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Ergodic theorems for general lattice actions
Ergodic theorems for lattice subgroups, I. Gorodnik+N, ’08.

For an arbitrary ergodic Γ-action on a probability space (X , µ),
the mean ergodic theorem holds: for every f ∈ Lp, 1 ≤ p <∞

lim
t→∞

∥∥∥∥λt f −
∫

X
fdµ
∥∥∥∥

p
= 0.

Furthermore, the pointwise ergodic theorem holds, namely for
every f ∈ Lp, p > 1, and for almost every x ∈ X ,

lim
t→∞

λt f (x) =

∫
X

fdµ .

We emphasize that this result holds for all Γ-actions. The only
connection to the original embedding of Γ in the group G is in the
definition of the sets Γt .
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Spectral gap and the ultimate ergodic theorem

Ergodic theorems for lattice subgroups, II. Gorodnik+N, ’08.

If the Γ-action has a spectral gap then, the effective mean
ergodic theorem holds : for every f ∈ Lp, 1 < p <∞∥∥∥∥λt f −

∫
X

fdµ
∥∥∥∥

p
≤ Cpm(Bt )

−θp ‖f‖p ,

where θp = θp(X ) > 0.

Under this condition, the effective pointwise ergodic theorem
holds: for every f ∈ Lp, p > 1, for almost every x ,∣∣∣∣λt f (x)−

∫
X

fdµ
∣∣∣∣ ≤ Cp(x , f )m(Bt )

−θp .

where θp = θp(X ) > 0.
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Examples

In particular, if Γ has property T , then the quantitative mean and
pointwise ergodic theorems hold in every ergodic
measure-preserving action with a fixed θp = θp(G) > 0
independent of X .

Let σ : Γ→ Un(C) be a unitary representation with dense image.
Then for every unit vector u the sets σ(Γt )u become
equidistributed in the unit sphere, w.r.t. the rotation invariant
measure, and the rate of equidistribution at every point is
exponentially fast if the representations admits a spectral gap
and the function is Holder.

Specializing further, in every action of Γ on a finite homogeneous
space X , we have the following norm bound for the averaging
operators ∥∥∥∥λt f −

∫
X

fdµ
∥∥∥∥

2
≤ Cm(Bt )

−θ2 ‖f‖2 ,
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Discrete groups : some steps in the spectral approach

The problem of ergodic theorems for general discrete groups
was raised already by Arnol’d and Krylov (1962). They proved an
equidistribution theorem for dense free subgroups of isometries
of the unit sphere S2 via a spectral argument similar to Weyl’s
equidistribution theorem on the circle (1918).

Guivarc’h has established a mean ergodic theorem for radial
averages on the free group, using von-Neumann’s original
approach via the spectral theorem (1968).

The distinctly non-amenable possibility of ergodic theorems with
quantitative estimates on the rate of convergence was realized
first by the Lubotzky-Phillips-Sarnak construction of a dense free
group os isometries of S2 which has an optimal (!) spectral gap
(1980’s).
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Averaging operators in general unitary representations

Let G be an lcsc group, Bt ⊂ G with mG(Bt )→∞, and βt the
uniform measure on Bt .

Let π : G→ U(Hπ) be a strongly continuous unitary
representation of G define the averaging operators
πX (βt ) : H → H, given by : π(βt )v = 1

|Bt |
∫

Bt
π(g)v dmG(g)

Our goal is to outline the proof of the ergodic theorems for lattice
subgroups of simple algebraic groups G.

A key role is played by a fundamental norm estimate (and
resulting mean ergodic theorem) which is satisfied by general
families of averages βt on G.

This estimate, which we now state, utilizes the unitary
representation theory of simple algebraic groups.
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Spectral transfer principle

Spectral transfer principle. [N 98], [Gorodnik+N 2005]. For every
unitary representation π of a simple algebraic group G with a
spectral gap and no finite-dimensional invariant subspaces, and
for every family of probability measures βt = χBt/mG(Bt ), the
following norm decay estimate holds (for every ε > 0)

‖π(βt )‖ ≤ ‖rG(βt )‖
1

ne(π) ≤ Cεm(Bt )
− 1

2ne(π) +ε ,

with ne(π) a positive integer depending on π.

