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Abstract. We give a different proof of Hitchin’s result : a correspon-
dence between SU(2)-monopoles and solutions of Nahm’s equations.
We also prove that this correspondence gives a hyper-Kähler isome-
try between the monopole moduli space and the space of equivalence
classes of solutions of Nahm’s equations, equipped with their natural
metrics. Such a result was conjectured by Atiyah and Hitchin.

1. Introduction

In 1983 Hitchin [Hi3] gave an equivalence between

A) an SU(2) monopole satisfying certain asymptotic conditions,

B) a solution of Nahm’s equation satisfying certain boundary conditions.

The correspondence B ⇒ A is an adaptation of the Atiyah-Drinfeld-Hitchin-Manin
construction [ADHM] of instantons on S4, and was produced by Nahm [Na1].
Hitchin constructed the correspondence A ⇒ B by relating A and B to the third
object:

C) a compact algebraic curve in TP1 satisfying certain conditions.

The third object C is interesting to explore in itself, but for the purpose in giving
the correspondence A ⇒ B, this approach is indirect and it is not so easy to prove
that the composition A ⇒ B ⇒ A gives back the same monopole.

Later Nahm [Na2] and Corrigan-Goddard [CG] pointed out a new approach
which is more direct. From their point of view, the transform which produces
B ⇒ A and A ⇒ B can be considered as analogous to a Fourier transform, so it
seems very natural, at least philosophically, that two correspondences are mutually
inverse. But they do not check the boundary behaviour of the solutions of Nahm’s
equations. This is the remaining part in their approach.
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Our aim is to fill the hole in their approach. But for the sake of the reader, we
shall give the proofs (sometimes only in outline) in the whole steps.

Let us give the precise statement of Hitchin’s result. Our objects are the
following:
A) An SU(2) connection A on a rank 2 hermitian vector bundle E over R3 and a
skew hermitian endomorphism Φ (the Higgs field) satisfying
A1) (the Bogomolny equation)

∗RA = dAΦ,

A2) the asymptotic expansion as r = |x| → ∞, up to gauge transformation,

Φ =
(

i(1 − k
2r ) 0

0 −i(1 − k
2r )

)
+ O(r−2),

|∇AΦ| = O(r−2),
∂|Φ|
∂Ω

= O(r−2),

where k is a positive integer.

B) A hermitian connection ∇ on a hermitian vector bundle V of rank k over
the open interval I = (−1, 1) and three skew-hermitian endomorphisms Tα ∈
Γ(I; Endskew(V )) satisfying
B1) (the Nahm’s equation)

∇tTα +
1
2

∑

β,γ

εαβγ [Tβ , Tγ ] = 0,

B2) Tα has at most simple poles at t = ±1 but is otherwise analytic,
B3) at each pole the residues of (T1, T2, T3) define an irreducible representation of
su(2). Namely near the endpoint t = 1, in a covariant constant basis, we can write

Tα(t) =
aα

t − 1
+ bα(t),

where bα is analytic in a neighbourhood of t = 1. Then

x1e1 + x2e2 + x3e3 7→ −2(x1a1 + x2a2 + x3a3)

defines a k-dimensional representation of su(2). (This is a consequence of the
Nahm’s equation.) Here (e1, e2, e3) is a basis for su(2) defined by

e1 =
(

i 0
0 −i

)
, e2 =

(
0 −1
1 0

)
, e3 =

(
0 i
i 0

)
.

The last condition says this representation is irreducible, and similarly at the other
pole t = −1.

Now our main result is



Theorem (Hitchin [Hi3]). There is a natural equivalence between monopoles sat-
isfying conditions A and Nahm data satisfying conditions B.

The formal aspects of the proof is the same as the instanton case (see [Na2,
CG]). In this case the similar proof but incorporating the complex geometry was
given by Donaldson in [DK]. These two methods were used and presented side-by-
side in [KN]. We shall adapt Nahm-Corrigan-Goddard’s method in principle, but
use the complex notation hoping that it makes the calculation familiar.

The paper is organized as follows. In Sect. 2 we give the correspondence A ⇒ B.
In Sect. 3 we review the construction of monopoles from Nahm data, i.e., B ⇒ A.
In Sects. 4 and 5 we prove that two correspondences are mutually inverse. Section 6
takes up an interesting side-issue: we show that our correspondence gives a hyper-
Kähler isometry between the space of equivalence classes of solutions of Nahm’s
equations and the moduli space of monopoles, equipped with their natural hyper-
Kähler structures. This was conjectured by Atiyah and Hitchin [AH]. Section 7
provides some remarks. In the appendix we shall give a proof of Lemma which we
need in Sect. 2.

In a future work, the author hopes to extend Main Theorem to SU(m)-monopoles.
The only thing left is to study the boundary behaviour of the solutions of Nahm’s
equations. There are results of [HM] in this direction.

2. From Monopoles to Nahm’s equations

The purpose of this section is to obtain from an SU(2)-monopole (A,Φ) a solution
Tα to Nahm’s equations which satisfies the conditions B of the introduction.

For each t ∈ I consider the following operators:

DA,t = DA + (Φ − it): Γ(S ⊗ E) → Γ(S ⊗ E),

D∗
A,t = DA − (Φ − it): Γ(S ⊗ E) → Γ(S ⊗ E),

where S is the spin bundle over R3 and DA is the Dirac operator coupled with the
connection A. Note that D∗

A,t is the formal adjoint of DA,t. Then the Weitzenböck
formula shows

(2.1) D∗
A,tDA,t = 1S ⊗ (∇∗

A∇A − (Φ − it)2),

which is a positive operator. In particular, DA,t has no L2 kernel. Define

Vt = L2 kernel of D∗
A,t.

By an index theorem [Ca] the index of the operator DA,t is equal to −k, and we
have Ker DA,t = 0. So Vt defines a vector bundle V of rank k on I which is a
sub-bundle of the trivial bundle L2(R3; S ⊗ E) over I. (We denote by W the trivial
bundle whose fiber is a vector space W .) Let π be the orthogonal projection onto
V . Define a connection and three endomorphisms on V by

∇tψ = π(
∂ψ

∂t
), Tα(ψ) = π(ixαψ), α = 1, 2, 3.

