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Averaging in dynamical systems

A basic object of study in the context of classical Hamiltonian
mechanics consists of a compact Riemannian manifold M, the
phase space, and a divergence-free vector field V on M.

The integral curves of V give rise to a one-parameter group of
volume-preserving transformations au : M → M, u ∈ R, the time
evolution in phase space.

For a function f : M → R, the time averages along an orbit are

βt f (x) =
1
t

∫ t

0
f (aux)du

Do the time averages converge ? If so, what is their limit ?
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Ergodicity and the ergodic hypothesis

For a domain D ⊂ M, the fraction of the time in [0, t ] that the orbit
aux of x spends in D is given by 1

t

∫ t
0 χD(aux)du.

Do the visiting times converge to vol(D), namely the orbit spends
time in the set D in proportion to its volume ? (we set vol M = 1).

Clearly, when D is invariant under the flow, namely starting at
x ∈ D the orbit aux never leaves D, this is not the case.

For the visiting times to converge to vol(D), it is necessary that
invariant sets must be null or co-null.

Flows satisfying this condition are called ergodic flows.

Bolzmann’s Ergodic Hypothesis : for an ergodic flow, the time
averages of an observable f converge to the space average of f
on phase space, namely to

∫
M f dvol.
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The classical mean ergodic theorem

Consider any probability space (X , µ), with a one-parameter flow
of measure-preserving transformations au : X → X , u ∈ R.

A key observation is that the operators f 7→ f ◦ au = πX (au)f are
unitary operators on L2(X , µ), so that πX (au) is a unitary group.
(Koopman, 1930)

This observation has influenced von-Neumann’s approach to the
mean ergodic theorem (1932), which states :

the time averages 1
t

∫ t
0 f (aux)du converge to the space average∫

X fdµ, in L2-norm, for any f ∈ L2(X , µ), if the flow is ergodic.

For the proof, von-Neumann utilized his recently established
spectral theorem for unitary operators.
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F. Riesz’s proof of the mean ergodic theorem, 1938

• Let H be a Hilbert space, au : H → H a one-parameter unitary
group, EI the projection on the space of invariants,

• Apply the averaging operators βt = 1
t

∫ t
0 au du to a vector f of the

form f = ash − h. Then :

βt f = βt (ash − h) =
1
t

(∫ t+s

s
auh du −

∫ t

0
auh du

)

• so that ‖βt f‖ ≤ 2s
t ‖h‖ −→ 0, as t →∞. In addition 0 = EI f for f as

chosen, so that indeed βt f → EI f in this case.

• To conclude the proof that βt f → EI f for every s, note first that if f is
invariant, then βt f = f = EI f for all t ,

• and finally that the span of {ash − h ; s ∈ R,h ∈ H} is dense in the
orthogonal complement of the space of invariants.
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Meanable groups

von-Neumann was interested not only in averaging in dynamical
systems, but also in averaging on (semi-) groups.

The classical example is a Banach limit, namely a non-negative
linear functional on bounded sequences on N, which assigns to a
sequence {an}n≥0 and its shift {an+1}n≥0 the same value, and
agrees with the limit for convergent sequences.

von-Neumann (1940) considered groups which admit a
right-invariant mean, namely a translation-invariant non-negative
linear functional m(f ) on bounded functions normalized so that
m(1) = 1, calling them meanable groups,

von-Neumann established this class as a common generalization
of compact groups and Abelian groups by proving the existence
of Haar measure for compact groups, and the existence of
invariant means (Banach limits) for general Abelian groups.
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Asymptotic invariance

Clearly, the crucial property of the intervals [0, t ] ⊂ R in Riesz’s
proof is that they are asymptotically invariant under translations,

namely the measure of [0, t ]∆([0, t ] + s) divided by the measure
of [0, t ] converges to zero, for any fixed s.

Given any lcsc group G, Følner (1955) defined a family of sets
Ft ⊂ G of positive finite measure to be asymptotically invariant
under right translations, if it satisfies for any fixed g ∈ G

|Ftg∆Ft |
|Ft |

−→ 0 as t →∞

Følner showed that the existence of an asymptotically invariant
family is equivalent to the existence of an invariant mean, namely
it characterizes meanable groups, subsequently renamed
amenable groups.
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Amenable groups

A straightforward application of Riesz’s argument shows that an
asymptotically invariant family satisfies that the uniform averages
βt on the sets Ft converge to the projection on the space of
invariants.

Thus amenable groups satisfy the mean ergodic theorem.

The main focus of ergodic theory has traditionally been on
amenable groups, and asymptotically invariant sequences played
a crucial role in many of the arguments.

We will mention an important consequence of asymptotic
invariance below, but first let us introduce the general set-up of
ergodic theorems and the averaging operators which will be our
main subject.
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Averaging operators and ergodic theorems for general
groups

G a locally compact second countable group, with left Haar
measure mG,

Bt ⊂ G a growing family of sets of positive finite measure,

(X , µ) an ergodic probability measure preserving action of G.

