closed) for each 7.

The statements (1) and (2) are due to Bialynicki-Birula [3]. The ordering in (3) is given so
that dim S; > dim S; if 4 < j. There is a symplectic geometric approach due to Atiyah-Bott
[1] where S; and U; are identified with stable and unstable manifolds for the gradient flow of



the moment map of the action of the maximal compact subgroup S' C C*. In their approach,
the ordering in (3) is given by the value of the moment map, and the statement (3) is clear.

R if k =2m,
0 otherwise,

Using the long exact sequence in §2.2 and Hi(C™) = { one can show the

following:

Theorem 4.16. The odd homology group H,qq(M) vanishes, and the fundamental classes of
closures of S; (or U;) give a base of Heyen(M):

Heven(M) - @ R[E], Heven(M) - @ R[Uz]
Moreover, one can easily see that
S;NU;j # ) = dim S; > codim U;. And if ‘=" holds, then i = j.

It is also clear that S; and U; intersect only at p; and the intersection is transversal. Thus we
can determine the intersection pairing as

= 71\ def. - T
(S, 10;]) = P ([Sin [U3]) = b5,
where P: M — point is the projection, and Hy(point) is identified with R as before.

FEzercise 4.17. Consider the flag variety M = G/B. Choosing a generic one parameter sub-
group A: C* — T so that a point is fixed by T if and only if it is fixed by A(C*). Identify the
fixed points set with the Weyl group W and (+)-attracting sets with Schubert cells.

Remark 4.18. One can drop the condition that fixed points are isolated. In fact, for the study
of quiver varieties, one need the theory with this generality.

4.4. Torus action on the Hilbert scheme. We apply the theory in the previous subsection
to the Hilbert scheme X[ of points on X = C2. It is not a projective (only quasi-projective),
so we cannot directly apply the theory. However, there are two ways to remedy the lack of
projectivity. One is to consider the Hilbert scheme of points (IF’Q)[n] on the projective plane. It
has a C*-action and contains our X[™ as an invariant open subset. Thus we apply the theory
to (lP’Q)[n], and check that (&)-attracting sets are contained in the open subset X[™. Another
is to use the symplectic approach to the theory. Our X" has a natural Kihler metric (in
fact, it is hyper-Kéhler) and the corresponding moment map is proper. Then the gradient flow
technique works. This is explained in [Lecture, Chapter 5|. Anyhow, this modification is a
technical matter, so we do not discuss it in full detail.

The 2-dimensional torus 7 = C* x C* acts on the affine plane X = {(z1,x2) | 21,22 € C}
by

(1, 22) > (t121, taxs) for (t1,t3) € C* x C.
It induces a torus action on the Hilbert scheme X[™. In the matrix description, it is given by
[(B1, By, v)] = [(t1 By, t2Bs, v)].
The following is obvious:
Lemma 4.19. A fized point of the torus action is an ideal generated by monomials in x1, xs.

An ideal I generated by monomials corresponds to a Young diagram as follows. We write a
monomial z¢z} at the coordinate (4, 7). A monomial which is not contained in I is surrounded
by a box. Since [ is an ideal, the number of boxes in each row or each column is nonincreasing.
(See Figure 1.) The corresponding matrices (B, By, v) are given as follows. The vector v is
the left bottom box, B; maps a box to the right box, B, maps a box to the upper box.
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FIGURE 1. Young diagram

In particular, it is clear that the number of fixed points in X[™ is equal to the number of
partitions of n. This gives us immediately that

Euler number of X™ = #{partitions of n} = dim R(S,,).

We need a more precise information on homology groups. Namely we study the weights of the
action on the tangent space at a fixed point.

Lemma 4.20. Let I € X[™ be a fized point of the torus action, corresponding to a Young
diagram as above. Then the character of the tangent space Ty X™ as a T-module is given by

Z(tll(S)+1t2_a(8) + tl—l(s)tg(s)—kl)’

S

where s is a boz in the Young diagram, and a(s) (resp. I(s)) is the number of bozes with ©

(resp. #).

This lemma can be proved by a direct computation using the description of the tangent
space given in the proof of Theorem 4.7 (see [Lecture, Chapter 5] for detail).
We choose a one-parameter subgroup

f&)=@"1)eT
If N is sufficiently large, then we have
I is fixed by the T-action <= I is fixed by the f(C")-action.

Let I, be the fixed point set corresponding to the partition A\ of n. We consider the (+£)-
attracting set with respect to f(C*), i.e.,

g, % {I e X im f(t) - T € I,\} ,
U, {I e XU lim f(1)- I € IA} .

Lemma 4.21. (1) | ], S, = X[

(2) LI\ Ux = X,

(3) dim S\ = n+1(A), where [()) is the number of rows in the Young diagram corresponding
to A.

Proof. (1) The Hilbert-Chow morphism 7: X" — S™X is equivariant. Consider the C*-action
in S"X. Then f(t) -z € S™X converges to the origin n0 when ¢t — 0 for arbitray z. By a
general theory, it is known that the limit of f(¢) - I exists if and only if it stays in a compact
subset. Thus any point I € X[ has a limit lim,_,o f(¢) - . This means the first statement.
(2) When ¢t — oo, the flow f(¢) - I may not have a limit. Consider the problem in S"X.
Then, the limit exists if and only if the point is the origin n0. Since = is proper, lim;_,o, f(t) -1

exists if and only if I € X[™. Thus we get (2).



(3) We know that dim S}, is equal to the dimension of the positive weight space of the tangent
space at I,. The character is given by

Z (tN(l(s)—H)fa(s) + t—Nl(s)—I—a(s)—H) )

S

Recall that we choose N sufficiently large compared with n. Thus N(I(s) +1) — a(s) is always
positive. On the other hand, —NI(s) + a(s) + 1 is positive if and only if [(s) = 0, i.e., s is the
right end of a row. Therefore we get the result. O

Now by the discussion in the previous subsection, we get the following:
Theorem 4.22. (1) H,yy(X!™) =0, and
dim Hyy (X)) = #( Young diagrams with n bozes and k — n rows).

In particular, dim Hy,(X") = 1, so X is irreducible. And dim Hy, o(X™) = 1. Lower
degree homology groups vanish.
(2) Hoaa(XI™) =0 and

dim Hoy, (X([)"]) = #(Young diagrams with n bozes and n — k rows).

In particular, dim HQH_Q(X(Q"}) = 1, and higher homology groups vanish. So irreducible com-

ponents of X(Q"] are at most (n — 1)-dimensional and there is only one (n — 1)-dimensional
irreducible component.
(3) The pairing

(4.23) (,): Hy(X") @ H,(XI") 5 (¢,d) = P.(cN¢) € Hy(point) =R
s mondegenerate.

Remark 4.24. The results in this subsection are due to Ellingsrud and Strgmme [5] and our
proof is essentially the same as them.
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5. CONVOLUTION ON HOMOLOGY GROUPS OF HILBERT SCHEMES
5.1. Let Z be the closed subvariety of XI™ x X[l x x[mtn]

ZY (I, I, L) | 7(I) + 7(L) = n(I3)},

where 7 is the Hilbert-Chow morphism. If the supports of I; and I are disjoint, then I3 must
be the intersection I; N I5. Thus

7° Y (I, I, I, N I) | Supp(I;) N Supp(L) = 0},
]

is a connected open subset in Z, whose dimension is 2m + 2n. Using dim X;~" < n — 1, one
can check that the complement Z \ Z° is lower dimensional. Therefore, Hyp14,(Z) = R[Z].

FEzercise 5.1. Check dim(Z \ Z°) < 2m + 2n.
Let us define the following operators by using the convolution product with respect to [Z]:
o: H. (X" @ H, (XM - H, (XM,
A: H (x5 7 (XM) @ H,(XM),
and
o1 H(Xg") ® H.(X") = H(Xg""™),
A: H (XM - H(xUM) @ H.(x!).