Note that ixαψ is in L2 since ψ decays exponentially as r = |x| → ∞.



The skew-hermiticity of Tα is automatic from the definition of Tα. So we first
study the boundary condition B2. Since the behaviour when t → +1 is similar, we
only study the case t → −1.

In the following calculation, we use the constant C in the generic sense. So
the symbol C may mean different constants in different equations. The important
point is that C must be independent of t, since we want to study the behaviour as
t → −1.

As shown in [Hi2,p.591], under the condition A1, there is an asymptotic gauge
in which the Higgs field is the form of B2 and the connection matrix has the
following asymptotic behaviour:

(
A∗

0 0
0 A0

)
+ O(r−2),

where A0 is the connection form for a homogeneous connection on a line bundle of
degree k over S2 = P1 extended radially to R3 \ {0} (A∗

0 is its dual). Take a radial
coordinate system (r, θ). The spinor bundle of S2 × (0,∞) is isomorphic to that
of S2, hence decomposes as S+ ⊕ S−. Then there exists a norm preserving bundle
isomorphism between S and S+ ⊕ S− under which Dirac operators are related by
(cf. [Hi1])

Dψ = r−2DS+⊕S−(rψ) =




i(
∂

∂r
+

1
r
)

1
r
D−

1
r
D+ −i(

∂

∂r
+

1
r
)


 ,

where D± is the Dirac operator on S2. Let denote the Dirac operators on S2

twisted by A0, A∗
0 by D±

A0
, D±

A∗
0
. The operator D∗

A,t can be represented as follows:

D∗
A,t =

(
B1 0
0 B2

)
+ O(r−2),

where

B1 =




i(
∂

∂r
+ t − 1 +

k + 2
2r

)
1
r
D−

A∗
0

1
r
D+

A∗
0

−i(
∂

∂r
− t + 1 − k − 2

2r
)


 ,

B2 =




i(
∂

∂r
+ t + 1 − k − 2

2r
)

1
r
D−

A0

1
r
D+

A0
−i(

∂

∂r
− t − 1 +

k + 2
2r

)


 .

Let R be a fixed positive number and χ a cut-off function which is 0 on [0, R] and 1
on [R+1,∞). Using the isomorphisms S+ ∼= Λ0,0 ⊗H∗, S− ∼= Λ0,1 ⊗H∗ (where H
is a hyperplane bundle), we can define ψ ∈ L2(R3; S⊗E) from f ∈ H0(P1;O(k−1))
by

ψ(r, θ) =
(
0 0 χ(r)e−(t+1)rr

k−2
2 f(θ) 0

)t
.

Then it satisfies
|D∗

A,tψ|S ≤ Ce−(t+1)r(r + 1)
k−2
2 −2,



for some constant C depending only on (A,Φ), χ and sup |f |. This means that ψ is
an approximate solution of D∗

A,tψ = 0. A real solution is given by ψ −DA,tϕ where
ϕ is the unique solution

(2.2) D∗
A,tDA,tϕ = 1S ⊗ (∇∗

A∇A − (Φ − it)2)ϕ = D∗
A,tψ.

We shall show that DA,tϕ is small relative to ψ, so the boundary behaviour of Tα

is determined from ψ.
The equation (2.2) can be uniquely solved by the same method as in [JT,

Proposition IV.4.1]. Please see [JT] for details. The solution ϕ is the minimum of
the functional

S(ϕ) = ‖∇Aϕ‖2
L2 + ‖(Φ − it)ϕ‖2

L2 − 2〈ϕ,D∗
A,tψ〉L2 .

This is strictly convex, differential and coercive, so has a unique minimum. In
particular, S(ϕ) ≤ S(0) = 0. Hence,

(2.3) ‖DA,tϕ‖2
L2 = ‖∇Aϕ‖2

L2 + ‖(Φ − it)ϕ‖2
L2 ≤ 2〈ϕ,D∗

A,tψ〉L2 .

If R is sufficiently large and t is near −1, we have an estimate

(1 + t)|ϕ| ≤ 2|(Φ − it)ϕ| in R3 \ B R
1+t

.

So we get

(2.4) (1 + t)2
∫

R3\B R
1+t

|ϕ|2 dx ≤ 4‖(Φ − it)ϕ‖2
L2 .

On the other hand, the integral over B R
1+t

can be estimated by using the Hölder’s
and Sobolev inequalities as

(2.5) (1 + t)2
∫

B R
1+t

|ϕ|2 dx ≤ C‖ϕ‖2
L6 ≤ C‖ d|ϕ| ‖2

L2 ≤ C‖∇Aϕ‖2
L2 ,

where we have used the Kato’s inequality in the last step. Substituting (2.4) and
(2.5) into (2.3), we get

‖DA,tϕ‖L2 ≤ C(1 + t)−1‖D∗
A,tψ‖L2

Direct calculation shows that

‖D∗
A,tψ‖L2 ≤ C(1 + t)2‖ψ‖L2 .

Hence DA,tϕ is small if t is sufficiently near to −1, as required.
Thus we have obtained a trivialization of the bundle V near t = −1 (after the

Gram-Schmidt orthogonalization). This trivialization is not covariant constant, but
the trace-free part of the connection form is bounded. Hence it is enough to study
the asymptotic behaviour in this trivialization. So the condition B3 follows from



Lemma 2.6. Let aα be an endomorphism of H0(P1;O(k − 1)) defined by

〈aαf1, f2〉 =
∫

P1
〈ixαf1, f2〉 dV.

Then a non-zero constant multiple of a linear map x1e1 + x2e2 + x3e3 7→ x1a1 +
x2a2 + x3a3 defines an irreducible k-dimensional representation of su(2).

The proof will be given in the Appendix. Remark that we will prove that Tα’s
satisfy the Nahm’s equations below, so the constant must be equal to −2.