The norm estimate of the operator π(β) in a general rep’ π, has
been reduced to a norm estimate for the convolution operator
rG(β) in the regular rep’ rG. This establishes for simple groups an
analog of the transfer(ence) principle for amenable groups.
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The effective mean ergodic theorem

In particular, we can bound the norm of the averaging operators
of πX (βt ) acting on L2

0(X ), when the action is ergodic and weak
mixing, namely has no finite-dimensional invariant subspaces.

Thm. D. Effective mean ergodic theorem. [N 98], [Gorodnik+N
2005]. For any weak mixing action of a simple algebraic group G
which has a spectral gap, and for any family Bt ⊂ G with
mG(Bt )→∞, the convergence of the time averages πX (βt ) to the
space average takes place at a definite rate :∥∥∥∥π(βt )f −

∫
X

fdµ
∥∥∥∥

L2(X)

≤ Cθ (mG(Bt ))−θ ‖f‖2 ,

for every 0 < θ < 1
2ne(π0

X )
.

Note that the only requirement needed to obtain the effective
mean ergodic Thm’ is simply that m(Bt )→∞, and the geometry
of the sets is not relevant at all. This fact allows a great deal of
flexibility in its application.
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The lattice point counting problem

Let G be an lcsc group and Γ ⊂ G a discrete lattice subgroup,
namely a closed countable subgroup such that G/Γ has a
G-invariant probability measure.

The lattice point counting problem in domains Bt ⊂ G calls for
obtaining an asymptotic for the number of lattice points of Γ in Bt ,
namely |Γ ∩ Bt |, ideally so that

1) Haar measure m(Bt ) is the main term in the asymptotic,

2) There is an error estimate of the form

|Γ ∩ Bt |
m(Bt )

= 1 + O
(
m(Bt )

−δ)
where δ > 0 and is as large as possible, and is given in an
explicit form,
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3) the solution applies to general families of sets Bt in a general
family of groups, to allow for a wide variety of counting problems
which arise in applications,

4) the solution should establish whether the error estimate can
be taken as uniform over all (or some) finite index subgroups
Λ ⊂ Γ, and over all their cosets, namely:

|γΛ ∩ BT |
m(BT )

=
1

[Γ : Λ]
+ O

(
m(BT )−δ

)
with δ and the implied constant independent of the finite index
subgroup Λ, and the coset representative γ.

First main point: A general solution obeying the 4 requirements
above can be given for lattices in simple algebraic groups and
general domains Bt , using a method based on the effective mean
ergodic theorem for G.

As we shall see, this is the first essential step in proving mean
ergodic theorems for lattice.
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Admissible sets for the counting problem

Some stability and regularity assumptions on the sets Bt are
necessary for the lattice point counting problem.

Assume G is a simple Lie group, fix any left-invariant Riemannian
metric on G, and let

Oε = {g ∈ G : d(g,e) < ε}.

An increasing family of bounded Borel subset Bt , t > 0, of G will
be called admissible if there exists c > 0, t0 and ε0 such that for
all t ≥ t0 and ε < ε0 we have :

Oε · Bt · Oε ⊂ Bt+cε, (1)
mG(Bt+ε) ≤ (1 + cε) ·mG(Bt ). (2)

Lattice subgroups and effective ergodic theorems



Admissible sets for the counting problem

Some stability and regularity assumptions on the sets Bt are
necessary for the lattice point counting problem.

Assume G is a simple Lie group, fix any left-invariant Riemannian
metric on G, and let

Oε = {g ∈ G : d(g,e) < ε}.

An increasing family of bounded Borel subset Bt , t > 0, of G will
be called admissible if there exists c > 0, t0 and ε0 such that for
all t ≥ t0 and ε < ε0 we have :

Oε · Bt · Oε ⊂ Bt+cε, (1)
mG(Bt+ε) ≤ (1 + cε) ·mG(Bt ). (2)
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X
f dmG/Γ
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L2

→ 0 , (mG/Γ(G/Γ) = 1 ).

Then
|Γ ∩ Bt | = |Γt | ∼ mG(Bt ) as t →∞.
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L2

≤ Cm(Bt )
−θ ‖f‖L2

Then
|Γt |

mG(Bt )
= 1 + O

(
m(Bt )

−θ/(dim G+1)
)
.