Let p1, p2 be the projections to the first and the second components in (X [l x X ["]) x Xmtn],
Then these operators are given by

cec =po (Pi(cR)N[Z]),
A" = pr (p3(") N [Z]).
Remark that the restriction of p;, ps to Z is proper, so the pushforward is defined. These op-

erators are defined by the same formula for both H, (X)) and H, (X(En]). In order to guarantee

that e, A are operators on H,(X™), we must check that

pa(pr (XU x XYy z) e xIM pip (XY N Z) € Xk x

But these are clear from the definition of Z.
We collect these operators and consider these as multiplication and comultiplication on the

direct sums €0, H.(X™) and €, H, (X(En]). The following is obvious.
Theorem 5.2. Both @, H.(X™) and @, H*(X(En}) are graded commutative and cocommuta-
tive Hopf algebras, where the grading is given by n, not by the degree of homology groups.
We want to give an explicit description of this Hopf algebra as in the case of A = @, R(S,,).
For this purpose, we use two subvarieties X(E"], XM ¢ X in §4.2.
Lemma 5.3.
Axf =xMe1+1eXM,  AX =1+ 10X,

where 1 is the fundamental class of point = X0

Proof. Note that [XI™™] € Ho(mini) (X)) is, in fact, defined in Hg(m+n+1)(X£m+"]),
and considered as an element of Hognini1)(X™ ™) by the pushforward i, of the inclusion
i: XI™ _ xIm+nl Then we can refine the convolution product to see

A[X£m+n]] € Homint1) (p1 (Z ﬂpgl(Xiern}))) .
We have
i (Z N p {(XI™)) € {5, L) | 7(11) = (L) = np for some p € X}



The right hand side is (n —1) 4+ (m — 1) + 2 = n+ m dimensional if n, m # 0 by Theorem 4.11.
Thus the class vanishes. The same proof works for X([)”]. O

The lemma means that the homology classes [XL"]] and [X(E"}] cannot be decomposed in
nontrivial way. These are very similar to p,, which is a multiple of the characteristic function
of a single cycle (12...n). This cycle cannot be decompose to a product of cycles, and this
was the reason why we have Ap, = 1 ® p, + p, ® 1. By a similar reason, we had the above
lemma.

The pairing ( , ) in (4.23) satisfies

(cod,y=(c®c, A  ce H(XM), ¢ e H(XM), " € H.(Xy"*),
(c.d o) =(Ac,d @) ce H(XI™™M), ¢ e H(X{M), ¢ € H(X{").
Theorem 5.5.

(5.4)

(XL X = (1)

This result is due to Ellingsrud and Strgmme [2]. We give a different proof in §5.3 (cf.
[Lecture, Chapter 9]). But first two cases are easy. If n = 1, X!l = xM = Xx, X([)l] = {0}.
Weget 1. If n =2, X& = X x T*P!, X} = X x P!, X7 = {0} x P!. Thus we get (—2) by
Exercise 2.13.

We normalize the inner product

() F (D" ) om Ha (X! x HL(X™),

Then Ellingsrud-Strgmme formula and (5.4) imply
#C
#60
by Exercise 3.6. Here A = (A, Ao, ---), p = (1, o, ---) are partitions. In particular, the
classes {[XE“]] o [XM]e-.. } and {[X(E)‘l]] o (XM } are linearly independent. Thus

A A

the two ring homomorphisms

A= (C[pl’pZ’ .. ] > Dx = DPxPry - ° }_>[X>’[<)\1]:| ° [Xi)\l]] ®---C @H*(X[n])’

(X e X e-o ) (X0 X[ ) = 3y,

(5.6) *_>[X(E/\l]] . [X(E’\Z]] o--- € @H*(X([)n])

are injective. However, we know that the both sides have the same dimension. And it is clear
that it preserves the comultiplication and the inner product. Therefore

Theorem 5.7. The homomorphisms A — @, H.(X™) and A — @, H*(X(g"]) in (5.6) are
isomorphisms of Hopf algebras.

Remark 5.8. Let us remark that it is enough to show that ([XI™], [X[™]) # 0 for the proof of
this theorem. And this assertion follows from the nondegeneracy of the pairing (4.23). When
I proved the above result first, I used this weaker result. Then I asked Ellingsrud-Strgmme to
compute the precise value. Theorem 5.5 was their answer.

Egercise 5.9. Recall that we have bases {[Uy]}, {[Sa]}x of @, H.(X) and @, H*(X(gn])
respectively. Show the followings:

(S = o X e XD e
= S e

A1Ag -



where
A= (A, A, o0) = (12129 4).

5.2.  We cannot define an inner product on @, H,(X™) or €, H, (X([)"]) simply because the

naive intersection pairing vanishes for H,(X™) = 0 for k£ < 2n+2, Hk(X(gn]) = (0fork > 2n—2.
So we introduce a subvariety of X™ whose homology group has a natural inner product.
Let C' = {25 = 0} C X be the z;-axis. We define a closed subvariety L"C of X[ by

e = | {1 e X |x(L) € S"C'}

= |_| {(B1, By, v) | By is nilpotent } .

We decompose L"C' according to the decomposition S"C =| |, SYC' as

def.

e < sy,

In the matrix description, L}C is the set such that the Jordan normal form of B is A.
Let us compute the dimensions of LYC. First note

LiyC=n 1 (SpC) ={I € XM | 7(I) = p for some p € C.
It is the product of X([)"] and C. If A = (A, Ag, -+ ), then L7C is an open subset of
A A
L(All)c X L()%Z)C X o---
(See Figure 2.) By Theorem 4.11, we have dim Lf; )C'=n — 1 4+ 1 = n. Therefore we have

(n
dimL3C =) "\ =n.

In particular, LYC' is a middle dimensional subvariety in X ["l. Again by Theorem 4.11, L?n)C
is irreducible. Therefore L' is also irreducible. We have

Hoy(L"C) = @D RILEC].

In order to simplify the notation, we denote simply by [L}C], the fundamental class of L7C
hereafter.

Ezercise 5.10. Consider the C*-action on X[™ induced by the C*-action on X given by
(Il,l‘g) — (.’131, tIg) te C.

Study the fixed point set. (In this case, it is not isolated.) Study (—)-attracting sets of the
Bialynicki-Birula decomposition, and identify the closure of them with L}C'

Remark 5.11. Tt is known that L*C is a lagrangian subvariety in the symplectic manifold X",
This can be shown by using the above exercise. (See [Lecture, Chapter 7].)

By the same formula as §5.1, we can define
o: Hk(LmC) X Hl(LnC) — Hk+l(Lm+nC),
A: Hy(L™"C) - @ Hy(L™C) ® H)(L"C).
k+i=p

We are interested the top degree part €, Ho,(L"C). By the above formula, this part is a
Hopf subalgebra.
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FIGURE 2. a point in S*C for A = (1™2m2 .. p™)

As above @, Hy,(L"C) is a commutative and cocommutative graded Hopf algebra. The
following formula can be proved exactly as Lemma 5.3:

ALy Cl = [L(,)C1® 1 +1® L, C].

Next we want to define an inner product on @, Ho,(L"C). A naive intersection pairing
on €P,, Hy, (L"C) is not well-defined since L"C' is noncompact. So we consider an involution
7: X — X defined by 7(z1, %) = (72,71), and the induced involution 7: X" — X[ Then if
I is belonged to the intersection L"C'N7(L™C'), then its support is contained in CN7(C) = {0}.
Therefore L"C N 7(L"C) is compact. We define an inner product by

(e,d) L PenT(c)), ¢c € Hop(L"C),

where N is taken in X[™| P is the projection L"CN7(L"C) — point, and Hy(point) is identified
with R as before.
From the definitions of e, A and the pairing, the following is clear:

(cocd,c"y=(c®d,Ac") ¢ € Hyy(L™C), ¢ € Hyy(L"C), " € Hopyn)(L™"C).
By using Ellingsrud and Strgmme formula (Theorem 5.5), it is not difficult to prove
(L C), (L) Cl) = (-1)" .

In fact, it is equivalent to Ellingsrud and Strgmme formula.
We normalize the inner product

(, )d%f‘ (=)™, ) on Hy(L"C).
As in the previous subsection, we have

Theorem 5.12. The map
A=Clpi,pa,---]13 pr = pauprs - — [L(3,Cl o [L(3,,Cl e --- € D H.(L"C)

s an tsomorphism of Hopf algebras respecting the inner products.

By the discussion in §3.2, €@, Ho,(L"C) is the representation of the infinite dimensional Lie
algebra s (the Fock space). The operators P[n| are given by
multiplication of [L ", C] if n <0,
PIn] 2y if n=0,
the hermitian adjoint of P[—n] if n > 0.

Let us re-write these operators in terms of the convolution. For convention, we assume m,n €
Zo below. Let g1, go be the projections to the first and second factors of X[ x X[m+nl We



denote by pi3 the projection XM x X[ x x[mtnl 5 x[ml » x[m+7]  The operator P[—n] is
given by
P[—nlc = g (¢icN [21])
where
[Z'] = p1s. ([XI™ x LE,C x X0 [Z])
More explicitly, it is the fundamental class of the subvariety
Z'={(I;,,) € X" x X"t 1, 5 I, 7(I,) = 7(I;) +np for some p € C}
The operator P[n] is given by
Plnje = (=1)""'qu. (g3 N [2"])
where
(2" = pus. (X" x Ly m(C) x Xm0 [Z]) .
Note that ¢; and g, are interchanged, and C' is replaced by 7(C) in the formula. These

description was the original one used in [Lecture, Chapter 8§].

5.3. Further study of &, H,,(L"C). Our next task is to describe the classes [L}C] in
terms of symmetric functions. So far, we only identified [L?n)C]. For this purpose, we need to
introduce another family of symmetric functions.