Proposition 2.7. The endomorphisms Tα and the connection ∇ satisfy the Nahm’s
equations

∇tTα +
1
2

∑

β,γ

εαβγ [Tβ , Tγ ] = 0, α = 1, 2, 3.

Before entering the proof of this proposition, we prepare the complex notation
as in [Do] by breaking the natural symmetry and choosing a particular isomorphism
R3 ∼= R × C.

Fixing a trivialization of the bundle V , we write the connection ∇ as d
dt + T0.

Put
α =

1
2
(T0 + iT1), β =

1
2
(T2 + iT3).

Then the Nahm’s equations become the following pair of equations:

dβ

dt
+ 2[α, β] = 0 (the complex equation),

d

dt
(α + α∗) + 2([α, α∗] + [β, β∗]) = 0 (the real equation).

To prove that Tα’s satisfy the Nahm equations, it is not necessarily to check both
the complex and real equations: If one can check the complex equation, then he/she
also gets the real equation by changing the isomorphism R3 ∼= R × C.

As is well-known, a monopole (A,Φ) on R3 = {(x1, x2, x3)} can be identified
with an R-invariant instanton B on R4 = {(x0, x1, x2, x3)}. The operators DA,t,
D∗

A,t correspond to the Dirac operators D+
B,t, D−

B,t respectively, where the sub-
script t means that the operators are twisted by a flat connection itdx0. Using the
isomorphism R4 ∼= C2, we have isomorphisms

S+ = Λ0,0 ⊕ Λ0,2, S− = Λ0,1,

and the Dirac operators are written as

D+
B,t =

√
2(∂B,t, ∂

∗
B,t): Ω

0,0(E) ⊕ Ω0,2(E) → Ω0,1(E),

D−
B,t =

√
2

(
∂
∗
B,t

∂B,t

)
: Ω0,1(E) → Ω0,0(E) ⊕ Ω0,2(E).

Correspondingly, we denote components of DA,t, D∗
A,t by Dolbeault operators:

DA,t =
√

2(∂A,t, ∂
∗
A,t), D∗

A,t =
√

2
(

∂
∗
A,t

∂A,t

)
.



Then the followings are “key identities” in our calculation:

(2.8) [∂A,t,
∂

∂t
− x1] = 0, [∂A,t, x2 + ix3] = 0,

where xα is the multiplication of a coordinate function. These identities means
that “z1 = −i ∂

∂t + ix1 and z2 = x2 + ix3 are holomorphic” which is true on
C2 = {(z1, z2)}. We shall use this funny notation, hoping this causes no confusion.

In this setting, the formula (2.1) is

(2.9) (∂A,t, ∂
∗
A,t)

(
∂
∗
A,t

∂A,t

)
=

(
∂A,t∂

∗
A,t ∂

∗
A,t∂

∗
A,t

∂A,t∂A,t ∂
∗
A,t∂A,t

)
=

1
2

(
∆A,t 0

0 ∆A,t

)
,

where ∆A,t = ∇∗
A∇A − (Φ − it)2.

Proof of Proposition 2.7. Let GA,t denote the Green’s operator ∆−1
A,t. Then the

orthogonal projection π is given by

π = 1 − DA,t(1S ⊗ GA,t)D∗
A,t.

Let ψ ∈ Vt, i.e. an L2-solution of D∗
A,tψ = 0. By the definitions of ∇ and Tα

(2.10)
iz1ψ − (

d

dt
+ 2α)ψ = DA,t(1S ⊗ GA,t)D∗

A,t(iz1ψ)

iz2ψ − 2βψ = DA,t(1S ⊗ GA,t)D∗
A,t(iz2ψ).

Using the “Dolbeault” operators and the formula (2.8), (2.9), we find

(2.11) iz2(
d

dt
+ 2α)ψ − 2iz1βψ = 2∂A,t{iz1GA,t∂

∗
A,t(iz2ψ) − iz2GA,t∂

∗
A,t(iz1ψ)}.

Projecting to Vt, we get the complex equation

dβ

dt
+ 2[α, β] = 0.

This completes the proof. ¤

3. From Nahm’s equations to Monopoles

In this section, we shall construct an SU(2)-monopole from a solution of the Nahm’s
equations.

Suppose that we are given Nahm data satisfying the conditions B in Sect. 1. Let
consider the Sobolev space C2 ⊗W 1,2

0 (I; V ) of sections of C2 ⊗V whose derivatives
are in L2 and the boundary values are 0. Similarly let C2 ⊗ L2(I; V ) be the space
of L2 sections. For each x ∈ R3, define an operator Dx: C2 ⊗ W 1,2

0 (I; V ) → C2 ⊗
L2(I;V ) by

Dx = 1C2 ⊗∇t +
3∑

α=1

(eα ⊗ Tα − ixαeα ⊗ 1V ),



where {e1, e2, e3} is the standard basis for su(2) (see Sect. 1). In the matrix nota-
tion, this is equal to

Dx =
(

d
dt + 2α 2β∗

2β d
dt − 2α∗

)
−

(
−x1 −iz2

iz2 x1

)
,

where z2 = x2 + ix3 as before. Let D∗
x be the formal adjoint operator of Dx, which

is given by

D∗
x =

(
− d

dt + 2α∗ 2β∗

2β − d
dt − 2α

)
−

(
−x1 −iz2

iz2 x1

)
.

The Nahm’s equations imply

(3.1) D∗
xDx = 1C2 ⊗

(
∇∗

t∇t +
3∑

α=1

(Tα − ixα)∗(Tα − ixα)

)
.

This identity is an analogue of (2.1). Then one can show that KerDx = 0 for all
x ∈ R3, so Ker D∗

x forms a vector bundle E over R3. The index is equal to −2
[Hi3], so rankE = 2. Since E is a subbundle of the trivial bundle C2 ⊗ L2(I; V )
over R3, it inherits a hermitian metric and a connection A. More precisely, if p is
the projection onto E,

dA = p ◦ d.

We define the Higgs field Φ by
Φ = p ◦ it.