Lattice subgroups and effective ergodic theorems



Counting in connected Lie groups

Lattice point counting. Gorodnik+N, 2006.

G a connected Lie group, Γ ⊂ G a lattice, Bt ⊂ G admissible.

1) Assume the mean ergodic theorem holds for βt in L2(mG/Γ) :∥∥∥∥π(βt )f −
∫

X
f dmG/Γ

∥∥∥∥
L2

→ 0 , (mG/Γ(G/Γ) = 1 ).

Then
|Γ ∩ Bt | = |Γt | ∼ mG(Bt ) as t →∞.

Assume that the error term in the mean ergodic theorem for βt in
L2(mG/Γ) satisfies∥∥∥∥∥π(βt )f −

∫
G/Γ

f dmG/Γ

∥∥∥∥∥
L2

≤ Cm(Bt )
−θ ‖f‖L2

Then
|Γt |

mG(Bt )
= 1 + O

(
m(Bt )

−θ/(dim G+1)
)
.

Lattice subgroups and effective ergodic theorems



Counting in connected Lie groups

Lattice point counting. Gorodnik+N, 2006.

G a connected Lie group, Γ ⊂ G a lattice, Bt ⊂ G admissible.

1) Assume the mean ergodic theorem holds for βt in L2(mG/Γ) :∥∥∥∥π(βt )f −
∫

X
f dmG/Γ

∥∥∥∥
L2

→ 0 , (mG/Γ(G/Γ) = 1 ).

Then
|Γ ∩ Bt | = |Γt | ∼ mG(Bt ) as t →∞.

Assume that the error term in the mean ergodic theorem for βt in
L2(mG/Γ) satisfies∥∥∥∥∥π(βt )f −

∫
G/Γ

f dmG/Γ

∥∥∥∥∥
L2

≤ Cm(Bt )
−θ ‖f‖L2

Then
|Γt |

mG(Bt )
= 1 + O

(
m(Bt )

−θ/(dim G+1)
)
.

Lattice subgroups and effective ergodic theorems



Counting in connected Lie groups

Lattice point counting. Gorodnik+N, 2006.

G a connected Lie group, Γ ⊂ G a lattice, Bt ⊂ G admissible.

1) Assume the mean ergodic theorem holds for βt in L2(mG/Γ) :∥∥∥∥π(βt )f −
∫

X
f dmG/Γ

∥∥∥∥
L2

→ 0 , (mG/Γ(G/Γ) = 1 ).

Then
|Γ ∩ Bt | = |Γt | ∼ mG(Bt ) as t →∞.

Assume that the error term in the mean ergodic theorem for βt in
L2(mG/Γ) satisfies∥∥∥∥∥π(βt )f −

∫
G/Γ

f dmG/Γ

∥∥∥∥∥
L2

≤ Cm(Bt )
−θ ‖f‖L2

Then
|Γt |

mG(Bt )
= 1 + O

(
m(Bt )

−θ/(dim G+1)
)
.

Lattice subgroups and effective ergodic theorems



Proof of the counting Theorem

Step 1 : Applying the mean ergodic theorem

Let Oε be a small neighborhood of e and

χε =
χOε

mG(Oε)

consider the Γ-periodization of χε

φε(gΓ) =
∑
γ∈Γ

χε(gγ).

Clearly φ is a bounded function on G/Γ with compact support,∫
G
χε dmG = 1, and

∫
G/Γ

φε dµG/Γ = 1.

Lattice subgroups and effective ergodic theorems



Proof of the counting Theorem

Step 1 : Applying the mean ergodic theorem

Let Oε be a small neighborhood of e and

χε =
χOε

mG(Oε)

consider the Γ-periodization of χε

φε(gΓ) =
∑
γ∈Γ

χε(gγ).

Clearly φ is a bounded function on G/Γ with compact support,∫
G
χε dmG = 1, and

∫
G/Γ

φε dµG/Γ = 1.

Lattice subgroups and effective ergodic theorems



Proof of the counting Theorem

Step 1 : Applying the mean ergodic theorem

Let Oε be a small neighborhood of e and

χε =
χOε

mG(Oε)

consider the Γ-periodization of χε

φε(gΓ) =
∑
γ∈Γ

χε(gγ).