Let A be a partition such that the number of nonzero entries (denoted by [())) is less than
or equal to N. Let

def. 1 - -
ma(@r, . ay) Yty = #{oe6y|o- A=A} S @ ay ™,

a€G A oEGN
where o = (aq,...,ay) is a permutation of A = (A,...,Ay). (We allow Ay = 0 in this
notation.) If N < M, we have
P AT, -, T) = ma(T1, ..., TN),
where pjsn is the map given by setting zyy1 = --- = zp = 0. Hence m, defines an element

in A, which is also denoted by m,. It is called a monomial symmetric function. Clearly {my},
is a basis for A.
The previous symmetric functions are written as

€n = Mm(n), hy —Zm,\, Pn = M(y).
Al=n

A generating function is useful to express relations among symmetric functions. Let z be a
formal variable. Let

def Zenz = H 1+ zi2),
=1
o0

def Zh 2" = H : —130 — = E(-2)7",

P(z) def. anz ZZ:L‘" nl

=1 n=1

We have

— d 1 d
P(Z):Z_l()gl—x-z —alogH( 2).
1 2



Therefore,

H(z) = exp/P(z)dz = exp (Z p’;jn) .
E(z) =H(-2)"'=exp (Z (—Iigiiiln) .

n=1

Exercise 5.13. We need the following elementary lemma whose proof is left to the reader:
If we multiply the power sum p,, to the orbit sum m,,, we get

DMy = E Q) My,
7

where the summation is over partitions p of |A| +n which are obtained as follows: (a) add i to
a term in A, say Az (possibly 0), and then (b) arrange it in descending order. The coefficient

ary is #{L [ = Ae + n}.
For example,

P1M(a3,2) = Mya3.2,1) + 2Maa.2) + Mys,3,2) T 2M(4,3,3)

P3M(4,3,2) = 2Mya,3,32) + M5,4,3) T My6,4,2) T M(7,3,2)-
Theorem 5.14. Under the isomorphism in Theorem 5.12, [L}C| corresponds to my.
Proof. We show that

[L3yCl e [LRC] =) " ax[L7 T,

where A (resp. u) is a partition of m (resp. m + n), and ay, is the coefficient in Exercise 5.13.
Once this formula is shown, then the assertion follows by induction on the dominance order of

A
Since {[LZ“L”C]}M is a base of Hymn)(L™"C), we have the above equality for some ay,,.

We must check that this coincides with one given in Exercise 5.13. In order to determine
the coefficients ay,, it is enough to study it in a small neighbourhood U of a generic point of
L C. Namely, if j: U — X [l is the inclusion, then

7" (L CT o [LXC]) = ap,[ L™ C' N U]

Take a point (I, I, I3) € Z € XM x X"l x XIm+n]l Suppose that I, € LeC, I, € L(n)C
Thus

Zm, () = np.

for some p;, p € C. We may assume that p is equal to py for some £, setting A\, = 0 if p is not
equal to any of p;’s. Since 7(I;) + 7(I3) = 7(I3), we have

B - Hibi Hi= A otherwise.

As remarked above, we assume I3 is a generic point of LZ‘*"C , so p; are all distinct. Then
for given A, p1, how many possible choices of k£ with the above equation. It is exactly ay, ! It
means that there exists a,, disjoint open subsets Uy, Us, ..., U,,, such that the intersection
(LiyC X LRC x (L"CNU)) N Z
is contained in the union Uy UUz U -+ - UU,,,. Therefore our assertion follows if we show that
e the intersection is transversal in each open set U;,



e the intersection in each Uj; is isomorphic to LITJF”C N U under the projection to the third
factor.

One can show these by taking coordinate systems around I, I35. The details are explained in

[Lecture, p.112]. We omit it. O

As we promised, we give the proof of Theorem 5.5. It is enough to show
(5.15) (L) CL 1L CD) = 1.
In fact, by the preceding theorem and the formula in the symmetric polynomial, we have

[L{1»)C] = the coefficient of 2" of exp (Z %) ,
— n
n=1
where the multiplication in the exponential is o. Expanding the exponential and using (5.4),
(5.3), we find that the nontrivial contribution is

Ly C)
(ILinCl i

Therefore (5.15) implies Ellingsrud-Strgmme’s formula.
Let us show (5.15). By the definition of the inner product, we want to compute the inter-
section

(L CIN [T (Liny O)].
In fact, T(L?ln)C), more precisely its closure W can be explicitly described. It is
{I = (xl,xg Y SRS ao) ‘ ag, A1y ..., 0p_1 € C} c xr
or in the matrix description,
{[B1, Ba,v] | By =0}.
Its set-theoretical intersection with L?H)C is a single point
I = (z1,23)

or, in the matrix description,

0

)

BIZO’ B2: . , ’L:

0o !
One can show that the intersection is transversal, again using the coordinate system around
I. (Probably this case is easier.) Thus we get the assertion.

o = -

5.4. Further works on Hilbert schemes. Our discussion followed along the line of Gro-
jnowski [4], rather than that of [Lecture]. The subvarieties L}C were defined by him, although
their relation to symmetric functions were not discussed by him. The formula expressing
[L{1x)C] in terms of [Lf C] is an example of so-called verter operator. The relation between
homology groups of Hilbert schemes and Borcherds’ vertex algebras is not fully understood.

de Cataldo and Migliorini determine the Chow groups of Hilbert schemes of complex surfaces
[1]. When the base space is C2, the Chow groups of Hilbert schemes are isomorphic to homology
groups. But in general, they are different. (There is always a map from the Chow group to
the homology group for any variety.)

There is a further connection between Hilbert schemes and symmetric functions, due to
Haiman [5]. In particular, he proved the so-called Macdonald positivity conjecture, using the
Hilbert schemes. It is a conjecture about the transition matrix between Macdonald polynomials



and Schur functions. The statement of the conjecture is purely combinatorial, but so far, there
is only a geometric proof.

There is an attempt to generalize Hilbert schemes to Lie algebra of other types by Ginzburg [3].
(Note that the symmetric product S™X is, essentially, the quotient of two copies of the Cartan
subalgebra divided by the Weyl group of type A,_1, i.e., (h & h)/W.)

It is known that a Hilbert scheme has a hyper-Kahler structure. In particular, it has a family
of complex structures parametrized by P! = S2. A different complex structure was identified
with the phase space for an n-particle integral system, called the Calogero-Moser system by
Wilson [9]. This is a rather surprising link of Hilbert schemes to other area of mathematics !

There are some works on the ring structure of homology groups of Hilbert schemes [6, 7, 8].
For X = C2, the ring is isomorphic to the center of a modified group ring of &,,.
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6. QUIVER VARIETIES

Quiver varieties were introduced in [N1]. They arised a natural generalization of moduli
spaces of anti-self-dual connections of the so-called ALE spaces, studied in [6]. However, we
give a different geometric description in these lectures.

6.1. I'-fixed point set. Let I be a finite subgroup of SLy(C). The classification of such
subgroups has been well-known to us, since they are symmtry groups of regular polytopes via
the double covering SU(2) — SO(3). The classification table is the following:

type affine Dynkin graph group
Ap (n>0) C?;o {[5.%]]e™" =1}, the cyclic group Z/(n + 1)Z
D,, (n > 4) ?o—w e the binary dihedral group of order 4(n — 1)
o
Eg 00000 the binary tetrahedral group
]
E; 006000 the binary octahedral group
o
Ey ¢ 0000000 the binary icosahedral group

The link between this classification and that of simple simply-laced complex Lie algebra of
type ADFE will be explained below.

The group I' acts on the complex plane X = C?, and also on the Hilbert scheme X™. We
want to consider the fixed point variety

(XY = {7 € X" |y T =1 for any y € T}.

If I e (X["])P, then C[z;, 23]/ is a T-module.

A typical example is the ideal I of functions vanishing at points in a I'-orbit. The action of
[ on X is free outside the origin 0, therefore the orbit consists of #I'-elements. The I'-module
Clx1,x9]/1 is the regular representation of I'.

Since X[ is smooth and T is finite, the fixed point set (X [”])F is a union of nonsingular
submanifolds (of various dimensions). The I'-module structure of C[z;, z2]/I is constant along

each connected component of (X [”])F. For a given I'-module V' we set

X(V)=

{I € (X["])F ‘ Clxy,xo] /I = V} ,  where n =dimV.

A priori, this is a union of connected components of (X [”])F. However, a stronger result is
known: X (V) is connected. This follows from a general result for quiver varieties by Crawley-
Boevey [2] (See below). But in this special case, it is also possible to prove by computing Betti
numbers along the discussion in §4.4. The detail is left for the reader.

6.2. Example. Let us give an example. This example is due to Kronheimer [5] (in a slightly
different language), Ito-Nakamura (reference [8] in §4), and Ginzburg-Kapranov (unpublished).