Then Hitchin shows that

Theorem 3.2. The connection A and Higgs field Φ satisfy the Bogomolny equation
∗RA = dAΦ and the boundary condition A2.

Proof. We shall give the proof for the Bogomolny equation. Our proof is “dual” to
that of Proposition 2.7. For the proof of the boundary condition, see [Hi3].

Let define

σx =
(

d
dt + 2α + x1

2β − iz2

)
, τx = (2β − iz2,−

d

dt
− 2α − x1).

Let Fx be the inverse of ∇∗
t∇t +

∑3
α=1(Tα − ixα)∗(Tα − ixα). Then the orthogonal

projection p is given by

p = 1 − Dx(1C2 ⊗ Fx)D∗
x = 1 − σxFxσ∗

x − τ∗
xFxτx.

Consider the following operators (cf. Sect. 2)

D = D + it: Γ(S ⊗ C2 ⊗ L2(I; V )) → Γ(S ⊗ C2 ⊗ L2(I; V )),

D∗ = D − it: Γ(S ⊗ C2 ⊗ L2(I; V )) → Γ(S ⊗ C2 ⊗ L2(I; V )),

where D is the Dirac operator associated with the trivial monopole on C2 ⊗ L2(I; V ).
Denote by ∂, ∂

∗
the associated “Dolbeault” operators. Namely

D =
√

2(∂, ∂
∗
), D∗ =

√
2

(
∂
∗

∂

)
.



If we define ∂A,0 (we set the parameter t = 0.) from (A,Φ) as in Sect. 2, we find

∂A,0 = p∂ = (1 − σxFxσ∗
x − τ∗

xFxτx)∂.

Then

(3.3) ∂A,0∂A,0 = 0

follows from ∂ ∂ = 0 and the identities

(3.4), [∂, σ] = 0, [∂, τ ] = 0

which mean that σ and τ are “holomorphic”. These are analogue of (2.8). Now
changing the complex structure, we get the full Bogomolny equation from (3.3). ¤

4. Completeness

We now study the composition of the transformations given in previous sections.

a monopole
(A,Φ)

§2
=⇒ Nahm data

(∇, Tα)
§3

=⇒ a new monopole
(A′, Φ′)

Starting from a monopole (A,Φ) with the monopole charge k, we construct Nahm
data Tα satisfying the conditions B in Sect. 2. Then we can construct another
monopole (A′, Φ′) from this data as in Sect. 3. The aim of this section is to show
that these data (A,Φ) and (A′,Φ′) are gauge equivalent. This will show that all
monopoles arise by the construction given in Sect. 3.

First we shall construct a bundle map from the original bundle E to a new
bundle E′ on which (A′, Φ′) lives. Fix t ∈ I. Let ψ ∈ C2⊗Vt. Since Vt is a subspace
of L2(R3; S ⊗ E), we can define a section of S ⊗ C2 ⊗ E by

(4.1) Ktψ = GA,t[D∗
A,t , (− d

dt
+ ix )]ψ,

where x =
∑3

α=1 xαeα. The commutator [D∗
A,t , (− d

dt + ix )] is given by a Clifford
multiplication of a constant vector, so can be applied to ψ which is defined only at
t. Moreover, since ψ ∈ Ker D∗

A,t, we have

Ktψ = GA,tD
∗
A,t (− d

dt
+ ix )ψ.

Using the identification of S with C2, we have a contraction map

ω: S ⊗ C2 3 (s1, s2) ⊗ (t1, t2) 7→ s1t2 − s2t1 ∈ C.

Then the map Vt 3 ψ 7→ (ωKtψ)(x) ∈ Ex gives a bundle map from the trivial
bundle C2 ⊗ Vt over R3 to E. Taking the hermitian adjoint, and moving t, we
finally obtain a bundle map

κ: E → C2 ⊗ Γ(I; V ).



First we show that the image of κ is in C2 ⊗ W−1,2(I; V ). As is obtained in
Sect. 2, we have an estimate

‖GA,tϕ‖L6 ≤ C(1 + t)−1‖ϕ‖L2 for ϕ ∈ L2(S ⊗ E),

if t is near −1. Since ψ ∈ C2 ⊗ Vt = C2 ⊗ Ker D∗
A,t satisfies an elliptic partial

differential equation, the above estimate and the Lp-estimates (cf. [GT, Chapter
9]) give us

|(ωKtψ)(x)| ≤ C(1 + t)−1‖ψ‖L2

for some constant C independent of t (which may depend on x). So if f ∈ C2 ⊗
W 1,2

0 (I;V ), we have
∣∣∣∣
∫ 1

−1

(ωKtf(t))(x) dt

∣∣∣∣ ≤ C‖f‖
C

1/2
0

≤ C‖f‖W 1,2
0

.

This means that the image of κ is in the dual space of W 1,2
0 , i.e. W−1,2.

We will prove that the image of κ is, in fact, contained in L2, later. So the
following proposition merely means that the image of κ satisfies a certain differential
equation at this moment, but later it will mean that κ is a bundle map from E to
E′.

Proposition 4.2. For each x ∈ R3 the image κ(Ex) is contained in Ker D∗
x.

Proof. The calculation is the straightforward adaptation of that in [KN, Proposi-
tion 6.1].

We rewrite (4.1) by using the complex notation as in Sect. 2. For ψ =
(ψ1, ψ2) ∈ C2 ⊗ C∞

0 (I; Vt) the section ωKtψ can be rewritten as

√
2GA,t

{
∂
∗
A,t(iz2ψ1 − iz1ψ2) + ∂A,t(iz1ψ1 + iz2ψ2)

}
,

where z1, z1 are as in Sect. 2. We have the following identities (cf. [KN, Lemma 6.2]):

(4.3) [∂A,t , iz1] = [∂
∗
A,t , iz2], [∂

∗
A,t , iz1] = −[∂A,t , iz2],

which can be checked easily. Hence we get

(4.4) ωKtψ = 2
√

2GA,t∂
∗
A,t(iz2ψ1 − iz1ψ2) = 2

√
2GA,t∂A,t(iz1ψ1 + iz2ψ2).

