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The lattice point counting problem

Let G be an lcsc group and Γ ⊂ G a discrete lattice subgroup

The lattice point counting problem in domains Bt ⊂ G calls for
obtaining an asymptotic for |Γ ∩ Bt |, ideally so that

1) Haar measure m(Bt ) is the main term in the asymptotic,

2) There is an error estimate of the form

|Γ ∩ Bt |
m(Bt )

= 1 + O
(
m(Bt )

−δ)
where δ > 0 and is as large as possible, and is given in an
explicit form,
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3) the solution should apply to general families of sets Bt in a
general family of groups,

4) the solution should establish whether the error estimate can
be taken as uniform over all (or some) finite index subgroups
Λ ⊂ Γ, and over all their cosets, namely:

|γΛ ∩ BT |
m(BT )

=
1

[Γ : Λ]
+ O

(
m(BT )−δ

)
with δ and the implied constant independent of the finite index
subgroup Λ, and the coset representative γ.

First main point: A general solution obeying the 4 requirements
above can be given for lattices in simple algebraic groups and
general domains Bt , using a method based on the effective mean
ergodic theorem for G.

Furthermore, this is the first essential step in proving mean
ergodic theorems for lattice subgroup.
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Admissible sets for the counting problem

We will assume the following stability and regularity assumptions
on the sets Bt (more general conditions are in fact possible).

Assume G is a simple Lie group, fix any left-invariant Riemannian
metric on G, and let

Oε = {g ∈ G : d(g,e) < ε}.

An increasing family of bounded Borel subset Bt , t > 0, of G will
be called admissible if there exists c > 0, t0 and ε0 such that for
all t ≥ t0 and ε < ε0 we have :

Oε · Bt · Oε ⊂ Bt+cε, (1)
mG(Bt+ε) ≤ (1 + cε) ·mG(Bt ). (2)

In the previous talk, we have proved the following.
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Counting in connected Lie groups

Lattice point counting. Gorodnik+N, 2006.

G a connected Lie group, Γ ⊂ G a lattice, Bt ⊂ G admissible.

1) Assume the mean ergodic theorem holds for βt in L2(mG/Γ) :∥∥∥∥π(βt )f −
∫

X
f dmG/Γ

∥∥∥∥
L2

→ 0 , (mG/Γ(G/Γ) = 1 ).

Then
|Γ ∩ Bt | = |Γt | ∼ mG(Bt ) as t →∞.

Assume that the error term in the mean ergodic theorem for βt in
L2(mG/Γ) satisfies∥∥∥∥∥π(βt )f −

∫
G/Γ

f dmG/Γ

∥∥∥∥∥
L2

≤ Cm(Bt )
−θ ‖f‖L2

Then
|Γt |

mG(Bt )
= 1 + O

(
m(Bt )

−θ/(dim G+1)
)
.
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Uniformity in the lattice point counting problem

The ergodic theoretic proof immediately implies the important
feature of uniformity of counting lattice points in finite index
subgroups Λ

provided only that the averaging operators π(βt ) satisfy the same
norm decay estimate in the space L2(G/Λ).

This condition holds when the set of finite index subgroups
satisfy property τ , namely when the spectral gap appearing in
the representations L2

0(G/Λ) has a positive lower bound.

Property τ has been shown to hold for the set of congruence
subgroups of any arithmetic lattice in a semisimple Lie group
(Burger-Sarnak, Lubotzky, Clozel.....) generalizing the Selberg
property

.
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Some previous results

The classical non-Euclidean counting problem asks for the
number of lattice points in a Riemannian ball in hyperbolic space
Hd . For this case, the best known bound is still the one due to
Selberg (1940’s) or Lax-Phillips (1970’s). Bruggeman,
Gruenwald and Miatello have established similar results for
lattice points in Riemannian balls in products of SL2(R)’s (2008).

Riemannian balls in certain higher rank simple Lie groups were
considered by Duke-Rudnik-Sarnak (1991), who obtained the
best error estimate to date. This estimate is matched by the
theorem stated above, (when adjusted for radial averages).

Eskin-McMullen (1990) devised the mixing method, which
applies to general (well-rounded) sets, but have not produced an
error estimate. Maucourant (2005) has obtained an error
estimate using an effective form of the mixing method, and so
have Benoist-Oh in the S-algebraic case (2012). The resulting
estimates are weaker than those stated above
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Counting rational points

Counting rational points of bounded height in a simple algebraic
group G defined over Q has been considered by Shalika,
Takloo-Bighash and Tschinkel (2000’s). They used direct
spectral expansion of the height zeta function in the automorphic
representation (using, in particular, regularization estimates for
Eisenstein series).