Suppose that V' is the regular representation of I'. Then X (V') of the fixed point set in the
Hilbert scheme X[ (n = #I'), which contains ideals consisting of functions vanishing on a
[-orbit. The corresponding fixed point set (S®X)' in the symmetric product is isomorphic to
X/T in this case. Thus we have a proper morphism 7: X (V) — X/I', which is a resolution

of singularities. This is easy to check. In fact, it is an isomorphism on ﬁ_l((San)X)F) =

71X\ {0})/T). And X (V) is connected, so the complement is lower dimensional. (There is
a very simple proof of the connectedness for this X (V). See [Lecture, Chatper 4].)

Since X (V) is a symplectic manifold, its canonical bundle is trivial. So X (V') is the so-called
minimal resolution of X/I'. Such a resolution is unique, and has been studied from various
points of view (much before the theory of quiver varieties is developed). In particular, it is
known that the inverse image 7=1(0) of the origin 0 under 7 is a union of projective lines,



whose intersection graph is a Dynkin graph of type ADE. (Delete the black vertex from the
affine Dynkin graph in the table.) This is the reason why the classification of finite subgroups
of SLy(C) is related to the classification of simple Lie algebras.

In fact, it is possible to study the exceptional fiber 77!(0) in the language of Hilbert schemes,
or quiver varieties. See Exercise 8.1.

6.3. McKay correspondence. McKay obtained more direct connection between finite sub-
groups I' of SLy(C) and the Dynkin diagrams [7].

Let po, - .., p, be (the isomorphism classes of) irreducible representations of I, where py is
the trivial representation. Let () be the 2-dimensional representation defined by the inclusion
I' C SLy(C) as above. Then we define nonnegative integers a;; by

Q®p; = @ @a”’

ie., a;; = dimHom(p;, Q@ ® p;)'. Since Q is isomorphic to its dual Q*, we see that a;; = aj;.
Then we define a graph as follows. The vertices are irreducible representations p;. We draw
a;; = a;; edges between the vertices p; and p;. A remarkable observation due to McKay is that
this graph is of type affine ADE. The black vertex corresponds to the trivial representation
po- Moreover, the graph obtained by removing the black vertex is same as one given by the
intersection of irreducible components of the exceptional set. The original McKay’s argument
was based on the explicit calculation of characters of irreducible representations of I'. There is
a geometric approach to prove this assertion, due to Gonzalez-Sprinberg and Verdier [3], and
also its generalization to the case I' C SL3(C) [4, 1]. However, we do not go into further detail
in these lectures.
The McKay observation gives us another description of X (V). Let

VZ@V/M@MC

be decomposition of the I'-module V, i.e., V} is the multiplicity of p; in V. We consider the
matrix description (Bj, By, i) for a point in X (V). Since i € V is given by 1 mod I, it is fixed
by the ['-action, i.e., 7 € V5 ® py. We take a base for py, and identify p, with C. So 7 is an
element in V.

We consider the pair (By, Bs) as an element of Hom(V, Q®V'). Then it is clear that (B, By)
is contained in (Q ® Hom(V, V))F. We have

(Q ® Hom(V, V)) @ Hom(V}, Vi) ® Hom(p;, Q@ ® pi)".
k.l

Choose and fix a base for Hom(p;, @ ® p;)" for each pair (k,[). (In fact, if the graph is not
Avl, then the space is at most one dimensional.) Collecting the bases for all &, [, we denote
the union by H. To each h € H, we associate an oriented edge in the affine Dynkin diagram
from the vertex [ to k, if h is an element of the base of Hom(p;, Q@ ® px)'. In this case, we
denote k by in(h), [ by out(h). For every edge in the affine Dynkin diagram, we can attach two
orientations. In particular, the number of oriented edges is twice the number of unoriented
edges. We decompose (B, By) as

(Bi,By) =@ By®h,  where By € Hom(Vous(ny, Vin(n))-

The figure 3 represents the data, when T is of type A,,, where an oriented edge h is denoted
by in(h), out(h).

An oriented graph is called a quiver. This description for the example in §6.2, i.e., V is the
regular representation, is Kronheimer’s construction [5]. The description for a general V' is a
special case of the quiver variety in [N1].
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6.4. Lagrangian subvarieties. From now on, we assume I" is not trivial subgroup {1}.
The inverse image 7 *(0) of the origin plays an important role later. So we introduce the
notation.

L(V) € 7710) c X(V).
We have
V) =Xx(vV)nxyv,

where X[4™V] is the punctual Hilbert scheme.
We have

Theorem 6.1. £(V) is a lagrangian subvariety in X (V). In particular, it is middle dimen-
stonal.

A proof, due to Lusztig, which is different from the original one, will be explained later.
When X (V) is the minimal resolution of X/I" as in an example above, £(V) is the union of
projective lines. So the result can be checked directly.

6.5. Convolution. Let
ZWVELVA) (I, 17) e X(VY) x X(V?) | (I') = 7(1%)}.
We need an explanation for the equality m(I') = w(I?). The left hand side is an element
of $4mV' X while the right hand side is of S4™V”X. For m < n, we have an inclusion
S™mX — S"X defined by C' +— C+ (n—m)0. We denote by S®°X the direct limit lim,,_,, S"X.
The notation 7 in the above equality is the composition of the previous 7 and the inclusion
GQdimVix _y Geox  gdimV?x _y Goox  Go both hand sides are elements of S®X, and the
equality makes sense.
Let pij: X(V') x X(V?) x X(V?) = X(V') x X(V7) be the projection. We define the
convolution
x: H(Z(VL V)@ H(Z(V2,V?) = H (Z(V',V?)
by
cxd & P13« (Pac N Posc’) cE H*(Z(Vl, VQ)), c € H*(Z(VQ: V3))-
Let us check that this is well-defined. We have
plac € Ho( (Z(VI, V), pi2 (Z(V,V?) = {(L, I, I) | m(1h) = 7(15)},
Pysc € Holpog (Z(V2, V), pog (Z(VZ, V) = {(I, I, I3) | m(Ls) = 7(I3)}.
Therefore
Plac N Posc’ € H*(ple(Z(Vl, VQ)) ﬂp;sl(Z(VZa Vg))),
P (Z(VE V) Mgy (Z(V2, V) = {11, b, ) | w($h) = (L) = 7(I3)}.



Finally the restriction of pi3 to p, (Z(V?Y, V%)) N py (Z(V?,V3)) is proper, and the image is
contained in Z(V*',V3). Thus the convolution is well-defined.
We will be intereseted in the case when degree is middle:

Hp 2 (Z(VH V) @ Hp s (Z(V2V?)) = Hayyas(Z(V,V?)),

where d* = dim X (V). For abuse of notation, we denote these degrees by ‘top’, although they
are different for different components.
Let

!
Hop(2) € [ HopZ(V',V?)),
Vi,y2
(V1, V2 run all pairs of isomorphism classes of ['-modules) be the subspace of the direct product
[Tvi,y2 Hopa2(Z(V',V?)) consisting elements (cy1,y2) such that
e for fixed V!, ¢y1 2 = 0 for all but finitely many choices of V2,
e for fixed V2, ¢y1y2 = 0 for all but finitely many choices of V.
Then the convolution is well-defined on Hi,,(Z), which becomes an associative algebra. The

unit is the product of diagonals.
Note also that the convolution defines

Hp 2 (Z(V,V?) ® Hpp(£(V?) — Hp (£(VY).
We also denote these degrees by ‘top’. The direct sum

Hiop(£) S @D Hiop(£(V))

is a representation of Hi.,(Z).

6.6. A generalization of Hilbert schemes to higher rank case. We give slight general-
izations of Hilbert schemes which are worth while mentioning. All quiver varities associated
with the Dynkin diagram of type ADFE and affine ADFE can be described as I'-fixed point sets
in these generalizations.

Let V, W be complex vector spaces. We consider

M(V, W) € (Q ® Hom(V, V)) & Hom (W, V) & Hom(V, W),
where @ is a 2-dimensional complex vector space. We give the standard symplectic form on
(2, which is considered as an identification /\2 Q=C
An element of M(V, W) is denoted by (B, i, 7). We define the action of GL(V') on M(V, W)
by

(B,i,5) = ((ido ®g) B (ide®g™"),i97},9j), g€ GL(V).
We define a map p: M(V, W) — End(V) by
u(B,i,5) S (B A B +ij
where [B A B, which is a standard notation in the differential geometry, means [Bj, Bs] where
B = Bje; + Bjey under a basis {e1, ez} of @ such that e; A ey is identified with 1 under
A>Q = C. Note that the affine algebraic variety p~'(0) is invariant under the action of
GL(V).

The symplectic form on @ and the natural pairing between Hom(V,V) < Hom(V,V),
Hom(W,V) < Hom(V,W) defines a symplectic structure on M(V,W). The GL(V)-action
preserves the symplectic structure, and the map p is a moment map of this action.

We say (B, 1, j) is stable if the following condition is satisfied:

If a subspace S contains Im ¢ and satisfies B(S) C Q ® S, then S =V.