From (2.11), we find

GA,t∂
∗
A,t{iz2(

d

dt
+ 2α)ψ1 − 2iz1βψ1} = iz1GA,t∂

∗
A,t(iz2ψ1) − iz2GA,t∂

∗
A,t(iz1ψ1).

The integration of the right hand side is equal to

(4.5)
∫ 1

−1

−x1GA,t∂
∗
A,t(iz2ψ1) − iz2GA,t∂

∗
A,t(iz1ψ1) dt,

where the term
∫ 1

−1

∂

∂t
GA,t∂

∗
A,t(iz2ψ1) dt = lim

t→1
GA,t∂

∗
A,t(iz2ψ1) − lim

t→−1
GA,t∂

∗
A,t(iz2ψ1)



drops because ψ1 vanishes near the boundary. (Remember iz1 = ∂
∂t −x1.) Similarly

we have formula

(4.6)

∫ 1

−1

GA,t∂A,t{2iz1β
∗ψ2 + iz2(−

d

dt
+ 2α∗)ψ2} dt

=
∫ 1

−1

−iz2GA,t∂A,t(iz1ψ2) + x1GA,t∂A,t(iz2ψ2) dt.

Then (4.5), (4.6) and (4.4) imply κ∗Dψ = 0. Since ψ is arbitrary, we have D∗κ =
0. ¤

Proposition 4.7. Im κ ⊂ C2 ⊗ L2(I; V ).

Proof. Elements represented in the form

Dxf + g f ∈ C2 ⊗ C∞
0 (I;V ), g ∈ Ker D∗

x ∩ L2

are dense in C2 ⊗ L2(I; V ). The Im κ is orthogonal to Dxf by Proposition 4.2. As
used in [Hi3], an L2-solution of D∗

xg = 0 is O((1 − t)(k−1)/2) near t = 1. Hence
when k > 1, the L2-inner product

∫ 1

−1

〈g, κ(e)〉 dt

is finite. When k = 1, Tα is bounded. So the equation

0 = D∗
xκ(e) =

(
−1C2 ⊗∇t +

3∑

α=1

(eα ⊗ Tα − ixαeα ⊗ 1V )

)
κ(e) (e ∈ Ex)

implies that κ(e) is bounded. So in either case, we have κ(e) ∈ L2. ¤

Proposition 4.8. The bundle map κ: E → E′ respects the metric (up to constant),
the connection and the Higgs field.

Proof. Let define

Lx(g) =
∫ 1

−1

(ωKtg)(x) dt ∈ Ex

for g ∈ C2 ⊗L2(I; V ). Take a local section ψ of E′ = KerD∗. We regard Lx(ψ(y))
as a local section of p∗1(E) over R3×R3. The section κ∗(ψ) is obtained by restricting
Lx(ψ(y)) to the diagonal x = y. Then we have

(4.9) ∂
x

A,0κ
∗(ψ) = ∂

x

A,0Lx(ψ(y))
∣∣∣
y=x

+ ∂
y

A,0Lx(ψ(y))
∣∣∣
y=x

,

where the superscript x or y for ∂A,0 indicates the variable with respect to the
differentiation is done. Using (2.10), we have

2∂
x

A,tG
x
A,t∂

x∗
A,t(iz2ψ1(y) − iz1ψ2(y))

∣∣∣
y=x

= (iz2 − 2β)ψ1(x) − (iz1 − (
d

dt
+ 2α))ψ2(x) = − d

dt
ψ2(x),



where we have used D∗
xψ(x) = 0 in the latter equality. The integration of the right

hand side over I vanishes because

lim
t→±1

ψ2(x)
‖ψ2‖L2

= 0.

(This follows from the study of the asymptotic behaviour as t → ±1 in Sect. 2.)
Noticing ∂A,t = ∂A,0 − it, Φ′ = p ◦ it and κ∗D = 0, we get

∂
x

A,0Lx(ψ(y))
∣∣∣
y=x

= 2
√

2
∫ 1

−1

it Gx
A,t∂

x∗
A,t(iz2ψ1(y) − iz1ψ2(y))

∣∣∣
y=x

dt

= 2
√

2
∫ 1

−1

Gx
A,t∂

x∗
A,t(iz2Φ′(y)ψ1(y) − iz1Φ′(y)ψ2(y))

∣∣∣
y=x

dt.

Substituting into (4.9) and using κ∗D = 0 again, we obtain

∂A,0κ
∗(ψ) = κ∗(∂A′,0ψ).

Changing the isomorphism R3 ∼= R × C, we can conclude that κ respects the
connection and the Higgs field. If κ is a zero map, ωKtψ = 0 for all ψ ∈ Vt. But
the equation implies ψ = 0, and it is a contradition. Since monopole connections
are irreducible, κ preserves the fiber metrics up to a constant factor. ¤

5. Uniqueness

We now finish the proof of our main theorem.

Nahm data
(∇, Tα)

§3
=⇒ a monopole

(A,Φ)
§2

=⇒ new Nahm data
(∇′, T ′

α)

Starting from Nahm data V , ∇, Tα (α = 1, 2, 3), we construct a rank 2 vector bundle
E over R3 with a connection A and a Higgs field Φ which satisfy the Bogomolny
equation in Sect. 3. We then get new Nahm data V ′, ∇′, T ′

α by the transform in
Sect. 2. The aim of this section is to show that there exists a isomorphism V ∼= V ′

under which ∇ and Tα correspond to ∇′ and T ′
α. This shows the uniqueness of the

Nahm data corresponding to a monopole.
The proof is exactly “dual” to that of the completeness. Fix x ∈ R3. Let

f ∈ S ⊗ Ex. Since Ex is a subspace of C2 ⊗ L2(I; V ), we can define a section of
S ⊗ C2 ⊗ V by

Fx [D∗
x, D∗] f,

where D∗ is the operator acting on sections of the bundle S ⊗ C2 ⊗ L2(I; V ) over
R3 defined in Sect. 3. Although f is defined only at x, the commutator [D∗

x, D∗] is
equal to multiplication by a constant vector, so can be applied to f . Contracting
the S⊗C2-factor by ω, taking the hermitian adjoint and moving x ∈ R3, we obtain
a bundle map

λ: V → Γ(R3;S ⊗ E)

over I.