Gorodnik, Maucourant and Oh (2008) have used the mixing
method in the problem of counting rational points in group
varieties.

It is possible to consider the corresponding group G over the ring
of adéles, in which the group of rational points is embedded as a
lattice. Generalizing the operators norm estimates from G(F ) for
all field completions F to the group of adéles, it is possible to use
the method based on the effective mean ergodic theorem here
too. The error estimate stated above is better that the estimate
that both other methods produce.
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Spectral gap and the ultimate ergodic theorem

Ergodic theorems for lattice subgroups, II. Gorodnik+N, ’08.

If the Γ-action has a spectral gap then, the effective mean
ergodic theorem holds : for every f ∈ Lp, 1 < p <∞∥∥∥∥λt f −

∫
X

fdµ
∥∥∥∥

p
≤ Cpm(Bt )

−θp ‖f‖p ,

where θp = θp(X ) > 0.

Under this condition, the effective pointwise ergodic theorem
holds: for every f ∈ Lp, p > 1, for almost every x ,∣∣∣∣λt f (x)−

∫
X

fdµ
∣∣∣∣ ≤ Cp(x , f )m(Bt )

−θp .

where θp = θp(X ) > 0.
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Ergodic theorems for lattice groups : Induced actions

Second main point : To prove the mean (and pointwise) ergodic
theorems for lattice subgroups (stated above) we generalize the
solution of the lattice point counting problem.

Indeed, there we have considered the action of G on G/Γ,
namely the action induced to G from the trivial Γ-action on a
point. We now analyze the action induced to G from a general
ergodic action of Γ on (X , µ).

Denote by Y = G/Γ× X = G×X
Γ , with the measure mG/Γ × µ, the

action of G induced from the Γ-action on X .

It is defined as the space Y = G×X
Γ of Γ-orbits in G × X , where Γ

acts via (h, x)γ = (hγ, γ−1x). G acts on G × X via
g · (h, x) = (gh, x), an action which commutes with the Γ-action
and is therefore well defined on Y . The measure mG/Γ × µ is
G-invariant.
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Ergodic theorems for lattice groups : proof overview

The essence of the matter is to estimate the ergodic averages
πX (λt )φ(x) given by

1
|Γ ∩ Bt |

∑
γ∈Γ∩Bt

φ(γ−1x) , φ ∈ Lp(X ),

above and below by the ergodic averages πY (βt±C)Fε(y),
namely by

1
mG(Bt±C)

∫
g∈Bt±C

Fε(g−1y)dmG(g) .

The link between the two expressions is given by setting
y = (h, x)Γ ∈ (G × X )/Γ = Y and

Fε((h, x)Γ) =
∑
γ∈Γ

χε(hγ)φ(γ−1x) , F ∈ Lp(Y ),

where χε is the normalized characteristic function of an identity
neighborhood Oε. Assume from now on φ ≥ 0.
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The ergodic averages πY (βt±C)Fε can be rewritten in full as

∑
γ∈Γ

(
1

mG(Bt±C)

∫
g∈Bt±C

χε(g−1hγ)

)
φ(γ−1x) ,

We would like the expression in parentheses to be equal to one
when (say) γ ∈ Γ ∩ Bt−C and equal to zero when (say)
γ /∈ Γ ∩ Bt+C , in order to be able to compare it to πX (λt )φ. .

A favorable lower bound arises if χε(g−1hγ) 6= 0 and g ∈ Bt−C
imply that γ ∈ Bt , and a favorable upper bound arises if for
γ ∈ Γ ∩ Bt the support of χε(g−1hγ) contained in Bt+C .

Thus favorable lower and upper estimates depend only on the
regularity properties of the sets Bt , specifically on the stability
property under perturbations by elements h in a fixed
neighborhood, and volume regularity of mG(Bt ).
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Therefore taking some fixed Oε and C, the usual strong maximal
inequality for averaging over λt follows from the ordinary strong
maximal inequality for averaging over βt . It follows that for lattice
actions, as for actions of the group G, the maximal inequality
holds in great generality and requires only a coarse form of
admissibility.

The mean ergodic theorem for λt requires considerably sharper
argument, and in particular requires passing to ε→ 0, namely
mG(Oε)→ 0.