Clearly φ is a bounded function on G/Γ with compact support,∫
G
χε dmG = 1, and

∫
G/Γ

φε dµG/Γ = 1.

Lattice subgroups and effective ergodic theorems



Proof of the counting Theorem

Step 1 : Applying the mean ergodic theorem

Let Oε be a small neighborhood of e and

χε =
χOε

mG(Oε)

consider the Γ-periodization of χε

φε(gΓ) =
∑
γ∈Γ

χε(gγ).

Clearly φ is a bounded function on G/Γ with compact support,∫
G
χε dmG = 1, and

∫
G/Γ

φε dµG/Γ = 1.

Lattice subgroups and effective ergodic theorems



Let us apply the mean ergodic theorem to the function φε.
It follows from Chebycheff’s inequality that for every δ > 0,

mG/Γ({hΓ ∈ G/Γ : |πG/Γ(βt )φε(hΓ)− 1| > δ}) −→ 0

In particular, for sufficiently large t , the measure of the deviation
set is smaller than mG/Γ(Oε), and so there exists gt ∈ Oε such
that

|πG/Γ(βt )φε(gt Γ)− 1| ≤ δ

and we can conclude the following

Claim I. Given ε, δ > 0, for t sufficiently large, there exists
gt ∈ Oε satisfying

1− δ ≤ 1
mG(Bt )

∫
Bt

φε(g−1gt Γ)dmG ≤ 1 + δ .
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On the other hand, by definition of φε and the averaging operators
πG/Γ(βt ) :

πG/Γ(βt )φε(hΓ) =

=
1

mG(Bt )

∫
Bt

φε(g−1hΓ)dmG =

=
1

mG(Bt )

∫
Bt

∑
γ∈Γ

χε(g−1hγ)dmG

=
∑
γ∈Γ

1
mG(Bt )

∫
Bt

χε(g−1hγ)dmG .
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Step 2 : Basic comparison argument

Claim II. For sufficiently large t and any h ∈ Oε,∫
Bt−cε

φε(g−1hΓ) dmG(g) ≤ |Γt | ≤
∫

Bt+cε

φε(g−1hΓ) dmG(g).

Proof. If χε(g−1hγ) 6= 0 for some g ∈ Bt−cε and h ∈ Oε, then
clearly g−1hγ ∈ supp χε, and so

γ ∈ h−1 · Bt−cε · (supp χε) ⊂ Bt .

by admissibility.

Hence, ∫
Bt−cε

φε(g−1hΓ) dmG(g) ≤

≤
∑
γ∈Γt

∫
Bt

χε(g−1hγ) dmG(g) ≤ |Γt |.
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On the other hand, for γ ∈ Γt and h ∈ Oε,

supp(g 7→ χε(g−1hγ)) = hγ(supp χε)
−1 ⊂ Bt+cε

again by admissibility,

and since χε ≥ 0 and
∫

G χεdm = 1 :∫
Bt+cε

φε(g−1hΓ) dmG(g) ≥

≥
∑
γ∈Γt

∫
Bt+cε

χε(g−1hγ) dmG(g) ≥ |Γt |.

Now taking t sufficiently large, h = gt and using Claims I and II

|Γt | ≤ (1 + δ)m(Bt+ε) ≤

≤ (1 + δ)(1 + cε)m(Bt ),

by admissibility. The lower estimate is proved similarly.

Lattice subgroups and effective ergodic theorems



On the other hand, for γ ∈ Γt and h ∈ Oε,

supp(g 7→ χε(g−1hγ)) = hγ(supp χε)
−1 ⊂ Bt+cε

again by admissibility,

and since χε ≥ 0 and
∫

G χεdm = 1 :∫
Bt+cε

φε(g−1hΓ) dmG(g) ≥

≥
∑
γ∈Γt

∫
Bt+cε

χε(g−1hγ) dmG(g) ≥ |Γt |.

Now taking t sufficiently large, h = gt and using Claims I and II

|Γt | ≤ (1 + δ)m(Bt+ε) ≤

≤ (1 + δ)(1 + cε)m(Bt ),

by admissibility. The lower estimate is proved similarly.