It is clear that this condition is invariant under the action of GL(V).
NB. The stability condition used here is different from the one used in [N1, N2|. The
stability there is equivalent to that (*B, 'j, 1) is stable.
We define
MV, W) S {(B,i,5) | u(B,i,j) = 0, (B,i, ) is stable}/ GL(V)
Exactly as in Theorem 4.7, we can prove the following:
Theorem 6.2. MM(V, W) is a nonsingular complex manifold of dimension 2dimW x dim V.

Moreover, by a general theory of symplectic quotient, 9t(V, W) has a natural symplectic
form induced from that of M(V, W).

A relation to 9(V, W) to X[ is the following. Suppose dim W = 1 and we fix an identifi-
cation W = C. Then it is not difficult to show j = 0 ([Lecture, 2.8]). Therefore, we recover
the matrix description of X"l In fact, the extra space Hom(V, W) = V* was implicit in the
proof of Theorem 4.7. It is the cokernel of dpu.

It is known that 90t(V, W) is isomorphic to the space parametrizing the pair (E,®) such
that

e F is a torsion free sheaf over P? of rank E = dim W, ¢y(E) = dim V which is locally free
in a neighbourhood of o, = {[0: 21 : 22]},
e @ is an isomorphism El,,, — O (framing at infinity)
up to isomorphism. (See [Lecture, Chapter 2].)

When dim W = 1, then any torsion free sheaf FE of rank 1 with above condition is a subsheaf
of Op2 such that Op2/F is supported in C?. Therefore, we recover the Hilbert scheme of points.

We define an analogue of S"X as

Mo(V, W) " the set of closed GL(V)-orbits in u1(0),
This is naturally identified with the quotient space
p(0)/~,
where the equivalence relation ~ is defined by
(B,i,j) ~ (B',7,j") <= GL(V) - (B,i,j) N GL(V) - (B, ", j") # 0,

since any orbit contains the unique closed orbit in its closure. We endow the quotient topology
Unfortunately, in order to define the structure of an affine algebraic variety to 90t (V, W),
we need the description of 9y (V, W) as affine algebro-geometric quotient:

Mo(V,W) = p1(0)/ GL(V),  i.e., Specy(V, W) = (Spec p*(0))=(").

We have a natural map

MV, W) = Mo (V, W)

sending a orbit GL(V') - (B, i, j) to the closed orbit in its closure. This is an analogue of the
Hilbert-Chow morphism. It can be shown that this is a projective morphism. (In particular,
it is proper.)

Summary. M(V, W) enjoys properties which one can define the convolution prod-
uct, exactly as the Hilbert scheme X[,

Now we switch to the fixed point set of 9%(V,W). We consider the 2-dimensional vector
space () as a ['-module. The symplectic form is preserved. For I'-modules V', W, let

MV, W) € (Q ® Hom(V, V))* @ Hom(W, V)T & Hom(V, W)T,



where () means the [-invariant part. When I' = {1}, we recover the previous definition of
M(V,W). (We hope that there are no confusion to use the same notation.) We have an action
of GL(V)" on M(V,W). We define the map p as above

p: M(V,W) — End(V)".

We define the stability as above, where the subspace S C V is replaced by submodules. Then
we define IMM(V, W) and Iy (V, W) exactly as above. When W is the trivial I'-module pg, then
M (V, W) coincides with X (V).
Theorem 6.3. (1) M(V, W) is a nonsingular complex manifold, which has a symplectic form.
(2) My(V, W) is an affine algebraic variety.
(3) m: MV, W) — Mo(V, W) is a projective morphism.
(4) M(V, W) is connected.

The statement (4) is due to Crawley-Boevey [2] as we mentioned.
Let us give another description of 9 (V, W) using the McKay correspondence. Let

V=@DVion, W=@PWion

be decomposition of I'modules V, W, ie., Vi, W)y are multiplicities of p, in V, W. We
decompose elements (B, i,7) € M(V, W) accordingly as follows. The ¢ and j components are
easy. We have

Hom(W, V) = @ Hom(Wy, Vi) ® Hom(pg, pi)",
k

Hom (V, W)' = @Hom(Vk, W) ® Hom(py, pr)" .
k

Then ¢, 5 decompose as

i=@ir®id,, j=EDjk®id,,  where i, € Hom(Wy, Vi), s € Hom(Vi, Wg),
For B-component, we have

(Q ® Hom(V, V)" = @ Hom(V}, Vi) ® Hom(p;, Q@ ® pi)".

k,l

Choose and fix a base for Hom(p;, Q ® px)' for each pair (k,1). (In fact, if the graph is not
Zl, then the space is at most one dimensional.) Choose bases for all k, I, we denote the union
of the bases by H. We consider an element h € H as an oriented edge in the affine Dynkin
diagram from the vertex [ to k, if it is an element of the base of Hom(p;, @ ® px)'. In this
case, we denote k by in(h), | by out(h). For every edge in the affine Dynkin diagram, we can
attach two orientations. In particular, the number of oriented edges is twice the number of
unoriented edges. We decompose B as

B = @ B, ®h, where By, € Hom(Vout(h), V}n(h)).

The figure 4 represents the data, when I" is of type A,,, where an oriented edge h is denoted
by in(h), out(h).

An oriented graph is called a quiver. This is the original description of the quiver variety in
[N1].

Let End(V) S Q® End(V)® V LN End(V) be the deformation complex studied in the
proof of Theorem 4.7. Then the tangent space of X (V) is its [-invariant part:

(Kerdp/Ime)" .
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Since ¢ is injective and the cokernel of du is isomorphic to V', we have

dim (Ker dp/ Tm )" = dim (Q ® End(V) @ V)" — 2dim End(V)" 4 dim V"
=2dimVp — Y ¢;dimV; dimV,

where V = @ V; ® p; as before.

(6.4)

6.7. Lagrangian subvarieties. We denote the inverse image 7~1(0) of the origin by £(V, W).
It is not difficult to see the following (see [N1, 5.9]).

Proposition 6.5. A point [(B,1,7)] € M(V,W) is contained in £(V,W) if and only if j =0
and B 1s nilpotent.

Furthermore, we have

Theorem 6.6. Suppose I' # {1}. Then £(V,W) is a lagrangian subvariety in IN(V,W). In
particular, it 1s middle dimensional.

As we mentioned, we will give a proof later.

6.8. Convolution. Let

Z(VHVEW)
S {(BY, 5", [BL 2, 5%) € MV, W) x M(VEW) | 7((B',i', 1) = m([B 2, 5%])}.
We need an explanation for the equality w([B',', j!]) = m([B?,4?,5%]). The left hand side is

an element of 9(V', W), while the right hand side is of 9, (V?, W). Extending the data by
0, we have inclusions M(VY, W), M(VZ W) Cc M(V! @ V% W), which induce morphisms

Mo(VEL, W), M (VW) — M (V @ VEW).

The direct limit is denoted by 9t (oo, W). The notation 7 in the above equality is the com-
position of the previous 7 and the inclusion. So both hand sides are elements of 9y(co, W),
and the equality makes sense.

The convolution defines an operator

H,(ZWVLVEW) Q H (Z(VEVEW)) — H (Z(VE V3 W)).
We will be intereseted in the case when degree is middle:
Hp 2 (Z(VH,VEW)) ® Hppy s (Z(V2, VW) = Haqs(Z(VE VW),
where d' = dim 9 (V?, W). We again write these degrees by ‘top’. Let

!
Heop(ZW) E [[ Hiop(Z(V!,VEW)),
viy?



(V1, V2 run all pairs of isomorphism classes of [-modules) be the subspace of the direct product
[Tviye Hara(Z(V', VW) consisting elements (cy1,y2) such that

e for fixed V!, ¢y1 2 = 0 for all but finitely many choices of V2,

e for fixed V2, ¢y1y2 = 0 for all but finitely many choices of V.

Then the convolution is well-defined on Hio,(Z(W)), which becomes an associative algebra.
The unit is the product of diagonals.
Note also that the convolution defines

Hyp o (Z(VEVEW)) @ Hp (S(VEW)) — Ha (S(VEW)).

Therefore, the direct sum

Hiop(E(W)) S @D Hiop(£(V1, W)

is a representation of Hy,,(Z(W)).
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7. AFFINE LIE ALGEBRA

We briefly recall the theory of untwisted affine Lie algebras in this section. See [1] for more
detail.

7.1. Definition. The untwisted affine Lie algebra g associated with a complex simple Lie
algebra g is

§=90Clz,2z'|®CK & Cd
with the Lie algebra structure given by
8, K] =0,
(X ®:"Y 2" =[X,Y]®2™" + mbmino(X,Y)K,
d, X ® 2" =mX ® 2™,

where (X,Y) is the Killing form of g. Note that g contains g as a Lie subalgebra by g 3 X
X®1eg.