Consider the Haar-uniform averages βt supported on Bt ;

Basic problem : study the averaging operators

πX (βt )f (x) =
1
|Bt |

∫
Bt

f (g−1x)dmG(g)

and their convergence properties
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Amenable group actions : norm of averaging operators

A significant consequence of the existence of asymptotically
invariant family in an amenable group G the following spectral
fact.

In every properly ergodic action of G on a probability space X ,
there exists an asymptotically invariant sequence of unit vectors
fk ∈ L2

0 (with zero mean), namely a sequence such that
‖πX (g)fk − fk‖ → 0 for all g ∈ G.

For countable groups this property is equivalent to the existence
of small asymptotically invariant sequence of sets in X and in fact
characterizes countable amenable groups (del-Junco-Rosenblatt
’79, K. Schmidt ’81).

In particular, when G is amenable all averaging operators satisfy
‖πX (β)‖L2

0(X) = 1, in every properly ergodic action.

Corollary : in properly ergodic actions of amenable groups no
rate of convergence to the ergodic mean can be established, in
the operator norm.
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Non-amenable groups and spectral estimates

We conclude that when G is non-amenable, at least in some
ergodic actions, at least some of the averaging operators πX (β)
are strict contractions on L2

0(X ).

It is natural to go back to von-Neumann’s original approach, and
prove ergodic theorems via spectral methods and operator
theory.

already the simplest conclusion is useful in many situations : if
πX (β) is a strict contraction, so that ‖πX (β)‖L2

0(X) = α < 1, then

the powers πX (β)k = πX (β∗k ) satisfy∥∥∥∥πX (β∗k )−
∫

X
fdµ
∥∥∥∥

L2(X)

≤ Cαk .

We now turn to a systematic study of averaging operators which
are strict contractions.
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Spectral gaps

Definition : An ergodic G-action has a spectral gap in L2(X ) if one of
the following two equivalent conditions hold.

There does not exist a sequence of functions with zero mean
and unit L2-norm, which is asymptotically G-invariant, namely for
every g ∈ G, ‖πX (g)fk − fk‖ → 0.

For every generating probability measure β on G∥∥∥∥πX (β)f −
∫

X
fdµ
∥∥∥∥ < (1− η) ‖f‖

for all f ∈ L2(X ) and a fixed η(β) > 0.
Here β is generating if the support of β∗ ∗ β generates a dense
subgroup of G.
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Spectral estimates associated with a spectral gap

Note that the spectral gap assumption implies only that∥∥∥πX (βt )L0
2

∥∥∥ < 1 for each t separately (when B−1
t Bt generates a

dense subgroup).

applications in dynamics naturally require showing that the family
of averaging operators πX (βt ) converges to 0 (in operator norm,
or at least strongly), when mG(Bt )→∞ as t →∞.

This problem, however, is completely open, in general. Let us
demonstrate this point in the simplest cases, and formulate some
natural conjectures.

Let Γ be countable and finitely generated, d the left-invariant
metric associated with a finite symmetric generating set, and Bn
the balls of of radius n and center e w.r.t. d . Let βn be the
uniform measure on Bn.
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Spectral gap : some conjectures

Let (X , µ) be an ergodic action of Γ with a spectral gap, and
assume B1 is generating, so that ‖πX (β1)‖L2

0(X) < 1.

Conjecture I. ‖πX (βn)‖L2
0(X) → 0.

Conjecture II. ‖πX (βn)‖L2
0(X) ≤ Cαn, for some α < 1

.

Note that both statements can be formulated for an arbitrary
unitary representation of Γ which has a spectral gap.
Remarkably, both are open even for the case of the regular
representation of Γ.

Conjecture III. ‖λΓ(βn)‖`2(Γ) → 0

.

Conjecture IV. ‖λΓ(βn)‖`2(Γ) ≤ Cαn, for some α < 1

.
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Some comments

The case of the regular representation has received considerable
attention over the years.

For non-elementary word hyperbolic groups (and certain other
classes of groups), a result much stronger than Conjecture IV
has been established.

Namely, the property of rapid decay of the convolution norms
‖λΓ(βn)‖ holds, which implies that exponential decay in n holds,
with the best possible rate, namely Cnk |Bn|−1/2.

But for Γ = SL3(Z) for example, even the weakest statement,
namely Conjecture III (and certainly Conjecture I) seem to be
completely open for any choice of word metric.
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Kazhdan’s property T

A most remarkable class of non-amenable groups was unveiled
by Kazhdan in 1967.

G has property T if and only if in every ergodic action it has a
spectral gap. (The equivalence to the original definition was
proved by Connes-Weiss ’80, K. Schmidt ’81).

In fact, an even more remarkable property holds, namely the
following uniform operator norm estimate.