Lattice subgroups and effective ergodic theorems



On the other hand, for γ ∈ Γt and h ∈ Oε,

supp(g 7→ χε(g−1hγ)) = hγ(supp χε)
−1 ⊂ Bt+cε

again by admissibility,

and since χε ≥ 0 and
∫

G χεdm = 1 :∫
Bt+cε

φε(g−1hΓ) dmG(g) ≥

≥
∑
γ∈Γt

∫
Bt+cε

χε(g−1hγ) dmG(g) ≥ |Γt |.

Now taking t sufficiently large, h = gt and using Claims I and II

|Γt | ≤ (1 + δ)m(Bt+ε) ≤

≤ (1 + δ)(1 + cε)m(Bt ),

by admissibility. The lower estimate is proved similarly.

Lattice subgroups and effective ergodic theorems



Step 3 : Counting with an error term

Assuming ∥∥∥∥∥π(βt )f −
∫

G/Γ

fdµ

∥∥∥∥∥
L2

≤ Cm(Bt )
−θ ‖f‖L2

we must show

|Γt |
mG(Bt )

= 1 + O
(

m(Bt )
−θ

dim G+1

)
.

Proof. Clearly for ε small, mG(Oε) ∼ εn .
and thus also ‖χε‖2

2 ∼ ε−n, where n = dim G.

By the mean ergodic theorem and Chebycheff’s inequality :

mG/Γ({x ∈ G/Γ : |πG/Γ(βt )φε(x)− 1| > δ})

≤ Cδ−2ε−nm(Bt )
−2θ.
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Thus here the measure of the set of deviation decreases in t with
a prescribed rate determined by the effectve ergodic Thm.

As we saw above, points x in its complement give us an
approximation to our counting problem with quality δ, so we must
require that the measure be smaller than mG(Oε) ∼ εn.

The estimate of the measure of the deviation set holds for all t , ε
and δ, since the mean ergodic theorem with error term is a
statement about the rate of convergence in operator norm, and is
thus uniform over all functions.

Our upper error estimate in the counting problem is, as before

|Γt | ≤ (1 + δ)m(Bt+ε) ≤

≤ (1 + δ)(1 + cε)m(Bt ),

Taking δ ∼ ε ∼ m(Bt )
−θ/(n+1) to balance the two significant parts

of the error appearing in the estimate (1 + δ)(1 + cε), the result
follows.
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Uniformity in the lattice point counting problem

Note that in the ergodic theoretic approach we have taken, the
important feature of uniformity of counting lattice points in finite
index subgroups Λ is apparent.

Indeed all that is needed is that the averaging operators π(βt )
satisfy the same norm decay estimate in the space L2(G/Λ).

This holds when the set of finite index subgroups satisfy property
τ , namely when the spectral gap appearing in the
representations L2

0(G/Λ) has a positive lower bound.

Property τ has been shown to hold for the set of congruence
subgroups of any arithmetic lattice in a semisimple Lie group
(Burger-Sarnak, Lubotzky, Clozel..... generalizing the Selberg
property)

.
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Some previous results

The classical non-Euclidean counting problem asks for the
number of lattice points in a Riemannian ball in hyperbolic space
Hd . For this case, the best known bound is still the one due to
Selberg (1940’s) or Lax-Phillips (1970’s). Bruggeman,
Gruenwald and Miatello have established similar results for
lattice points in Riemannian balls in products of SL2(R)’s (2008).

Riemannian balls in certain higher rank simple Lie groups were
considered by Duke-Rudnik-Sarnak (1991). In this case, they
have obtained the best error estimate to date, which is matched
by the theorem stated above, when adjusted for radial averages.

Eskin-McMullen (1990) devised the mixing method, which
applies to general (well-rounded) sets, but have not produced an
error estimate. Maucourant (2005) has obtained an error
estimate using an effective form of the mixing method, and so
have Benoist-Oh in the S-algebraic case (2012). The resulting
estimates are weaker than those stated above
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Counting rational points

Counting rational points on algebraic varieties homogeneous
under a simple algebraic group G defined over Q has been
considered by Shalika, Takloo-Bighash and Tschinkel (2000’s).
They used direct spectral expansion of the height zeta function in
the automorphic representation (using, in particular,
regularization estimates for Eisenstein series).