Remark 7.1. The above definition makes sense for any Lie algbra g with an invariant inner
product (, ). In particular, if g is C (the 1-dimensional abelian Lie algebra) with the standard
inner product, we get the infinite dimensional Heisenberg algebra, extended by d. On the Fock
space A = P, R(S,), it acts by & — nidge,)-

We use an alternative description of g, as an example of a Kac-Moody Lie algebra. g has
generators e;, f;, h; (i =0,1,...,rankg), d and defining relations

(7.2) [hi, hj] = 0, [hi,d] =0

(7.3) [hiy ej] = cjiej, i, f5] = —cjif;,

(7.4) [d, ei] = doiei, [d, fi] = —0uif;

(7.5) les, f5] = Gijh,

(7.6) (ade)) ™ e; =0, (adf)) ™ f;=0  fori#j.

Here c¢;; is the affine Cartan matrix. A subalgebra generated by e;, fi, h; (i # 0) is isomorphic
to g. The isomorphism between this description and the above description is given by

e, +— B, ®1, fi+— F;®1, h; +— H; ®1, for ¢ # 0,
e — By @ 2, fo+— Fp® 271, ho < [Eg, Fy] ® 1+ (Ey, Fy) K,

where 6 is the highest root of g, and Ej, Fy are suitably normalized elements in the root
spaces g_g, gy respectively. Moreover, we denote the elements e;, f;, h; (i # 0) by E;, F;, H;
respectively when they are considered as elements of g.

Remark 7.7. The element d is called the degree operator. The subalgebra generated by e;, f;,
h; is also called an affine Lie algebra in some literature. It is denoted by g'(A) in [1, §1.5].

Let h = @ Ch; & Cd C g. It is an abelian subalgebra, called the Cartan subalgebra of g.
We define «; € h* by

<04i: hj) = Cji, <04z‘, d) = 0.

The «; are called simple roots.



7.2. Integrable representations. A g-module V is called a weight module if it admits a
weight space decomposition: V = ®)\Eh* V), where

Vi={v eV |hv=(\h)vforall h € h}.

A weight module V is called a highest weight module of highest weight A € h* if there exists
a nonzero vector vy € V, called a highest weight vector such that

e;un =0 for all 7,
hvy = (A, hyvy for all h € b,
V= U(ﬁ)’UA

For each A € b* there exists a unique (up to isomorphism) irreducible highest weight
module, denoteed by L(A).

A weight module V is called integrable if all e; and f; are locally nilpotent on V. Integrable
modules are counterparts of finite dimensional modules of g. We have the following result.

Theorem 7.8. (1) The irreducible highest weight module L(A) is integrable if and only if A
satisfies (A, h;) € Z>o. (A weight A satisfying this condition is called dominant.)
(2) An integrable highest weight module V' is automatically irreducbile.

For the proof, see [1, §10].
Remark 7.9. A integrable highest weight module L(A) is not finite dimensional unless A = 0.

In the next section, we give a construction of an integrable highest weight module using
quiver varieties.
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8. QUIVER VARIETIES AND AFFINE LIE ALGEBRAS

8.1. Hecke correspondences and Nested Hilbert schemes. A subvariety

X[”’n+1] d%f. {(11712) = X[ﬂ] X X[”+1] | Il D) _[2}

of X" x X"+ ig called a nested Hilbert scheme. A remarkable feature of the nested Hilbert
scheme is that it is nonsingular of dimension 2n + 2. If we define a similar subvariety in
Xl x X[k is singular for k > 1 [1, 2].
The nested Hilbert scheme can be considered as a subvariety of X x X x X[+l by
(11, I3) = (11, Supp(l1/ L), I).

Then it is clear that it is an irreducible component of Z studied in §5. Therefore the operator
P[+1] can be represented by the convolution with respect to X[+

P[-1]e = ps. (pienp3[C] N [X]) | ¢ € Hy,(L™O),
Pl]e = £pi. (XA ps[r(O) Npie) s ¢ € Hopyo(L"10),

where pq, po, ps3 are the projections from X™ x X x X[+l to the first, second and third
components.

We want to consider similar subvarieties for fixed point sets with respect to the action of a
finite subgroup I' C SLy(C) as in the previous section. For nested Hilbert schemes, I, I, are
[-invariant. For Hecke correspondences, V' and S are I'-modules. The condition dim I; /I, = 1
is not natural in this setting, we suppose [1/I; is irreducible I'-modules. Therefore we can
define subvarieties for each p;:

Bi(V) S {(I1, L) € X(VOp)x X(V) | L D L},

The non-standard notation V © p; means that it is (an isomorphism class of) a representation
V' of T" such that V' & p; is isomorphic to V. If such a representation does not exist, then we
define X(V © p;) to be the empty set. Note that Supp(l;/lz) = 0. So we do not have the
second component X in this case.

FEzercise 8.1. Consider B;(V) when V is a regular representation as in §6.2. Show that X(V &
p;) is a single point and PB; (V) is isomorphic to a projective line. Also study the intersection
PB;(V)NP,;(V) and identify the intersection pairing with the tensor product decomposition in
the McKay correspondence. (See also the remark in the end of §6.4).

We give a generalization following [N2, §5]. Let V, W be I'-modules as above. Let B(V, W)
be the set of all pairs (B, 1, j) and S modulo GL(V)"-action satisfying the following conditions

e (B,i,7) € u~1(0) is stable, and
e S is a I'-submodule of V', isomorphic to p;, such that B(S) CQ® S, S C Kerj

If such a subspace is given, then (B,i,j) induces an element in M(V/S,W). The element,
denoted by (B',7,j'), satisfies u(B',i',j') = 0 and the stability condition. Moreover, the
construction is compatible with the actions of GL(V)! and GL(V/S)F. Therefore we have a
map

BV, W) = MV/S, W) x M(V,W).

If T' = {1}, the trace of the restriction of B to S defines an element of @ = C> = X. Therefore,
we have

BV, W) - MV/S, W) x X x MV, W).
It is not difficult to show that these are embeddings, using the stability condition.
Definition 8.2. We call ‘B(V, W) the Hecke correspondence.



The relation to the Hecke correspondence and the nested Hilbert scheme is the following. If
I D I,, then we have a surjective homomorphism of C[x;, z]-algebras

(C[.Tl y .7)2] N (C[.Z'l y 332]
I I,

The kernel is a 1-dimension subspace of C|z1, 25|/l invariant under the multiplications of 1,
xy. Thus P(V, W) is the nested Hilbert scheme in the special case dim W = 1.

Under the identification of 9(V, W) with the moduli space of pairs (E, ®), the Hecke cor-
respondence is identified with the space of ((E1, ®1), (F2, ®2)) such that

e E; D E,, and the inclusion is an isomorphism outside a compact subset of C?,
e the framings ®,, &, at £, are the same under the above isomorphism F; = Ej,

up to isomorphisms.
The following result was proved in [N2, §5].

Theorem 8.3. P(V, W) is a nonsingular complex manifold. Moreover, it is lagrangian in
M(V, W) if T # {1}.

8.2.  We assume I' # {1} from now.
We define an algebra homomorphism U(g) — Hiop(Z(W)). We define the image of genera-
tors and check the defining relations. We set

e [[BVW], fim () [ wBi(V, W)

v

where Agnv,w) is the diagonal in IV, W) x MV, W), w: MV © p;, W) x MV, W) —
MV, W) x M(V & p;, W) is the interchange of the factors, and r(V,W) = 1(dim E)JI(V S
pis W) — dim 9(V, W)).

Theorem 8.4. The above assignment extends (uniquely) to an algebra homomorphism U(g) —
Hiop(Z(W)).

It is clear that d and h;’s make a commuting family. Thus we have the relation (7.2).
Since

[Amvepw)] * [Bi(V,W)] = [Bi(V, W)] * [Amevwy] 5

the relations (7.3, 7.4) follow.

Thus the relations (7.5, 7.6) are remained to be checked.

Before checking these relations, we introduce a complex which will play an important role
later. For each point in [(B,1,j)] € M(V, W), consider

)
(8.5) V—i—>Q®V€BW

[—BlBQ'i]

V.



If W is the trivial representation, this can be written in terms of the ideal I € X (V):

Clzi,22]/I %  Q&Cl,z)/IeoC 2 Cla,a/I
[z, f mod I

f — 2o f mod I
0

[ f, mod I
f2 mod [ — (l‘lfg — l‘gfl + CL) mod 1.
a

This is an analogue of the Koszul complex. The cyclicity or the stability implies (3 is surjective.
As an application of 3, we have the following:

Lemma 8.6. For a fized V, eV [Af)ﬂ(V7W):| and fN [AEUI(V,W)] are 0 for sufficiently large N.
In particular, the operators e;, f; are locally nilpotent on Hyop(£(W)).
Proof. The first case is obvious since

e;' [Amvw)] € Hiop(Z(V © Np;, V,W))

and M(V © Np;, W) = 0 if N is greater than the multiplicity of p; in V.
The second case follows from the assertion that if

dimW; = ¢ dimV; + dim V; = dim W — ) ¢;; dim V; — dim V; < 0
J Jig#e
then 9(V, W) = (). This assertion follows from the surjectivity of 3, as its p;-component
VVZ‘ D @ Vj®(—cij) — V;
Ji#
must be surjective. O

It is known that the relation (7.6) follows the rest of relations and the property in Lemma 8.6
(see e.g., §3.3 of the reference [1] in §7). Thus the only remaining relation is (7.5). I explain
only the key point in the proof. See the original paper [N2] for the complete proof. We consider
[Amvi ] €if; and [Agneyr )] fiei- Let us consider two triple products

MV, W) x M(Va, W) x M(Va, W), M(V1, W) x M(Vy, W) x M(Vs, W),
where
Vo=Vi®pi=Vs®p;, Vo=V10p=V300p.
Note that these equations are compatible since
Vo=V, ® p; ® pj.