First we show that the image of λ is in L2+µ for any µ > 0. We use the
notation C to denote a general constant; C may be different in different equations.
If g ∈ W 1,2

0 (I; V ), we have an estimate

(5.1)

(∇∗
t ∇tg +

3∑

α=1

(Tα − ixα)∗(Tα − ixα)g, g)L2(I;V )

= ‖∇tg‖2
L2(I;V ) +

3∑

α=1

‖(Tα − ixα)g‖2
L2(I;V )

≥ ‖∇tg‖2
L2(I;V ) − δ

3∑

α=1

‖Tαg‖2
L2(I;V ) +

r2δ

2
‖g‖2

L2(I;V ),

where δ < 1 is a positive number, which will be fixed later. Using the Sobolev
inequlity

‖g‖C1/2(I;V ) ≤ C‖∇tg‖L2(I;V )

and the asymptotic behaivour of Tα as t → ±1, we find

‖Tαg‖2
L2(I;V ) ≤ C‖∇tg‖2

L2(I;V ).

Substituting this inequality into (5.1) and choosing δ sufficiently small, we get

(∇∗
t ∇tg +

3∑

α=1

(Tα − ixα)∗(Tα − ixα)g, g)L2(I;V ) ≥
1
C

(‖∇tg‖2
L2(I;V ) + r2‖g‖2

L2(I;V )).

Hence for g = Fxh, we have

‖Fxh‖C1/2(I;V ) ≤
C

r
‖h‖L2(I;V ).

Fix an ε > 0 and take f ∈ L2−ε(R3; S ⊗ E). Then for v ∈ Vt, we have
∫

R3
〈λ(v), f(x)〉 dx =

∫

R3
〈v, (ωFx [D∗

x, D∗] f(x))(t)〉 dx

≤ C‖v‖Vt

∫

R3
(1 + r)−1‖f(x)‖S⊗Ex dx ≤ Cε‖v‖Vt ‖f‖L2−ε(R3;S⊗E),

where Cε is a constant depending on ε. This shows that λ(v) ∈ L2+µ for any µ > 0.

Proposition 5.2. For each t ∈ I the image λ(Vt) is contained in Ker D∗
A,t.

The proof is exactly “dual” to that of (4.2), and we skip it. Once we obtain
the above, we deduce the following since any L2+µ-solution of D∗

A,tϕ = 0 decays
exponentially.

Corollary 5.3. λ defines a bundle map from V to V ′.

Finally we get the following which can be proved by the argument similar to
(4.8).

Proposition 5.4. The bundle map λ: V → V ′ intertwines the Nahm data.



6. Metrics on moduli spaces

Our transform identifies the (framed) moduli space of SU(2)-monopoles of charge
k with the moduli space of the solutions of Nahm’s equations of rank k. These
moduli spaces are well-known to admit hyper-Kähler metrics. Atiyah and Hitchin
conjectured that our transform is actually a hyper-Kähler isometry [AH, p.126]. We
shall verify this conjecture. The corresponding results for the Fourier transforms of
instantons on 4-tori and on ALE spaces are proved respectively in [BB] and [KN]
(in the case of R4 independently in [Ma]).

We shall review the construction of a hyper-Kähler structure on the monopole
moduli space very quickly. See [AH] and the reference therein for detail. (The
Analytical footing was established by Taubes [Ta].)

We introduce an equivalence relation ∼ on the space of SU(2)-monopoles of
charge k by defining (A,Φ) ∼ (A′, Φ′) if and only if (A,Φ) and (A′,Φ′) are gauge-
equivalent under a gauge transformation converging to the identity as x → ∞. Let
denote Mk the set of equivalence classes. Then the following is well-known:

Proposition 6.1. The space Mk has a structure of a smooth manifold and its
tangent space at [(A,Φ)] is identified with the space of (a, φ) which are in L2 and
satisfy the equations

∗ dAa − dAφ + [Φ, a] = 0

∗ dA ∗ a − [Φ, φ] = 0.

Here a and φ are an su(2)-valued 1-form and function respectively.

The second equation is a linearization of Bogomolny equations, while the first
one means that (a, φ) is orthogonal to the orbit of gauge group action.

The space of all pairs (a, φ) has a structure of quaternion module. In fact, if
a = a1dx1+a2dx2+a3dx3, then (a, φ) corresponds to the su(2)⊗H-valued function
φ + a1I + a2J + a3K, where I, J , K are the usual basis of imaginary quaternions.
The equations in (6.1) are H-invariant.

The L2-inner product induces a Riemannian metric on Mk. Then one can
show that

Proposition 6.2. The almost complex structures I, J , K are parallel with respect
to the Levi-Civita connection of the Riemannian metric. Hence Mk has a structure
of hyper-Kähler manifold.

In fact, the Bogomolny equation can be viewed as a hyper-Kähler moment map
(see [HKLR]) associated with the action of the gauge group, and the moduli space
is a hyper-Kähler quotient of an infinite dimensional quaternion module.

The construction of a hyper-Kähler structure on the moduli space of the solu-
tions to Nahm’s equations of rank k is similar to the above. We fix a trivialization of
a bundle V so that the connection is given by ∇ = d

dt +T0 where T0 is a skew-adjoint
endomorphism. We say two Nahm data (Tα), (T ′

α) (α = 0, 1, 2, 3) are equivalent if
they are gauge equivalent under a gauge transformation converging to the identity
at the end points of the interval. We denote by Nk the set of equivalence classes.
Then

Proposition 6.3. The space Nk has a structure of a smooth manifold and its
tangent space at [(Tα)] is identified with the space of (t0, t1, t2, t3) which are in L2



and satisfy the equations

dt0
dt

+ [T0, t0] + [T1, t1] + [T2, t2] + [T3, t3] = 0

dtα
dt

+ [T0, tα] − [Tα, t0] +
3∑

β,γ=1

εαβγ [Tβ , tγ ] = 0, α = 1, 2, 3.