The effective uniform volume estimate appearing in the definition
of admissibility is utilized, and is matched against the
unavoidable quantity mG(Oε)−1 which the approximation
procedure introduces.
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The effective mean ergodic theorem requires in addition an
effective estimate on the decay of the operator norms∥∥π0

Y (βt )
∥∥

Lp
0(Y )

.

This decay estimate plays an indispensable role, and allows a
quantitative approximation argument to proceed, again using
crucially that the averages are admissible.

As a byproduct of the proof, we obtain an effective decay
estimate on the norms

∥∥π0
X (λt )

∥∥
Lp

0(X)
, for 1 < p <∞.
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Operator norm estimates in the automorphic
representation

Let π and σ be unitary representations of an lcsc group G, and
assume σ is (isomorphic to) a subrepresentation of π.

Then for for every probability measure β on G, clearly
‖σ(β)‖ ≤ ‖π(β)‖.

This inequality holds whenever diagonal matrix coeff’ 〈σ(g)v , v〉
of σ can be approximated uniformly on compact sets in G by
convex combinations of diagonal matrix coeff’ 〈π(g)w ,w〉 of π.

The latter condition is called weak containment, denoted σ ≤w π

It was established by Diximier (1969) that weak containment is
equivalent to the norm inequality ‖σ(f )‖ ≤ ‖π(f )‖ for every
f ∈ L1(G).
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Tempered representations

We will call a unitary rep’ π of G a tempered representation if
π ≤w rG. It then follows that ‖π(β)‖ ≤ ‖rG(β)‖ for all abs. cont.
prob’ measures β on G.

Define (G,H, Γ) to be a tempered triple if the restriction of the
automorphic representation of G on L2

0(G/Γ) is a tempered
representation of H.

• It is a surprising and useful fact that the foregoing condition of
"subgroup temperedness" holds in considerable generality for a
large class of triples (G,H, Γ).
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Subgroup temperedness

• There are several general principles which can be used to establish
subgroup temperedness.

• Kazhdan’s original argument : When H = SL2(R).<R2 ⊂ G, any
unitary representation of G without R2-invariant unit vectors is
tempered when restricted to SL2(R).

•When G is semi simple and had property T , there are universal
pointwise bounds on the K -finite matrix coefficients of G in general
unitary representations established by Cowling (1980) and Howe
(1980), Cowling-Haagerup-Howe (1988), Borel-Wallach (1980’s),
Howe-Tan (1992), and further developed by Oh (1998). These
estimates can be restricted to a subgroup H and are often in L2+η(H),
which implies that the restriction to H is tempered.
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• For example, this holds for (the images of) all the irreducible
representations SL2(R)→ SLn(R), n ≥ 3. This general phenomenon
was first observed by Margulis (1997) and subsequently developed
further by Oh (1998).

• Unitary representations of simple algebraic groups have matrix
coefficients in L2k (G) for some k , Howe-Moore (1978), Howe (1980),
Cowling (1980). Restricting a representation of Gk to the diagonally
embedded copy of G yields matrix coefficients which are in L2+η(G),
so the diagonally embedded subgroup is tempered.

• For some lattices and their low level congruence subgroups the
Selberg eigenvalue conjecture is known to hold, so that L2

0(Γ \G) is
known to be a tempered representation of G. This holds for example
for SL2(Z) ⊂ SL2(R) and SL2(Z[i]) ⊂ SL2(C).

• Spectral estimates for subgroups of G acting in the automorphic
representation on L2(G/Γ) have a very wide range of applications,
due to a recently established effective form of the duality principle.
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The duality principle

• The general classical method of duality in homogenous dynamics
aims to establish properties of the Γ-orbits in H \G by using
properties of the H-orbits in G/Γ.

• This approach has been applied to solve many problem in
homogeneous dynamics from its beginning (Hedlund, Hopf,
Furstenberg, Veech, Zimmer, Dani, Margulis, Margulis-Kleinbock.......)

• A general effective form of the duality principle has been developed
in joint work with Alex Gorodnik (2012).

• This method allows proving effective mean and pointwise ergodic
theorems for the discrete averages supported on Γ-orbit points Hgγ in
H \G, when the elements γ ∈ Γ are ordered by a norm, namely when
averaging on the lattice points in Bt ∩ Γ.
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The method of effective duality

• The quantitative method of duality applies in considerable
generality, for all locally compact groups, closed subgroups H, and
discrete lattices Γ,

• subject only to natural and necessary assumptions about
1 the growth of the sets Ht = H ∩ Bt and the lattice points in their

vicinity,
2 the spectral theory of H in L2

o(Γ \G), and particularly spectral
estimate for the averages supported on Ht ,

3 the local behavior of the invariant measure mG/H on the
homogeneous space G/H = V .