Let p;; be the projection as usual. (We use the same notation for two triple products for
brevity.) Then we have

[Aonvrwy] eif; = £pise (07, [Bi(Va, W)] N0 pss [w B, (Va, W)])
[Azm(vl,wﬂ fiei = £p1s« (P [WB;(Vi, W) N pos [Bi(Va, W)]) .

Let us consider the set theoretical interesections in the special case W = pq:

P12 (Bi(V2)) N pas (WP;(V2)) = {(L, Lo, ) | [ O I C I3},

P12 (WP (V1) Npas (Bi(Va)) = {11, I, Is) | [ C I D s}

The crusial observation is the following: if I, # I3, I, and I} are determined by I, I3 as

]2:]1ﬂ13, 152114‘13

(8.7)



Moreover, I; N I3 € X (V3) if and only if I; + I3 € X (V3). Let U be the open subset given by
X (Vi) x X(V3) given by I # I. If i # j, then U = (). The above means that on the open set
p3 (U), the intersections (8.7) and their images under the projection pi3 are all isomorphic.
Let us draw a picture when I' = {1} and all I; are ideals of functions vanishing at distinct
points, although the case I' = {1} is excluded from our discussion:

. I, ( )
Il @ 13
I

FI1GURE 5. Correspondence between I} D I, C I3 and Iy C I}, D I3

The general case is the same. The set theoretical intersection is

Pz (Bi(Va, W)) N pag (wB;(Va, W)

_ 11 .1 9 9 .9 3 .3 .3\1]|there exist I'-equivariant surjections}
= B B 2 L LB, 2, ] e e it |

piz (WB;(V1, W) Npgg (B;(Vs, W)

_ 11 1 2 a2 12 3 .3 .3y |there exist ['-equivariant surjections}
- {([(B A )]7[(B vy ] )]7[(B vy ] )] Vl s V/2 «_V3 compatiblewithdata :

Here ‘compatible with data’ means that the kernel of the surjection V? — V7 is invariant
under BP and is contained Ker j? and the data induced on the quotient V7 is isomorphic to
(BY,i9,7%) ((p,q) = (2,1),(2,3),(1,12),(3,72)). As above, in the complement of the diagonal,
the two intersection are isomorphic, and also isomorphic to their image under the projection
to MV, W) x M(V3, W). We have already encountered the analogues result in §1.3.

One can check the transversality of the intersections on p;3 (U) (see [N2, Appendix]). If
Jj: U —= MV, W) x M(V3, W) denotes the inclusion, we get

7 [Amerwy] €ifj = 57 [Damevrwy] fi€i
Thus we have checked the relation (7.5) for i # j. Consider the case i = j. By the above and the

long exact sequence in the homology groups, we know that [Agﬂ(vl,w)] eif; — [Am(vl,wﬂ fiei
is contained in the image of

Hiop (Bomvr,w)) = Hiop(Z(W)).
Since M(V1, W) is connected and has dimension equal to ‘top’, we have
eif; = fiei = cv [Amyw)]

for some constant ¢y € Z. The last step in the proof is the calculation of a self-intersection
product to compute the constant c¢y. For this, see [N2, §9].
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9. IRREDUCIBILITY OF THE REPRESENTATION AND THE CRYSTAL STRUCTURE

Theorem 9.1. As a representation of U(g), @ Hiop(L(V, W)) is integrable and highest weight
(hence irreducible). Its highest weight vector is the fundamental class of M(0, W) = point. Its
highest weight A is given by (A,d) =0, (A, h;) = dim W

When W is the trivial representation, the corresponding integrable representation is called
the basic representation.

We have already checked that € Hiop(£(V, W)) is integrable in Lemma 8.6. It is also clear
that the weight of [90%(0,7/)] is given by the above A. In order to show that it is a highest
weight module, we introduce a structure of a crystal to the set of irreducible components of
Ll £(V,W). Note that | |,, £(V, W) gives a base of @, Hop(£(V, W)).

9.1. Crystal. Let us review the notion of crystals briefly. See [1, KS] for detail.
Let

1< {0,1,...,n} (the index set of simple roots),

PV YL Zhy® - ®Zh, ®Zd, PE{Nep |(\P) el

Definition 9.2. A crystal B associated with the affine Lie algebra g is a set together with
maps wt: B — P, g;,0;: B— Z U {—00}, €, fi: B— BLU{0} (i € I) satisfying the following
properties

(9.3a) @i(b) = €i(b) + (hi, wt(D)),

(9.3b) wt(€;b) = wt(b) + a4, €i(€:b) =¢&;(b) — 1, @si(€:b) = ¢i(b) + 1, ifeb € B,
(9-3c) wt(fib) = wt(b) — c, £i(fib) = €4(b) + 1, @ilfib) = ¢i(b) — 1, if fib € B,
(9.3d) W =fibeb=2gb forb b ebB,

(9.3¢) if ;(b) = —oo for b € B, then &b = f;b =0

We set wt;(b) = (h;, wt(b)).
We give simple examples.

Example 9.4. (1) For all ¢ € I, we define the crystal B; as follows:
B; = {bi(n) | n € 2},
wt(b;(n)) =na;,  @i(bi(n)) =n, &€i(bi(n)) =—n,
pj(bi(n)) = g;(bi(n)) = o0 (1 # j),
&(bi(n) =biln+1),  fi(bi(n)) = bi(n — 1),
&(bi(m) = (b)) =0 (3 # 5).

(2) For A € P*, we define the crystal T) by
Ty =A{t:},
wt(ta) = A, @i(ty) = ei(ty) = —o0,
&t = filta) = 0.
A crystal B is called normal if
e:(b) = max{n | &b £ 0}, ¢;(b) = max{n | fI'b# 0}.

For given two crystals By, By, a morphism 1) of crystal from B; to By is a map B; U {0} —
By L1 {0} satisfying 1(0) = 0 and the following conditions for all b € By, i € I:

(9-5a) wi(9(b)) = wt(b), ei(¢(b)) = €i(b), ¢i(¥(b)) = ¢i(b) if P(b) € By,



(9.5b) eb(b) = ¥(eb) if ¥(b) € By, E:b € By,
(9.5¢) Fiab(b) = p(fib) if p(b) € By, fib € By.

A morphism 9 is called strict if ¢ commutes with €;, fz for all © € I without any restriction.
A morphism 1 is called an embedding if 1) is an injective map from B; L {0} to By LI {0}.

Definition 9.6. The tensor product By ® By of crystals B; and B, is defined to be the set
B x By with maps defined by

(978,) Wt(bl ® bz) = Wt(bl) + Wt(bg),

(97b) 81'(1)1 ® bg) = max(e,-(bl), 6,‘([)2) - Wtz(bl)),

(9.7¢) @i(b1 ® bo) = max(pi(bs), ¢i(b1) + wt;(b2)),
- _Jeibi ®@by if wi(b1) > €i(b2),

(9.7d) ei(by ® by) = {bl @by otherwise,

~ f;bl X b2 if sz(bl) > 8i(b2),
9.7 (b1 ® by) = ~
(9.7) 1i(br ® by) {b1 ® f;ba otherwise.

Here (by, be) is denoted by b; ® by and 0 ® be, by ® 0 are identified with 0.

It is easy to check that these satisfy the axioms in Definition 9.2. It is also easy to check
that the tensor product of two normal crystals is again normal.

It is easy to check (B; ® B2) @ By = B; ® (B, ® Bs). We denote it by B; ® By ® Bs. Similarly
we can define B; ® --- ® B,,.

The crystal was introduced by abstracting the notion of crystal bases constructed by Kashi-
wara [1]. Thus we have the following examples of crystals.

Example 9.8. (1) The lower half U (g)~ of the quantized universal enveloping algebra has a
base which has a structure of the crystal. Let B(oc) denote this crystal. Let by be the vector
corresponding to 1 € U,(g) .