The metric on Nk is defined by the L2-inner product. We give an H-module
structure to the tangent space by identifying (t0, t1, t2, t3) with t0 + t1I + t2J + t3K.

Proposition 6.4. The manifold Nk together with the above structures is hyper-
Kähler.

Now our main result in this section is

Theorem 6.5. The transform Ξ:Mk → Nk given in Sect. 2 is a hyper-Kähler
isometry up to a constant factor.

The proof of Theorem 6.5 is very similar to that for instantons on ALE spaces
[KN].

Suppose that a family (T s
α) (−ε < s < ε) of solutions of Nahm’s equations is

given. For brevity, we omit the superscript s. Let eµ be a unitary frame field for
E = Ker D∗. Then the derivative δeµ with respect s satisfies D∗δeµ = −(δD∗)eµ.
If we normalize δeµ by requiring δeµ ⊥ E, this equation implies

δeµ = −D(1C2 ⊗ F )(δD∗)eµ.

The derivative of the connection Aµν = 〈deµ, eν〉 and the Higgs field Φµν =
〈iteµ, eν〉 are given by

(6.6)
δAµν = 〈(δD∗)eµ, (1C2 ⊗ F )D∗deν〉 − 〈(1C2 ⊗ F )D∗deµ, (δD∗)eν〉
δΦµν = 〈(δD∗)eµ, (1C2 ⊗ F )D∗iteν〉 − 〈(1C2 ⊗ F )D∗iteµ, (δD∗)eν〉.

Next suppose that a family (As, Φs) of monopoles is given. We omit the super-
script s. Let vi be a unitary frame field for V =

⋃
t Ker D∗

A,t. Then the derivative
of (Tα)ij = 〈ixαvi, vj〉 and of (T0)ij = 〈(∇t − d

dt )vi, vj〉 are given by

(6.7)

δ(Tα)ij = 〈(δA) · vi − (δΦ)vi , (1S ⊗ GA,t)D∗
A,t(ixαvj)〉

− 〈(1S ⊗ GA,t)D∗
A,t(ixαvi) , (δA) · vj − (δΦ)vj〉

δ(T0)ij = 〈(δA) · vi − (δΦ)vi , (1S ⊗ GA,t)D∗
A,t

dvj

dt
〉

− 〈(1S ⊗ GA,t)D∗
A,t

dvi

dt
, (δA) · vj − (δΦ)vj〉,

where (δA) · vi =
∑3

α=1 δA( ∂
∂xα

) ∂
∂xα

· vi.

We fix a particular complex structure I, and regard the moduli spaces Mk

and Nk as Kähler manifolds. First we shall show that the differential dΞ of our
transformation respects the almost complex structures, i.e., Ξ is a holomorphic



map. Then changing the complex structure, one can show that Ξ is holomorphic
with respect to each complex structure I, J , K.

We rewrite (6.6) in the complex notation. We identify the monopole (A,Φ)
with an invariant instanton on R4 ∼= C2, hence (δA, δΦ) can be considered as a
1-form on C2. Then (0, 1)-part of (6.6) (up to a constant factor) is given by

(6.8)
〈(δD∗)eµ, (1C2 ⊗ F )D∗∂

∗
(eνωC)〉 + 〈(1C2 ⊗ F )D∗∂eµ, (δD∗)eν〉

= 〈(δτ)eµ, F τ∂
∗
(eνωC)〉 + 〈Fσ∗∂eµ, (δσ∗)eν〉,

where the inner product is taken over the fiber component, have nothing to do with
the form component, and ωC is the (0, 2)-form of unit length. Recall that {vi} be
a unitary frame for V . Substituting λ = (ω F [D∗, D∗])∗, we find that (6.8) is equal
to (up to a constant factor)

(6.9) 〈(δτ)eµ, vi〉〈λ(vi), eν〉 + 〈vi, (δσ∗)eν〉〈eµ, ελ(vi)〉.

Here ε is an endomorphism defined by

Λ0,1 3 adz1 + bdz2 7→ bdz1 − adz2.

Similarly the (0, 1)-component of (6.7) (up to a constant factor) is given by

(6.10)
〈(δA2 + iδA3,−δΦ − iδA1) vi, eµ〉〈κ(eµ), vj〉

+ 〈vi, εκ(eµ)〉〈eµ, (−δΦ + iδA1,−δA2 + iδA3)vj〉,

where we take a unitary basis { 1√
2
dz1,

1√
2
dz2} for Λ0,1 and κ(eµ) ∈ C2 ⊗ Γ(I; V )

is considered as a (0, 1)-form. Here we have used the decomposition of the matrix
δA · −δΦ:S ⊗ E → S ⊗ E:

(
−δΦ + iδA1 −δA2 + iδA3

δA2 + iδA3 −δΦ − iδA1

)
.

If we apply I to (δTα), δτ is multiplied by i and δσ∗ by −i. Hence the (6.8)
is multiplied by i, and we verify the assertion. (REMARK that when we consider
(δA, δΦ) as a tangent vector in the moduli space, its (1, 0)-part is given by the
(0, 1)-part of (δA, δΦ), considered as 1-form.)

The only thing left to be proved is whether the map dΞ is isometry, i.e.

(6.11) 〈dΞ(δT0, δT1, δT2, δT3) , (δA, δΦ)〉 = c〈(δT0, δT1, δT2, δT3) , dΞ−1(δA, δΦ)〉.

holds for some constant c. This can be checked by using (6.9) and (6.10) and the
fact : λ and κ are isometries up to constant factors. Rigorously speaking, we have
not proved that the constants, up to which λ and κ are isometries, are independent
of (A,Φ), Tα. So the constant c in (6.11) may change if we move (A,Φ). But
we already observed that Ξ respects almost complex structures I, J , K. If a map
between hyper-Kähler manifolds respects almost complex structures, it also respects
the Levi-Civita connection. Hence c is a constant function.