Gorodnik, Maucourant and Oh (2008) have used the mixing
method in the problem of counting rational points.

It is possible to consider the corresponding group G over the ring
of adéles, in which the group of rational points is embedded as a
lattice. Generalizing the operators norm estimates from G(F ) for
all field completions F to the group of adéles, it is possible to use
the method based on the effective mean ergodic theorem here
too. The error estimate statedabove is better that the estimate
that both other methods produce.
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Ergodic theorems for lattice groups : Induced actions

Second main point : To prove the mean (and pointwise) ergodic
theorems for lattice subgroups (stated above) we generalize the
solution of the lattice point counting problem.

Indeed, there we have considered the action of G on G/Γ,
namely the action induced to G from the trivial Γ-action on a
point. We now analyze the action induced to G from a general
ergodic action of Γ on (X , µ).

Denote by Y = G/Γ× X = G×X
Γ , with the measure mG/Γ × µ, the

action of G induced from the Γ-action on X .

It is defined as the space Y = G×X
Γ of Γ-orbits in G × X , where Γ

acts via (h, x)γ = (hγ, γ−1x). G acts on G × X via
g · (h, x) = (gh, x), an action which commutes with the Γ-action
and is therefore well defined on Y . The measure mG/Γ × µ is
G-invariant.
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Ergodic theorems for lattice groups : proof overview

The essence of the matter is to estimate the ergodic averages
πX (λt )φ(x) given by

1
|Γ ∩ Bt |

∑
γ∈Γ∩Bt

φ(γ−1x) , φ ∈ Lp(X ),

above and below by the ergodic averages πY (βt±C)Fε(y),
namely by

1
mG(Bt±C)

∫
g∈Bt±C

Fε(g−1y)dmG(g) .

The link between the two expressions is given by setting
y = (h, x)Γ ∈ (G × X )/Γ = Y and

Fε((h, x)Γ) =
∑
γ∈Γ

χε(hγ)φ(γ−1x) , F ∈ Lp(Y ),

where χε is the normalized characteristic function of an identity
neighborhood Oε. Assume from now on φ ≥ 0.
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The ergodic averages πY (βt±C)Fε can be rewritten in full as

∑
γ∈Γ

(
1

mG(Bt±C)

∫
g∈Bt±C

χε(g−1hγ)

)
φ(γ−1x) ,

We would like the expression in parentheses to be equal to one
when (say) γ ∈ Γ ∩ Bt−C and equal to zero when (say)
γ /∈ Γ ∩ Bt+C , in order to be able to compare it to πX (λt )φ. .

A favorable lower bound arises if χε(g−1hγ) 6= 0 and g ∈ Bt−C
imply that γ ∈ Bt , and a favorable upper bound arises if for
γ ∈ Γ ∩ Bt the support of χε(g−1hγ) contained in Bt+C .

Thus favorable lower and upper estimates depend only on the
regularity properties of the sets Bt , specifically on the stability
property under perturbations by elements h in a fixed
neighborhood, and volume regularity of mG(Bt ).
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Therefore taking some fixed Oε and C, the usual strong maximal
inequality for averaging over λt follows from the ordinary strong
maximal inequality for averaging over βt . It follows that for lattice
actions, as for actions of the group G, the maximal inequality
holds in great generality and requires only a coarse form of
admissibility.

The mean ergodic theorem for λt requires considerably sharper
argument, and in particular requires passing to ε→ 0, namely
mG(Oε)→ 0.

The effective uniform volume estimate appearing in the definition
of admissibility is utilized, and is matched against the
unavoidable quantity mG(Oε)−1 which the approximation
procedure introduces.
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The effective mean ergodic theorem requires in addition an
effective estimate on the decay of the operator norms∥∥π0

Y (βt )
∥∥

Lp
0(Y )

.

This decay estimate plays an indispensable role, and allows a
quantitative approximation argument to proceed, again using
crucially that the averages are admissible.

As a byproduct of the proof, we obtain an effective decay
estimate on the norms

∥∥π0
X (λt )

∥∥
Lp

0(X)
, for 1 < p <∞.
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