(2) Similarly the simple U,(g)-module L(A) with highest weight A has a base which has a
structure of the crystal. Let B(A) denote this crystal. Let by denote the highest weight vector
considered as an element of B(A). It is known that B(A) is normal. It is also known that the
map

7 B(0o) @Ta D fiy ... fibo @ ta —> fi, ... fi by € B(A) L {0}

is well-defined and is a strict morphism. Furthermore, L(A;) ® L(As) has a base which has a
structure of crystal isomorphic to B(A;) ® B(As).

Remark that the character of L(A) is given by

chL(A) € Y dim LAyt = Y e,
A beB(A)

We also have the tensor product decomposition (generalized Littlewood-Rechiardson rule):
L(A1) ® L(Az) = @D L(wt(by) + wt(bs)),

where the summation runs over all b; ® by € B(A;) ® B(Az) such that e;(b; ® by) = 0 for all
1€ 1.



9.2. Let us consider the complex (8.5). Let @ K; ® p; be the decomposition of Ker a to
irreducible representations. (Note that Ker « is invariant under the I'-action. Note that the
kernel is nonzero if [(B, i, )] € £(V,W), since B; and By are commuting nilpotent elements.

Let 9M;..(V,W) be the subset of 9MM(V, W) consisting of elements [(B,1, )] whose K; has
dimension 7. It is a locally closed subvariety since |J M,.s(V,W) is an open subset of
X(V). Let us define a map

p: mi;r(va W) — mi;()(v © T pi, W)

as follows. We replace V; by V;/K; and consider the induced map (B’, 7, j'). Other components
V; are unchanged.

If W = py and the point [(B, 1, j)] corresponds to an ideal I € X;..(V'), then p(I) is an ideal
generated by I and (representatives of) K; ® p;.

Lemma 9.9. (1) Let o/, 8" be homomorphism defined as above for points [(B',4',j')] € Mio(VO
rpi, W). Then Homy (p;, Ker '/ Im ') forms a vector bundle over Mo(V ©rp;, W). Its rank
18 equal to

s:s<r

dlIIlI/VZ — ZCZ](dlmV} — T‘éij),
J
which is (the weight of Hiop(£(V © 1rpi, W)), hi). (Recall the definition of h;.)
(2) p: M (V,W) — Mio(V S rp;, W) is isomorphic to the Grassmann bundle of r-planes
in Homr (p;, Ker 8’/ Im o).

In fact, the isomorphism is given by mapping [(B,i,7)] to Homr (p;, Ker 5/Ima). The
latter can be considered as a subspace of Homp (p;, Ker 5'/Im ') since Ker 8/ C Ker 5 and
Im a = Im o/ by the definition of [(B},4', j')].

It is clear that «(([B,1,j])) = =([B',7,j']). Therefore, the restriction of the Grassmann
bundle to £(V & rp;, W) gives us

p: M, (VW) N LV, W) = Mio(V S 1o, W) N LV ©7pi, W),

which is still isomorphic to a Grassmann bundle.
Using (6.4), we find

% dim M(V © rp;, W) + dim(Grassmann) = % dim MV, W).

This means that the dimension of the fiber is just half of the difference of dimensions of total
space. This remarkable observation is due to Lusztig.

Let us show that dim 9., (V, W)NL(V, W) is equal to the half of dim 9(V, W) by induction,
by using this observation. A little bit more effort shows that 9. (V,W) N £(V,W) is a
lagrangian subvariety.

When V =0, then £(0, W) = 9(0, W) is a point. So the assertion is obvious. Assume that
we have dim 9, (V/, W) N LV, W) = $dim9M(V', W) if dimV’ < dimV. If V # 0, then
K; # 0 for some i for any point in £(V, W). That is

ev.w)= |J M (V,W)neWv,w)
1€l,r#£0
By the induction hypothesis and the above observation, 9;, N £(V, W) is a half-dimensional
subvariety. Since the above is a finite union, the total set £(V, W) is also half-dimensional.
Since M;.o(V, W) N £(V,W) is an open subset of £(V, W), it is also half-dimensional. This
completes the induction.

Let Y be an irreducible component of £(V, W). We define wt(Y') as a weight of H,, (£(V, W)),

ie.,
dimW; = " c;dim V.

J



We define €;(Y) so that
gi(Y)=dim K; for a generic point [(B,4,j)] in Y,

= min dimK;.
[(B.i,j)]€Y

As we remarked above, €;(Y) > 0 for some i if V # 0. We set ¢;(Y) = &;(Y) + (wt(Y), h;).

Let r < ;(Y). We define an irreducible component Y’ of £(V & rp;, W) by

Y p (V0 (V,W),
where p: M., (V, W) — M,.o(V © rp;, W) is the Grassmann bundle above. We have
8i(YI) =0

Conversely, we can recover Y from Y’ as
Y=ptY'NMo(Verp, W)).
Therefore we have a bijection
{Yelr &V, W) |&(Y)=r}«—{Y elr &(Vorp,W)|el') =0}
Using above observation, we want to define maps
& fir | | e(v, W) — | |Tr £(v, W) U {0}.
If ¢;(Y) = 0, then we define ;Y = 0. Otherwise, we define €;Y" as the image of Y under the
composition of bijections
{Yelr &V,W) |g(Y)=r}+—{Y elor&(VorpW)| ') =0}
+—{Y"elr&(Vop,W)|&lY')=r—-1},
where the latter bijection is given by the Grassmann bundle 9., 1(V © p;, W) — Mo(V ©
rpi, W). N
Similarly we define f;Y as the image of Y under the composition of bijections
{Yelr &(V,W) |&(Y)=r}+—{Y elor&(VorpW)| ') =0}
+— Y"er (Ve pi, W) | &(Y') =r+1}.

However we must be careful. Since
dim Homr (p;, Ker '/ Im ') = (b, wt(Y')) = (h;, wt(Y)) + 27,
the Grassmann bundle of (r+1)-planes in Homr (p;, Ker '/ Im ') is empty if (h;, wt(Y)) +r <
0. We set f;Y = 0 in this case. Otherwise, f;Y is defined by the bijections.
Theorem 9.10. The above &;, @;, €;, ﬁ on ||, Irr £(V, W) is a crystal.

Using the exact sequence in homology groups, it is not difficult to show that
LFYl=clfiv]+ > eV
Y'ei(YV)>e;(Y)+1
for some constants ¢, cy. (Use the open set [, .y Miss(V, W).) In order to determine the
constant ¢, we pullback both hand sides to LJS:S<€(Y)Jrl 9M;.s(V,W). In the right hand side, only

c [ﬁY] survives. Then it is not difficult to determine ¢ by using the self-intersection formula.
It is given by +(¢(Y') + 1).

Using the above formula, we prove that €D Hiop(£(V,W)) is a highest weight module by
induction on dimV and ;. If V.= 0, £(0,W) = 9(0, W) is a point. We have nothing to
prove. Let Y be an irreducible component of £(V,W). There exists 7 such that ;(Y) > 0.
Suppose that we already know that



(1) if dim V' < dimV, then Hy,(L(V',W)) is contained in U(g) - [9(0, W)].

(2) if Y' € Irr £(V, W) satisfies €;(Y") > &;(Y), then [Y] is contained in U(g) - [9(0, W)].
Since the value of ¢; on Irr £(V, W) is bounded from above, we may assume the second condition
by the descending induction. By the above formula, we have

fileiY] =+ (V)[Y] + Z ey [Y'].
Y (Y)>ei(Y)
By (1), the left hand side is contained in U(g) - [91(0, W)]. By (2), terms in the right hand
side, except +¢;(Y)[Y] are contained in U(g) - [9(0, W)]. Therefore [Y] is also contained in
U(g) - [991(0, W)]. This completes the proof.

Remark 9.11. It is known that the crystal defined above (the definition is due to Lusztig) is
isomorphic to the crystal of the highest weight module of the quantum affine algebra. See
[KS, 3, 6] for the proof.

Further study. The quiver varieties are relevant for studies of g-analogues of loop algebras.
In our case when quiver varieties are realized as fixed point set of Hilbert schemes, it is the
g-analogue of the loop algebra of the affine Lie algebra:

U,(Lg).

Note that the affine Lie algebra g already contains the loop algebra Lg of a simple finite
dimensional Lie algebra g. Therefore, Lg is sometimes called a double loop algebra or a toroidal
algebra.

In fact, a restricted class of quiver varieties (W, = V5 = 0 in our notation) corresponds to a
g-analogue U,(Lg) of a single loop algebra Lg of the simple Lie algebra g. It already contains
an information on its representation theory, which cannot be accesible by purely algebraic
techniques [4, 5]. So far, the representation theory of U,(Lg) is not so studied, but basically
all results in [4, 5] can be generalized to the case of U,(Lg). One of missing pieces is the
definition of a coproduct.

I have already explained basic results for quiver varieties. Materials which are necessarily
to read [4, 5], e.g., K-theory of coherent sheaves, perverse sheaves, can be studied in lots of
nice textbooks. So you are ready to wellcome a study of representation theory by a geometric
method !
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