G has property T if and only if for every absolutely continuous
generating measure β there exists α(β) < 1, such that in every
ergodic action of G on X , the following uniform operator norm
estimate holds : ‖πX (β)‖L2

0(X) ≤ α(β).
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Ergodic theorems for lattice subgroups

G = connected semisimple Lie group with finite center and no
compact factors, e.g. G = SLn(R), or G = SO0(n,1),

S = G/K the symmetric space, e.g. unimodular positive-definite
symmetric matrices, or hyperbolic space,

Bt = {g ∈ G : d(gK ,K ) < t}, the Riemannian balls in symmetric
space lifted to G, d the G-invariant distance function,

Γ any lattice subgroup, e.g. SLn(Z), or fundamental groups of
finite volume hyperbolic manifolds,

λt = uniform measures on Γ ∩ Bt = Γt .
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Ergodic theorems for general lattice actions
Ergodic theorems for lattice subgroups, I. Gorodnik+N, ’08.

For an arbitrary ergodic Γ-action on a probability space (X , µ),
the mean ergodic theorem holds: for every f ∈ Lp, 1 ≤ p <∞

lim
t→∞

∥∥∥∥λt f −
∫

X
fdµ
∥∥∥∥

p
= 0.

Furthermore, the pointwise ergodic theorem holds, namely for
every f ∈ Lp, p > 1, and for almost every x ∈ X ,

lim
t→∞

λt f (x) =

∫
X

fdµ .

We emphasize that this result holds for all Γ-actions. The only
connection to the original embedding of Γ in the group G is in the
definition of the sets Γt .
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Spectral gap and the ultimate ergodic theorem

Ergodic theorems for lattice subgroups, II. Gorodnik+N, ’08.

If the Γ-action has a spectral gap then, the effective mean
ergodic theorem holds : for every f ∈ Lp, 1 < p <∞∥∥∥∥λt f −

∫
X

fdµ
∥∥∥∥

p
≤ Cpm(Bt )

−θp ‖f‖p ,

where θp = θp(X ) > 0.

Under this condition, the effective pointwise ergodic theorem
holds: for every f ∈ Lp, p > 1, for almost every x ,∣∣∣∣λt f (x)−

∫
X

fdµ
∣∣∣∣ ≤ Cp(x , f )m(Bt )

−θp .

where θp = θp(X ) > 0.
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Examples

In particular, if Γ has property T , then the quantitative mean and
pointwise ergodic theorems hold in every ergodic
measure-preserving action with a fixed θp = θp(G) > 0
independent of X .

Specializing further, in every action of Γ on a finite homogeneous
space X , we have the following norm bound for the averaging
operators ∥∥∥∥λt f −

∫
X

fdµ
∥∥∥∥

2
≤ Cm(Bt )

−θ2 ‖f‖2 ,

As already noted, this estimate goes well beyond the contraction
property guaranteed by the special gap, and holds uniformly over
families of finite-index subgroups provided they satisfy property
T , or more generally Lubotzky-Zimmer’s property τ (’85).

Lattice subgroups and effective ergodic theorems



Examples

In particular, if Γ has property T , then the quantitative mean and
pointwise ergodic theorems hold in every ergodic
measure-preserving action with a fixed θp = θp(G) > 0
independent of X .

Specializing further, in every action of Γ on a finite homogeneous
space X , we have the following norm bound for the averaging
operators ∥∥∥∥λt f −

∫
X

fdµ
∥∥∥∥

2
≤ Cm(Bt )

−θ2 ‖f‖2 ,

As already noted, this estimate goes well beyond the contraction
property guaranteed by the special gap, and holds uniformly over
families of finite-index subgroups provided they satisfy property
T , or more generally Lubotzky-Zimmer’s property τ (’85).

Lattice subgroups and effective ergodic theorems



Examples

In particular, if Γ has property T , then the quantitative mean and
pointwise ergodic theorems hold in every ergodic
measure-preserving action with a fixed θp = θp(G) > 0
independent of X .

Specializing further, in every action of Γ on a finite homogeneous
space X , we have the following norm bound for the averaging
operators ∥∥∥∥λt f −

∫
X

fdµ
∥∥∥∥

2
≤ Cm(Bt )

−θ2 ‖f‖2 ,

As already noted, this estimate goes well beyond the contraction
property guaranteed by the special gap, and holds uniformly over
families of finite-index subgroups provided they satisfy property
T , or more generally Lubotzky-Zimmer’s property τ (’85).

Lattice subgroups and effective ergodic theorems



Some steps in the spectral approach

The problem of ergodic theorems for general discrete groups
was raised already by Arnol’d and Krylov (1962). They proved an
equidistribution theorem for dense free subgroups of isometries
of the unit sphere S2 via a spectral argument similar to Weyl’s
equidistribution theorem on the circle (1918).

Guivarc’h has established a mean ergodic theorem for radial
averages on the free group, using von-Neumann’s original
approach via the spectral theorem (1968).

Tempelman has proved mean ergodic theorems for averages on
semisimple Lie group using spectral theory, namely the
Howe-Moore vanishing of matrix coefficients theorem (1980’s),

The exciting, and distinctly non-amenable, possibility of ergodic
theorems with quantitative estimates on the rate of convergence
was realized by the Lubotzky-Phillips-Sarnak construction of a
dense free group os isometries of S2 which has an optimal (!)
spectral gap (1980’s).
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