7. Remark

A Fourier transform of invariant instantons. We explain, briefly and without
proofs, how the transformation in Sects. 2 and 3 can be generalized for anti-self-
dual connections on R4, invariant under a subgroup of translation Λ ⊂ R4. This is
already noticed in [BB, p. 272], but it is worth while explaining again.

Let (R4)∗ denote the dual space of R4 and define

Λ∗ = {λ∗ ∈ (R4)∗ | λ∗(λ) ∈ Z,∀λ ∈ Λ}.

For example, when Λ = R (this is our case), Λ∗ = R3. Define a connection 1-form
A on the trivial line bundle L → R4 × (R4)∗ by

A = −2πi
3∑

α=0

qαdxα,

where xα and qα are dual linear coordinates on R4 and (R4)∗. The action of Λ×Λ∗

on R4 × (R4)∗ lifts to that on L by

L = R4 × (R4)∗ × C 3 (x, q, ζ) 7→ (x + λ, q + λ∗, e2πiλ∗(x)ζ) for (λ, λ∗) ∈ Λ × Λ∗.

This action preserves A.
Now suppose that we have a connection A on a bundle E over R4 invariant

under Λ. For each q ∈ (R4)∗, consider the Dirac operator twisted by the connection
A and A:

D±
A,q: Γ(S±

R4 ⊗ E ⊗ L|R4×{q}) → Γ(S∓
R4 ⊗ E ⊗ L|R4×{q}),

where S±
R4 is the spinor bundle over R4. Define

Êq = Λ-invariant part of the L2-kernel of D−
A,q,

where the L2-metric is taken over R4/Λ. Assume that

a) Λ-invariant part of the L2-kernel of D+
A,q = 0,

b) Ê =
⋃

q Êq forms a vector bundle over (R4)∗.

Then considering Ê as a subbundle of a (may be infinite rank) vector bundle

H =
⋃

q

Λ-invariant part of L2(S−
R4 ⊗ E ⊗ L|R4×{q}),

we induce a metric and a connection Â on Ê. Here the connection on H is defined
from A and A. The action of Λ × Λ∗ on L naturally induces an action of Λ∗ on Ê
and Â is invariant under this action. Changing the role of x and q and using the
dual connection A∗ instead of A, we define a similar transform (denoted byˇ) from
a Λ∗-invariant connection satisfying

a’) Λ∗-invariant part of the L2-kernel of D+
A,x = 0,

b’) Ě =
⋃

x Ěx forms a vector bundle over R4.

to a Λ-invariant connection. Then one has



Theorem 7.1. If A is anti-self-dual and satisfies a), b), then Â is anti-self-dual
and satisfies a’), b’). Moreover ˇ̂

A is gauge equivalent to A.

This theorem is not proven in full generality. In fact, we must put the condition
on the asymptotic behaviour of the connection in order to ensure that the Fredholm
theory is valid. In some cases, the connection is not defined over the whole space
and may have singularities (as is observed in this paper). Such a modification and
the precise proof are given only in the cases of Λ = 0 (ordinary instantons on R4

[ADHM, CG, DK]), Λ = R (monopoles on R3) and Λ ∼= Z4 (instantons on torus
R4/Λ [BB, Sc, DK]).

Appendix

In this appendix, we shall give the proof of Lemma 2.6. The following proof is due
to Toshiyuki Kobayashi.

Proof. Let denote by Vk the unique (k + 1)-dimensional irreducible representation
of SU(2). By the theorem of Peter-Weyl the space L2(P1; Hk) of L2-sections of Hk

(by which we denote the k-times tensor product of the hyperplane bundle) over P1

decomposes into
L2(P1; Hk) =

⊕

l≥0

Vk+2l,

and the space H0(P1;O(k)) of holomorphic sections is the component Vk. The set
of coordinate functions {x1, x2, x3} induces the 3-dimensional representation V2.
Then the multiplication of the coordinate function gives an SU(2)-equivariant map

m: L2(P1; Hk) ⊗ V2 → L2(P1; Hk).

By the Clebsch-Gordan rule

(A.1) Vk ⊗ V2
∼= Vk+2 ⊕ Vk ⊕ Vk−2.

The map defined in Lemma 2.6 is the composition of

(A.2) Vk ⊗ V2
inclusion⊗id−−−−−−−−→ L2(P1;Hk) ⊗ V2

m−→ L2(P1;Hk)
projection−−−−−−→ Vk.

It is SU(2)-equivariant, and must be a constant multiple of the projection onto the
second component in (A.1).

On the other hand, the adjoint representation of SU(2) is also V2. So we have
a linear map

Vk ⊗ V2 → Vk; v ⊗ X 7→ Xv

where V2 is regarded as (the complexfication of) the Lie algebra su(2) and it acts
on Vk by the differential of the action of SU(2) on Vk. This map is also SU(2)-
equivariant, so must be a constant multiple of the projection onto the second com-
ponent in (A.1).

Finally we must check that the map (A.2) is non-zero. It is sufficient to show
that the map

Vk ⊗ V2
inclusion⊗id−−−−−−−−→ L2(P1; Hk) ⊗ V2

m−→ L2(P1;Hk) =
⊕

l≥0

Vk+2l



has rank strictly greater that dimVk+2. (Since it is SU(2)-equivariant, the image
is contained in Vk ⊕ Vk+2.) Elements in Vk can be represented by homogeneous
polynomial in z0 and z1 of degree k:

zk
0 , zk−1

0 z1, . . . , z0z
k−1
1 , zk

1 .

It is easy to see that if we multiply the above functions by x1 = 2Rez0
1+|z0|2 and

x2 = 2Imz0
1+|z0|2 (where we take an affine coordinate [z0 : 1] ∈ P1 by setting z1 = 1),

we obtain 2(k + 1) linearly independent functions. Hence if 2(k + 1) > k + 3, we
are done. And in the exceptional case k = 0, 1, we can check the assertion case by
case. ¤
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