•We will conclude by stating an application of the method of effective
duality to the evaluation of best possible exponents for intrinsic
Diophantine approximation on homogeneous algebraic varieties.
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Diophantine approximation on affine homogeneous
varieties

• Let G be an algebraic Q-subgroup of SLn(R), Γ a lattice subgroup of
G, e.g. G(Z) in G(R).

• Fix a norm on Rn and on Mn(R).

• Consider an affine subvariety V ⊂ Rn which is invariant and
homogeneous under the G-action, so that V = G/H, H a Q-algebraic
subgroup.

• Restrict the norm chosen on Rn to V .

• Assume that Γ is ergodic on V , so that almost every Γ-orbit is dense
in V .
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• Restrict the norm chosen on Rn to V .

• Assume that Γ is ergodic on V , so that almost every Γ-orbit is dense
in V .
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Quantifying denseness

• Consider the Diophantine inequality
∥∥γ−1x − x0

∥∥ < ε, with γ ∈ Γ
satisfying the norm bound ‖γ‖ ≤ Bε−ζ .

• Define the Diophantine approximation exponent κ(x , x0) as the
infimum of ζ > 0 such that the foregoing inequality has a solution with
the properties stated.

• κ(x , x0) is a Γ× Γ-invariant function, hence almost surely a constant
κ when the action is ergodic. κ depends on G, Γ and V , but not on
the norms chosen on Rn and Mn(R).
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Deriving an upper bound for the exponent

• An upper bound on the Diophantine exponent can be derived using

• spectral estimates in the automorphic representation L2(Γ \G)
leading to a quantitative mean ergodic theorem for H,

• dynamical arguments exploiting the speed of distribution of H-orbits
in Γ \G, in the form of a shrinking target argument.

• A quantitative duality argument translating a rate in the action of H
on Γ \G to a rate in the action of Γ on G/H

• Specifically, consider the intersection of norm balls with the stability
group H, namely HT = {h ∈ H ; ‖h‖ < T}.

• Consider the invariant probability measure mG/Γ on Y = G/Γ and
define averaging operators πY (βT ) : L2(G/Γ)→ L2(G/Γ), given by
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The quantitative mean ergodic theorem

πY (βT )f (y) =
1

mH(HT )

∫
h∈HT

f (h−1y)dmH(h) , y ∈ Γ \G .

• Assume that the quantitative mean ergodic theorem for the
averaging operators π0

Y (βT ) holds, namely :

• there exists θ > 0 such that

‖πY (βT )f −
∫

Y
fdm‖L2(Γ\G) ≤ C(η)mH(HT )−θ+η‖f‖L2(Γ\G)

for every η > 0, suitable C(η), and t ≥ tη.
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Bounds for the Diophantine exponent

• Assume that HT = GT ∩ H satisfies a volume growth bounds with
rate a > 0, namely T a−η � mH(HT )� T a+η.

• Let d denote the real dimension of the variety V = G/H.

• Theorem (Ghosh-Gorodnik-N. 2014) Under the assumptions stated
above, the Diophantine exponent satisfies the bound d

a ≤ κ ≤
1

2θ ·
d
a .

• Conclusion : if 2θ = 1 then the lower and upper bounds for the
Diophantine exponent coincide !
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Best possible rate of approximation

• Corollary 1. If the rate of convergence in the mean ergodic
theorem for the averaging operators βT acting on L2

0(Γ \G), is as fast
as the inverse of the square root of the volume of HT , then the rate of
Diophantine approximation of Γ-orbits on the variety V = G/H is best
possible, and the Diophantine exponent is given by κ = d

a (which is
an a-priori pigeon-hole bound).

• Corollary 2. If the stability group H is semi simple and non-compact,
and the restriction of the automorphic representation π0

G/Γ to H is a
tempered representation of H, then the Diophantine exponent of the
irreducible lattice Γ of G in its action on G/H is best possible, and is
given by κ = d

a .

• Thus "subgroup temperedness" for the triples (G,H, Γ) (when G
and H are semisimple) implies the best possible estimate for intrinsic
Diophantine approximation by Γ-lattice orbits on the homogeneous
variety H \G.
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